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A method is developed for the calculation of the eigenvectors of an infinite tridiagonal matrix. 
Possible application of this method to study the problem of localization in a disordered linear 
chain is also discussed. 
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I. INTRODUCTION 

Many interesting physical systems may be described by 
a matrix of tridiagonal form. For such systems, the solution 
of the eigenvalue problem usually starts with the truncation 
of the matrix to finite but sufficiently large size. Then meth
ods such as Dean's method of negative mode counting I can 
be used to determine the eigenvalues. Recently, Dy, Wu, and 
Wongtawatnugool2 developed a scheme which leads directly 
to the determination of the eigenvector once the eigenvalue 
is determined. There are two key points to their approach. (1) 
The calculation of the eigenvector is carried out concurrent
ly with the determination of the eigenvalue. Thus, there is no 
redundancy in computing separately the eigenvector after 
the eigenvalue is determined, resulting in considerable sav
ing of computing time. (2) The boundary conditions are in
corporated into the process of calculation of the eigenvalues 
and the eigenvectors. Therefore they will be satisfied to the 
same degree of accuracy as those in the calculation of the 
eigenvalues. 

However, in many situations, it is crucial to understand 
the eigenvalue spectrum and the corresponding eigenstates 
of an infinite system. The conventional method for treating 
such situations is to allow N, the number of particles in the 
corresponding finite system, to increase and then to examine 
how the properties of the system change as N~(jJ. The com
putational problem encountered in a process such as this can 
be formidable. Hence, the problem of the approach to infin
ity is always difficult to handle. 

In general, the eigenvalue spectrum of an infinite sys
tem consists of two parts: a series of discrete eigenvalues and 
a series of continuous bands. The most convenient way of 
studying the eigenvalue spectrum of an infinite system is to 
calculate the diagonal elements of the resolvent operators 
(the Green's function). The poles of the diagonal elements of 
the Green's function yield the discrete eigenvalues, and the 
imaginary part of the trace of the Green's function deter
mines the continuous spectrum. But how do we calculate the 
eigenstates for an infinite system? Can we still use the meth
od ofDy, Wu, and Wongtawatnugool (DWW)? 

It turns out that the eigenstates corresponding to the 
discrete spectrum can indeed be calculated using the DWW 
method. However, the method needs to be modified for the 
eigenstates corresponding to the continuous spectrum. In 
this work we shall develop a scheme to calculate the eigen-

states for the continuous spectrum and discuss its relation
ship with that for the corresponding finite system. Possible 
application of the method to study the problem of localiza
tion in a disordered system is also discussed. 

II. REVIEW OF THE DWW METHOD FOR A FINITE 
SYSTEM 

For a system described by a tridiagonal matrix of the 
form 

H u' = Eioi.i' - Vi,i+ 10i+ 1,;' - Vi,i_IOi_I.i' , (1) 

the matrix elements of the resolvent operator 
R = (Z - H)-I ,i.e., the Green's function, can be written as3 

R;; = (Ai - Vi,i+ IA i~ I V;+ I,i - V;.i_IA i-=- I Vi_l,i)-1 ,(2) 

Rii' = Ru Vi,i± IA i~ 1",Vi'=F 1,i'A if' 
( ~ for i> i'; + for i< i'j, 

or 

= A i± Vi,i=F IA i=1f I'" v.., ± I,i' Ri'i' 
( - fori d'; + for i> i'j, (3) 

where Ai = (Z - E i ) and 

A i± = (Ai - Vi,i± IA i~ 1 Vi ± 1,;)-1. (4) 

If the eigenvector v is expanded in the representation U i 

defining the matrix Hi) , we have 

v= LCi U i , (5) 

The eigenvalue equation (A. - H) v = R -IV = 0 can 
then be reduced to 

(6) 

where 

R jf 1 = (Z - Ej ) Oji - ~,j+ I OJ+ l,i - ~,j_1 OJ_l,i . 

For a C[ #0, Eq. (6) may be rewritten as 

(7) 

with hi = c;lc[ and in particular h[ = 1. The eigenvector v 
will be determined (except for the normalization constant) if 
all the hi's are determined. 

In DWW's approach2 Eq. (7) is split into two parts cor
responding to};;;.l + lor}.;;} - 1. In this situation we obtain 
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where 

or 

The column vectors b ± can then be expressed as 

b±=R±x± 

b[ ± I = R i~ 1,[ ± I V[ ± 1,1 = .11~ I VI ± 1,/ , 

bl±r=R/'±r,/±1 VI±I,/ 

= .1/~ r VI ± r,/ ± r=F I ···.1/~ I V[ + 1,1 , 

(8) 

(9) 

(10) 

(11 ) 

Using the identity given in Eq. (3), we may also write 

Ill. THE REQUIREMENT OF THE BOUNDARY 
CONDITION 

(12) 

The boundary condition of the eigenvalue problem dis
cussed in the previous section is given atj = I. From Eq. (7) 
we have atj = I, 

RD~lb'+1 +Riil+RD~lb[_1 =0. (13) 

Substituting Eq. (12) into Eq. (13) we obtain 

R R I-=-\ I R I ~+R-I+R-I ---' =0. (14) 
1,I t I R /I 1,1-1 R 

/I /I 

On the other hand, since R is the inverse of R - I we should 
have 

R t7~ I R , + 1,1 +R lilRI/ +R t7~ IRI __ I,I = 1 . (15) 

Dividing Eq. (15) by RI/ leads to 

R RI_I" 
Rt7~1 ~ +Rii

l +RD~.I 
RI/ RI/ RI/ 

(16) 

At first glance, Eqs. (14) and (16) seem to be in contradiction. 
However, for a finite system the eigenvalues are actually the 
poles of RI/' Hence, Eq. (16) is identical to Eq. (14) when 
Z = A, where A is the eigenvalue of the system, because 
1/ R 1/-0 at Z = A. We should also note that at Z = A, even 
though RI/_ 00, the ratio RI ± r,,1 RI/ is in fact a finite quanti
ty given by Eq. (11). 

The situation is different, however, for an infinite sys
tem. Indeed, for the discrete spectrum, the eigenvalues still 
correspond to the pole of RI/ so that Eqs. (14) and (16) are 
consistent with each other. But for the continous spectrum 
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RI/ does not go to infinity in the region defined by the con
tinuous spectrum. This then indicates that in this situation 
Eq. (12) must be modified so that the boundary condition 
will be consistent with Eq. (16). 

IV. THE EIGENSTATES FOR THE CONTINUOUS 
SPECTRUM 

As pointed out earlier, the density of states for a con
tinuous spectrum can be calculated in terms ofthe imaginary 
part of the trace of the Green's function. Specifically,4 

p(E) = - ~ lim ~ TrR (E + iE) . 
1T <--.0 N 

( 17) 

In this sense, the existence of the continuous spectrum can be 
viewed as follows. For a finite system, when the degree of 
freedom N is allowed to increase the density of distribution 
of the discrete eigenvalues will increase. In certain regions of 
the spectrum it may happen that as N- 00, series of discrete 
poles will collapse into a series of branch cuts, resulting in a 
series of continuous bands. 

To determine the eigenstates corresponding to the con
tinuous spectrum we shall follow essentially the same rea
soning. The equation defining the Green's function may be 
written as 

( 18) 

Consider the case when i = i' = I. Equation (18) will reduce 
to 

RD~IR'+I" +RI,I(E+iE)RI/ +RD~IRI_l,/ = 1. (19) 

The imaginary part of Eq. (19) is then 

R ',l~ I ImR ,+ 1,1 + Im(R I,IRI/) + R tJ ~ I ImR, _ 1,1 = O. 

As E-o, this equation becomes 

R i; ~ I ImR, + l,/ + R "I(E) ImRl/ + R I,ll I ImR, l,/ = 0 

or 

ImR, + 1,1 ImR, 
R 1-,1 +1 I + R - I + R - I - 1,/ = 0 . (20) 

ImR /I 1,1- I ImR 
/I /I 

If one compares Eq. (20) with Eq. (14), one is tempted to 
propose that 

b 1
· ImRl± 1,1 

I + I = 1m ---=---
- <->0 ImRlI 

To see whether this is the case we shall split Eq. (18) into two 
parts: i' = I, i> 1 and i' = I, i < I. If again, only the imaginary 
part of the equation is considered, we obtain as E-o, 

R 1±\,1 ImRl/ + R I±\./± I ImRl± 1,/ 

+R I±\,1±2 ImR, ±2,1 =0, 

R I±12,1±1 ImR,±I" +R I±12,1±2 ImR ,±2" 

+R I±12,/±3 ImRI±3,/ =0, 

When Eq, (21) is divided by ImRl/' it becomes 

ImRI± 1,1 + R _I ImRI±2,1 
R1±\,I±1 I 1±1,I±2 ImR 

mRl/ /I 
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(22) 

Comparison of Eq. (22) with Eq. (8) indicates that bl ± rand 
ImRI± r.l11mRU' in fact, satisfy the same set of equations. 
Hence they must be proportional to each other. Since it had 
been shown by Dy, Wu, and Wotigtawatnugool that bl ± T 

= RI±,.lIRu for a.finite system, one may expect thatfor an 
infinite system the constant of proportionality is I, or bl ± T 

= ImRl±"rI1mRt/. 
To check on this point consider the quantity 

ImR/+ 1,IIImRl/' In the region defined by the continuous 
spectrum ..1 / are complex quantities. If we denote..:::l I~ I 
= a + ib and AI-=- I = a' + ib " it can be shown that 

ImRl+,,1 
ImR =aVI+1,1 + VI+u(A I - VI,I+laVI+I.l 

u 
- VI,l_la'Vf _ 1.l)[b/(VI,I+ IbVI+ J./ 

+ VIl_1b'Vf _ U )]' 

For a finite system composed of N particles (regardless how 
large N is) A f± must be real.5 Hence 

A,~,(N)=aN 

and 

..1 ,-=- I (N) = a~ , 
The eigenvalues of the system are determined by the poles of 
RuiN). Since Ru(N) is now given by 

Ru(N) = (A, - V,.I+ IaN V,+ \" - V'.I_la~ V
'
_I,I)-I , 

hence, at any given eigenvalue o~the system, 

A, - Vf•l + l aNV,+I.I- VI.I_Ia~V'_I,I =0. 

This means that if we are examining the correspondence be
tween the infinite system and the finite system we should 
have 

ImRl + t.I + RI + !,l(N) 
ImR -aN v;+ 1.1 = ..1,+ 1 (N) VI + 1.1 = 

II RuiN) 
(23) 

Since ImR I + u/1mRu reduces to RI + 1.I(N)lRI!(N) for a 
finite system, we can then conclude that 

b 1
· ImR,+ 1.1 

1+1 = 1m .. 
.----<J ImRl! 

Similar argument can be used to show that in general 

b 1· ImRI±T.I 
l±, = 1m 

€---<J ImRu 
(24) 

V. AN ILLUSTRATIVE EXAMPLE: THE EIGENVECTORS 
OF A PERIODIC MONATOMIC CHAIN 

To further establish the validity ofEq. (24) we use it to 
determine the eigenvectors of a periodic monatomic chain. 
The situation to be studied is the dynamics of a chain with 
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atomic mass m and nearest neighbor interaction character
ized by the force constant y. The analysis is also applicable 
for the electronic structure of a chain with an array ofidenti
cal potentials. 

Using the reduced unit ofylm = 1, the equation de
scribing the dynamics of the system can be written as 

(2 - (2)U I = UI + 1 + UJ _ I • 

For .such a system, it can be seen that 

..1 I± = ..1 ,~\ = .... =..1 , 

where ..1 satisfies the equation 

..1 = II(Ac- ..1 ) 

with 
A = 2 _w2

• 

Using Eqs. (2) and (3), we can write 

Ru = II(A - 2.J ) =..1 1(1-.1 2) 

and 

R'±T.I = ..1 'R II = L1'+ \/(1 - ..1 2
). 

Denoting 

..1 = ae ia 

and 

1_.J 2 =be if3 

so that 

tan/3 = - a2 sin2al(1 - a 2 cosla) , 

we obtain 

bl ± T = ar
[ cosar + sinar cotta - (J)] . 

(25) 

(26) 

(27) 

(28) 

(29) 

For the system under consideration, the region of continous 
spectrum is determined by examining the frequency spec
trump(w 2

). It is easily seen thatp(w2
) does not vanish only in 

the interval 0 < w2 < 4. In this interval ..1 is complex and is 
given by 

..::l =!H2 - ( 2
) ± i[w2(4 - a,zW1Zj . 

The quantity a, the absolute value of.J, is then 1. Using Eq. 
(28). it can be shown that 

(J=a+1T12. 

Substituting these results into Eq. (29). we obtain 

b,±, = cosar. (30) 

where 

tana = [w 2(4 _ ( 2 )] 112/(2 _ ( 2 ) • 

This is just the expected result. 

VI. THE APPLICATION TO DISORDERED SYSTEMS 

When studying the properties of disordered systems the 
most difficult problem is the determination of the eigenvalue 
spectrum and the eigenstates for an infinite system. Over the 
years various numerical schemes and analytic approxima
tions were invented to handle the task. 1.5.7 However, the cal
culation involved is usually quite substantial so that it always 
presents itself as a formidable problem. In particular, the 
determination of the eigenstates is most of the time difficult 
to deal with. 
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Because there really does not exist any means to calcu
late exactly the properties of an infinite disordered system, 
one of the most frequently used method is the numerical 
approach. This approach is to first solve the eigenvalue prob
lem for a series of increasing but finite systems, and then to 
examine whether the calculated properties approach their 
respective limits. In fact, the numerical studies of the fre
quency spectra of disordered systems by Dean and his co
workers are typical examples of this kind of treatment. I 

One of the most challenging problems in disordered 
systems is the problem associated with the localization. 
Since the pioneering works of Mott and Twose,8 Borland,9 

and Halperin,1O much effort has been devoted to the study of 
localization in one-dimensional disordered systems. But 
only recently has there been serious attempts to carry out 
direct eigenvector analysis of such problems. 11-15 The reason 
is that, in order to compute the eigenvectors of a long disor
dered chain, very precise determination of the eigenvalue is a 
necessity. Because ofthe intrinsic progression of errors in the 
computation, the numerical calculation of the eigenvectors 
becomes increasingly difficult for larger and larger systems. 
The method developed in Sec. IV, however, provides a 
scheme to avoid this major problem, i.e., the precise calcula
tion of the eigenvalues. 

From Eq.(24) it is seen that the eigenvector can be deter
mined by 

. ImRl ± r,l(N, E + iE) 
bl+r=hm . ' 

- N~oo ImRl/(N, E + IE) 
(31) 

where R 1/ (N) is the matrix element for the resolvent operator 
R for a system of N particles. For a given energy eigenvalue, 
as long as ImRl/(N, E + iE) does not vanish, Eq. (31) can be 
used to calculate the corresponding eigenvector. 

The procedure of calculation of the eigenvector can 
now be set up as follows. For a system with N particles, a 
representative configuration is generated according to the 
law of distribution of disorder. Using Eqs. (2), (3), (4), and 
(31), the amplitudes of the eigenvector bl can be calculated. 
There still remains the question of how to choose the param
eter E. The guideline can be constructed on the basis of the 
procedure used in the direct calculation of finite systems. 
Since the eigenvalues of a system depend on the degree of 
freedom, it is very difficult to follow the change of behavior 
of a particular eigenstate as N_ 00. To circumvent this diffi
culty, for a system of N particles the propeties of the eigen
states are averaged over all the eigenstates in the neighbor
hood of a chosen value of E. The interval.JE is usually of the 
order 1/N.14 In our treatment, the parameter E can also be 
chosen as 1/ N. This is the equivalent to taking the average 
over the eigenvalue interval defined by 1/N. The properties 
associated with the eigenstate can then be studied by examin
ing how the amplitudes change as N_ 00, E-<l, but NE = 1. 
Work along this line is in progress. 

Explicit eigenvector analysis of two- and three-dimen
sional systems may also be treated by this technique. This 
can be accomplished by first transforming a general matrix 
describing the two- or three-dimensional system into the tri
diagonal form using the Lanczos recursion method l6 pro-
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posed by Haydock, Heine, and Kelly. 17 The application of 
the recursion method to study the problem oflocalization 
has so far been concentrated on the general behavior of the 
localization,18-21 with practically no or little attention given 
to the nature of the localized states. The technique discussed 
here, however, may provide the scheme for a detailed ampli
tude analysis of the nature of the localized states. 

VII. SUMMARY 

In this work, a method is developed for the calculation 
of the eigenstate of an infinite tridiagonal matrix. Possible 
application of this method to study the problem of localiza
tion in a disordered linear chain is also discussed. There are 
two points which distinguish this method from the conven
tional numerical method. (1) There is no need to first numeri
cally determine the eigenvalue (the eigenvalue spectrum is 
determined by the region where ImRl/ does not vanish). 
Thus all the difficulties associated with the precise determi
nation of the eigenvalue are circumvented. (2) There is no 
need to carry out the average over all the eigenstates in the 
eigenvalue interval defined by 1/ N, resulting in the saving of 
all the numerical calculation of those eigenstates. 

ACKNOWLEDGMENTS 

One of us (S. Y. Wu) would like to thank Professor H. S. 
Wu, Mr. Z. Y. Wong, and Mr. T. C. Mao of the Chinese 
University of Science and Technology for many stimulating 
discussions. He is also grateful to the Physics Department of 
the Chinse University of Science and Technology for the 
warm hospitality afforded to him during his visit to Hofei. 

Ip. Dean, Rev. Mod. Phys. 44,127 (1972); see also, for example, L. Fox, An 
Introduction to Numerical Linear Algebra (Oxford U.P., New York, 1965). 

2K. S. Dy, S. Y. WU,and C. Wongtawatnugool,J. Phys. C 12, LI41 (1979). 
3S. Y. Wu, C. C. Tung, and M. Schwartz, J. Math. Phys. 15,938 (1974). 
4J. S. Langer, J. Math. Phys. 2,584 (1961). 
'So Y. Wu, Phys. Status Solidi (B) 74,349 (1976). 
hR. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 46, 465 
(1974). 

7S. Y. Wu, S. Bowen, and K. S. Dy, CRC Crit. Rev. Solid State Sci. (1980). 
"N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961). 
9R. E. Borland, Proc. R. Soc. London, Ser. A 274,529 (1963). 
lOB. I. Halperin, Adv. Chern Phys. 13, 127 (1967). 
"0. Theodorou and M. H. Cohen, Phys. Rev. B 13, 4597 (1976). 
12K. N. Economou and M. H. Cohen, Phys. Rev. B 4,396 (1971). 
I3J. C. Kimball, J. Phys. C 11, 1367 (1978). 
"C. C. Shih, to appear in J. Phys. C (1980). 
"s. Y. Wu and Z. B. Zheng (to be published). 
16See, for example, L. Fox, An Introduction to Numerical Linear Algebra 

(Oxford U.P., Oxford, 1965). 
I7R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 8,2591 (1975). 
I"S. Yoshimo and M. Okazaki, Solid State Commun. 20, 81 (1976). 
19J. Stein and U. Krey, Solid State Commun. 27, 797 (1978). 
2°R. Haydock, Philos. Mag. B37, 97 (1978). 
21D. Mattis and R. Raghvan, Phys. Lett. A 75, 313 (1980). 

Wongtawatnugool, Wu, and Shih 636 



                                                                                                                                    

Young-tableau methods for Kronecker products of representations of the 
classical groups 

Mark Fischler 
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 

(Received 18 July 1980; accepted for publication 17 October 1980) 

Diagrammatic methods for decomposing Kronecker products of arbitrary representations of any 
of the classical groups are presented. For convenience, efficient ways of computing the 
dimensions and quadratic Casimir's C2(R ) are also given. These methods seem more useful for 
hand calculations than the method of Schur functions (or characteristic polynomials). An 
appendix presents the Kronecker products for any two representations of dimension < 100. 

PACS numbers: 02.20.Qs 

INTRODUCTION 

The particle physicist looking at the thoery of groups is 
generally interested in certain "practical" questions con
cerning the representations of the groups. Among these 
questions are 

(a) What groups are available? 
(b) What representations exist for a given group, and 

what is their nature? 
(c) Branching rules: How representation R of group G 

breaks into representations Si of subgroup H. 
(d) Kronecker products: How R 1 ® R2 breaks into irre

ducible representations Si al S2 al ••• al Sn . 
(e) "Clebsch-Gordan" coefficients for R 1 ® R 2 : This, of 

course, needs the answer to (d) as a starting point. 
There is a tendency to assume that mathematicians 

have addressed and solved these "practical" questions, yet it 
is not easy to find answers in the literature. The available 
groups (in the sense of having finite-dimensional representa
tions) are well known: SU(N), SO(N), SpIN), the five excep
tional groups, and products of these groups. Questions (b) 
and (c) are answered in table form in Patera and Sankoff1

; but 
these tables give no insight as to how the representations and 
branching rules are obtained. A partial table of Kronecker 
products exists,2 but is suffers the same flaw, and also omits 
some important groups, for example, SOt 10), and lists no 
spinors at all. The problem of "Clebsch's" is a most difficult 
question in practice (although simple in theory once the 
Kronecker product is understood), and will not be addressed 
here. 

Many physicists are familiar with Young- tableaux 
methods for finding the dimensions of representations and 
decomposing Kronecker products in SU(N). This work gen
eralizes these procedures to the groups SO(2N + 1), Sp(2N), 
SO(2N) and G2• The methods mathematicians describe use 
"characteristic functions,,3 or Schur functions2.4 and are 
both non intuitive and hard to learn to apply. The tableau 
method has the additional advantage that one can check 
whether R 1 ® R2 contains a particular R 3, without having to 
do the full product. 

We have tried to make these rules as simple and "cook
booklike" as possible. Actually drawing out the diagrams is 
easier than working with lists of numbers, but these dia
grams can't appear in the text, so they are represented by a 

string of numbers in parentheses, with perhaps a symbol (i ,~ 
or *) in front, describing the number of boxes in each row. 
Representations can also be described by the Dynkin num
bers, which we put in brackets [ ); this notation is standard 
and is how they appear in Ref. 1. The notation (abc ... n) 
matches that in Ref. 2 for nonspinors; we feel our notation 
for spinors is more convenient for a reason described below. 

Our method of getting the dimension of an SU(N) repre
sentation may differ from the "product of boxes over prod
uct of hooks" rule familiar to some physicists. It is, however, 
equally easy to apply, and falls into the same pattern as the 
othergroupsSO(2N),SO(2N + 1),Sp(2N),G2 andF4 • The six 
rules for Kronecker products may look imposing, but Rules 
1-3 cover all but certain SO(2N) cases, and in any event, 
these rules are easier to use than to concisely describe. 

In the literature, 1 it is advised that the practical way of 
multiplying two representation is to multiply their dimen
sions, and look for a set of irreducible representations whose 
dimensions total that number, resolving ambiguities by us
ing "Dynkin indices" (values of the quadratic Casimir opera
tor). This method works for the few smallest representations, 
but for larger numbers it becomes fantastically cumbersome 
and ambiguous [e.g. in SO(7) there is a 35-dimensional repre
sentation, a 27 representation, a 7 representation, and the 
trivial 1 representation, 35 = 27 + 7 + 1. Their Dynkin in
dices are l 20, 18,2, and 0, respectively. Thus whenever a 35-
dimensional representation appears in R I ® R 2 , it could be 
replaced by 27 + 7 + 1). The rules set forth below are trivial 
to apply in these low-dimension cases, and are unambiguous 
in all cases. Dimensionally checking the result is, of course, 
still useful to prevent errors. 

We append to this article a list of decompositions of all 
products where R 1 and R2 are both < 100, and up to 210 for 
SO(1O), which is of special interest to grand unification theo
rists. We omit SU(N), which is easy to decompose using rules 
I and 2. The Sp(2N) products appear in Ref. 2 and are includ
ed here for completeness. 

REPRESENTATIONS AND THEIR DIMENSIONS 

A representation of a simple group of rank r can unam
biguously be specified by a set of r integers corresponding to 
thersimple roots of the group. For example, in SU(3), [1,0] is 
the 3, [0,1] the 3, and [1,1] the 8; in SOt 10), [10000] is the 10, 
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and [00010], [00001] are the 16 and 16. This is how the repre
sentations are listed in Ref. 1, and we always will use square 
brackets and integers not separated by commas when refer
ring to such a specification (we have had no occasion to look 
at any representation in which a number is more than 9 in 
this specification scheme). 

It is well known to physicists, at least for SU(N), that it 
is often more covenient to specify representations by 
"Y oung tableaux." In the case of SU(N), the Young tableau 
corresponding to [a ,a2···an _ , ] consists of an _, columns of 
n - 1 boxes, followed on the right by an _ 2 columns ofn - 2 
boxes···with lastly a, "columns" of one box each. Thus in 
SU(6), for example, [21031] is drawn as shown in Fig. 1. We 
will find it convenient to describe a tableau by listing in par
entheses the number of boxes appearing in each row. [21031] 
in SU(6) is then written as (75441). This notation should en
able the reader to easily draw out any tableau in an example 
here. 

The advantages of using such tableaux are threefold: In 
terms of the tableaux, one can compute the dimensionality of 
the representation, compute Kronecker products of two re
presentations, and identify the symmetry properties of a re
presentation (two boxes in a row mean two symmetric indi
ces; boxes in a column imply antisymmetric indices). The 
justification for our particular way of defining tableaux for 
SO(N) and Sp(2N) is that we want to preserve the first two 
properties; the third can't be kept when spinor representa
tions are involved. 

For Sp(2N) the tableau is the same as in the SU(N) case. 
It will be seen, however, that where [a,b, ... ,z] and [z, ... ,b,a] 
are conjugate representations in SU(N), they are not related 
in Sp(2N). 

SO(2N + 1) has the property of including spinors. The 
last number z in [a,b,e, ... z] will determine if the representa
tion is a spinor: if z is odd, it is a spinor. A pair of spinor 
indices can form vectorlike indices. Thus, if z is even, the 
tableau will containz/2 columns of Nboxes [as opposed toz 
such columns in, say, Sp(2N)]. If z is odd, the tableau will 
look the same: there are (z - 1)/2 columns of Nboxes, and to 
indicate a spinor is being described, an arrow is added to the 
notation. For example, as in Fig. 2, in SO(7), [123] = (t431). 
[002] would be (111) while [003] is (t 111) and [001] is (tOOO). 

SO(2N) also has spinors; it has the added complexity of 
the last 2 roots referring to spinor indices. Let the representa
tion be [a,b, ... ,y,z], where z;;;'y. Then if y + z is odd, it is a 
spinor indicated by an upward pointing arrow. There are y 
columns of N - 1 boxes, and (z - y)/2 [or (z - y - 1)/2 in 
the case of a spinor] columns of N boxes. What is happening 
is that pairs of one of each type of spinor indices form vector 
indices of one kind, and then excess pairs of one type of 
spinor index form other vector indices. Thus, as in Fig. 3, 

FIG. 1. [21031] in SU(61 can be written as (154411. 
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IF § 
(a) (b) 

(c) (d) 

FIG. 2. (al [123] = (1431jin SO(11. (bl [002] = (1111. (el [003] = (tl11l. 
(dl [(01) = (10001. 

[00014] in SO(lO) becomes (t22221). 
When y > z, the conjugate representation is formed: In 

SOt 10), 16 is [00001] and 16 is [000 10]. In this case, there 
are z columns of N - 1 boxes, and (y - z)/2 (or 
(y - z - 1)/2) columns of Nboxes. When taking Kroenecker 
products, it is important to know whether you are doing 
R X R or R X R, so we distinguish the y > z representations 
by a down arrow if spinors I [00021] = (~1111 0) 1 or a star if 
the representation is a nonspinor 1[10040] = (*32222) l. 

To find the dimension of a representation (a ,a2 .. ·an ) in a 
group one follows the following prescription: Add to the a j 

[or twice a j , if the group is SO(N )]some simple set of numbers 
(again dependent on the group), to get Ij' Form the product 
of some combination of the I" their differences Ll .. = I - I IJ J J 

(i > j) and their sum Eij = Ij + Ij(i > j), and divide by a speci-
fied denominator, which is the same as the numerator for all 
the a j = O. The specifics of this process are given in Table I. 
The process is illustrated for the representations (t 1 (00) in 
SO(8) and SO(9) (Fig. 4); the numbers down the left side are 
common to any SO(8) [SO(9)] representation, and the + l's 
are because this representation is a spinoL 

When the group in question is G2 , two integers [p,q] will 
label the representation, and the dimension can be computed 
from the Young diagram [which is (p + q,q)] by labelling the 
side with 1, 2sothatli = 2 - i + aj,andformingthenumer
ator IIl;IILlijnEij X (2/, + 12) (2/2 + Id. The denominator is 
120. Equivalently, the dimension is given by 

(p + l)(q + 1) (p + q + 2) (p + 2q + 3) (p + 3q + 4) 

X (2p + 3q + 5) divided by 120. 
For representations of F4 , there are nonspinors 

[a,b,2e,d] andspinors [a,b,2e + I,d]. The diagram fora non
spinor has the form (d + a + 2b + 3e, a + b + e, b + e,e) 
and for a spinor (td + a + 2b + 3e + 1, a + b + c, b + c,c). 
Equivalently, (w,x,y,z) = [x - y,y - z,2z( + 1 for spinor), 
a - b - c - d ( - 1 )]. Notice that the first row is always at 
least as long as the sum of the lengths of the other three rows. 
To find the dimension of a representation, write 11, 5, 3, 1 

FIG. 3. [00014] = (1222211 in SO(IOI· 
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TABLE!. 

Group Ii Numerator Denominator 

SU(N) Ii =ai +N - i m,n~,j 1!2!...(N - Il! 

Sp(2N) Ii =ai +N-i nl,n~,jn€ij 1!3!...(2N - Il! 

Nonspinor SO(2N+ I) Ii = Za i + 2N + I - 2i nlin~ijn€ij 2NIN~ IJ1!3!5!...(2N _ I)! 

Spinor SO(2N + I) I, = 2a i + 2N + 2 - 2i same same 

Nonspinor SO(2N) I, = 2a, + 2N - 2i n~./l€ij 2NIN~ IJ(N _ 1)!1!3!51 ... (2N - 3)! 

Spinor SO(2N) I, = 2a, + 2N + I - 2i same 

down the left side and add two per box, plus 1 more if it a 
spinor. (I; = 2a; + 11,5,3, or 1 for i = 1,2,3 or 4, + 1 for a 
spinor or 0 for a nonspinor.) Then form the numerator: 
llI;ll.Jijll€;j(/) + 12 + 13 + (4)(/) + 12 + 13 -/4) 

X(l) + 12 -/3 + 14) X (I) + 12 -/3 -/4)(/) -/2 + 13 + 14) 

x(l) -/2 + 13 -/4)X(/\ -/2 -/3 + 14)(1) -/2 -/3 -/4}· 
Note that because a) ">a2 + a3 + a4 , all of those are 

positive. The denominator is, as usual the numerator with 
a) = a2 = a3 = a4 = 0, which works out to be 11!9!!25 X 225. 
Of course, dim [pqrsJ can be written as a polynomial (of de
gree 24) in p, q, rand s, but this is not very illuminating or 
convenient. 

KRONECKER PRODUCTS 
When taking the Kronecker product of two representa

tions, arrange the less complicated representation on the 
right, and label it with an a in each box in the first row, b 's in 
the second row, etc. Then follow the rules set down below. 
Note that one can check the result by seeing whether the sum 
of the dimensions of the results is equal to the product of the 
dimensions of the representations being multiplied. Also, it 
is sometimes easier to use the following trick than to multi
ply out explicitly: Say you need R, ® R 2 , and you know that 
S) ®Sz = R2 + T, + T z + ... , where theSjand T j are all 
much simpler than R z. Then one may write 
R z = S, ® Sz - T, - Tz··· and do (R I ® S,) ® S2' subtracting 
the results of R, ® T, + R z ® Tz + .... This trick will be illus
trated below. 

6 
4 
2 
0 

7 
5 
3 
1 

Two techniques were utilized in deriving these rules. 

ID +1+2=9 
+ 1 = 5 
+ 1 = 3 
+ 1 = 1 

(a) 

+ 1 + 2 = 10 
+ 1 6 
+ 1 4 
+ 1 = 2 

(b) 

FIG. 4. (a) (11000) in SO(8) has dimension S6 = 14.12.10.8.6.4.4.6.8.2.4.2. 
2123!I!3!S! 

(b) (t 1000) in SO(9) has dimension 
10·6·4·2·16.14·12·10·8.6.4·6.8·2·4.2 128 = . 

2 '21!3!517! 
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same 

Careful manipulations of tensors and group invariants can 
indicate the procedure when there are no spinor indices (or 
implied spinor indices). When spinors are present, it is possi
ble to use the trick described above to determine what the 
product is; one can then carefully note for the general cases 
which representations will remain after subtracting 
R) ® T) + R2 ® T2 + .... This procedure could in principle 
have become prohibitively cumbersome, but any combina
tion rules simple enough to be practical to apply are also 
relatively easy to derive in this way. 

Rule 1: Adding one box: One tacks a single box onto the 
end of any row (including a row of 0 length) in all ways so as 
to leave a correct tableau for the particular group (no row 
longer than the one above, and the number ofrows not ex
ceeding the rank of the group). For example (see Fig. 5) in 
SU(4), (110) ® (100) contains (210) and (111). For notational 
convenience, we will write the operation of appending an 
"a" box in the nth position of the k th row as I a--+n,k J. Thus 
in this example, we have I a--+2, I} and I a--+ I,3J. 

Rule Ia: In Su(N) you can add the box to the nth row 
(the rank is n - 1) and cancel that whole column. This corre
sponds to contracting n indices via an epsilon symbol. Thus 
in SU(3), (1,1) ® (1,0) contains (0,0) via I a-l,3 (elim. col. I)}. 

Rulelb:InSO(2N),SO(2N + l)orSp(2N),onemayalso 
use the added box to cancel a box in the existing tableau. For 
example, in SOt 10), (11000) ® (10000) contains, via I a---+ 1,2 
cancel J, (10000). This corresponds to contraction with 8ab , 

an invariant in SO(N), or with flab' the anti symmetric invar
iant in Sp(2N). 

Rule Ic: In SO(2N) or SO(2N + 1), if R I is a spinor and 
does not contain any N-box column, you may also use the 
added box to simply flip the direction of the spinor-indicat
ing arrow. In SO(2N + 1) this means simply "absorbing" the 
box in the spinor arrow. For example, in SO(8), 
T (2000) ® t (1000) contains, via I a- T J, (t 2000). In SO(7), 
(T 200) ® (100) contains (T 200). 

Rule Id: Only in SO(2N + 1), one may also "merge" the 
added box with the last box in the Nth row. Thus in SO(7), 
(222) ® (100) contains, via la--+2,3 merge}, (222). 

Rule Ie: InSO(2N), when adding a box attheNthrow in 
the 1st column I a-l,N j, both (abc ... 1) and (*abc ... l) appear 
in the result. For example, in SO(IO), (llIlO) is [00011] and 

FIG. 5. In SU(4), (110) ® (100) = (210) + (III). 
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FIG. 6. In Sp(6), (110) ® (210) contains two (2ID)'s. 

(10000) is [10000]. In their product, since they are both self
conjugate (under exchange of the last two Dynkin numbers) 
you would get both [000021 and [00020j, that is, both (11111) 
and (-11111). 

Rule 2: Adding more than one bo'll. Label the boxes in 
the top row "a," the next row "b," etc. Add each box one by 
one, always in a one-box-permissible way, the top row first, 
then the 2nd row, etc., and such that reading from right to 
left and then up to down, the number of a boxes encountered 
is always:> the number of b '8, :>number of e's,and so on. 
Two representations are distinct if the a,b,e ... labelling dif
fers. For instance, in SU(4), (210) ® (210) contains both a 
(321) from {a~3,1; a~2,2, b~1,31 and a (321) from 
{a~3,I; a~1,3; b~2,2}. Also, no two a's (or b 's or e's ... ) 
may appear in different rows of the same column. Such a 
representation would be both symmetric and antisymmetric 
in those two indices. Rules I, la and 2 fully cover the case of 
SU(N). 

Rule 2a: InSp(2N),SO(2N + 1)orSO(2N),youmayuse 
a box from Rz to replace a box in R, that was previosly can
celled. Thus (200)X(110) contains (200) via {a~2,1 cancels; 
b~2, I}. For the purposes of Rule 2, these would count as an 
"a" and a "b " simultaneously. 

Rule 2b: Rarely, when applying Rule 2a using boxes of 
two different rows, it will be found that Rule 2 is satisfied (the 
right to left and up to down part) whether the labelling of the 
readded box is ab or ba. For example, in Sp(6), (110® (210) 
contains, via {a~2,1;a~I,2cancel;b~1,2l therepresenta
tion (210). As can be seen from Fig. 6, Rule 2b applies here. 
In this case, two (21O)'s appear in the result. 

Rule 2c: A box may never cancel a previously added 
box. This operation would correspond to taking a trace (or 
symplectic trace by contracting with [Jab) over two indices 
which both appear in R z, but R z is irreducible, so the oper
ation gives zero. 

Rule 2d: In Sp(2N), two boxes from different rows may 
not cancel and readd a box in the Nth row. Thus in Sp(8), 
(1111) ® (1100) does not contain (1111). 

Rule 2e: Up toone "a," one "b " ... may be absorbed by a 
spinor line on SO(2N) or SO(2N + II. 

Rule 2f: When cancelling boxes, you may anticipate fu
ture cancellations. An example of this should explain: In 
SO(9), (2110) ® (1100) contains (2000) via {a-.l ,2 cancels; 
b-.l,3 cancels} (see Fig. 7). When a box is subsequently 
readded, if an Nth row box was cancelled in Sp(2N I Rule 2d 
applies and the tableau should not appear in the result. In 
Fig. 8, (1111) ® (1110) is done in Sp(8). Note that (1110) does 
not appear in the answer. 

Rules 1-2ffully cover Sp(2N). When spinors Dr repre-

UJ 
a 
b 

FIG. 7. (211O)® (1100) in SO(9) contains (2000). 
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c 

FIG. 8. In Sp(8), (llll)X(lllO) does not contain (1110). 

sentations with N - 1 or more rows in SO(2N) or 

c 

SO(2N + 1) appear, one must also apply the following rules: 
Rule 3: [Rules 3-3d apply to SO(2N + 1)] No two boxes 

from the same row may merge together. For example, in 
SO(7), (100) ® (Ill) contains (Ill) via I a-.2, 1; b-3, 1; c-.3, 1 
merge}. But (11 OJ ® (200) does not contain (111) via {a~3, 1; 
a~3,1 merge}. 

Rule 3a: "Merging" boxes, in actuality, is adding the 
boxes in the N + 1st row, and using the 2N + I~index epsi
lon symbol SO(2N + 1) invariant to reduce the column of X 
boxes to 2N + l-Xboxes. It is necessary to use this more 
cumbersome point of view when R2 contains a column of N 
boxes. For example, in SO(7), (Ill) ® (111) contains (100) via 
I a--4, 1; b-+5, 1; e~6, 1 contract £} , which would not be ob
tained by any combination of merging and cancelling. 

Rule 3b: When RI is a spinor, boxes absorbed by the 
spinor line as per Rule Ic count as being put in the N + 1st 
row for the purposes of the right to left and up to down part 
of Rule 2. This also applies to SO(2N). 

Rule 3c: When R z (but not R I) is a spinor, the resulting 
representations are all spinors and are formed by multiply
ing as if R z was a nonspinor, adding the spinor line, and for 
each result, removing zero or one box per row. Figure 9 
illustrates this for SO(7) (110)X(T 100): The (210} in 
(1 10) X (100), forinstance leads to (t21O), (t 110), (t200) and 
(T 100). When applying this rule, sometimes one gets repeat
ed diagrams. In this case, discard one of each group of identi
cal diagrams. In the example shown, of the 3 (i l00),s, only 
two are kept. This rule will also apply to SO(2N) when R I has 
less than N rows. 

Rule 3d: When both R I and R z are spinors, the answers 
will, of course, be nonspinors. Multiply the Donspinor parts, 

B tGJ 

tF ... ~ rtF · ttl · tm ·to 
3> lB · tB · tD · t 

+t o 
a 

discard lD + t 
FIG. 9. (I 10) X (t100) in 
SO(7) = (r21O) + (rllO) + (r200) + (TIOO) + (rill) + (1000) + f(IOO). 
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t o® ,liJ 
@ -7B+EP+§+EE+5P+§3 

rn~CD+ITIJ+EP+BTI+g:r+tF 
FIG. 10. (t 1(0) ® (t 1001 in 
SO(7) = (110) + (210) + (111) + (220) + (211) + (221) 
+ (200) + (300) + (210) + (310) + (211) 
+ (311) + (000) + (100) + (110) + (111). 

a -? . +D 

and then for each result, add zero or one box per row in all 
possible ways. This is illustrated in Fig. 10 which does 
(t 1 (0) X t( 1 (0) in SO(7). Note that the repeated diagrams are 
all counted. Applying Rule 3d, one can immediately see that 
(tOOOO· .. )X (tOOOO···) = (0000 .. ·) + (1000 .. ·) + (1100 .. ·) 
+ ... + (11 ... 11). 

Rules I-3d fully cover SO(2N + 1). Rules 4 and 5 apply 
toSO(2N). 

Rule 4: When at least one of R) and R2 is a nonspinor 
and contains no column of N rows, use Rules 4a-4f. 

Rule 4a: When a box is being added to the N th row, 1st 
column it can stand for either [ ... ,0,2] or [ ... ,2,0]. Thus the 
representation is counted twice, (a,b,c .. ·) and (*a,b,c ... ). This 
is a generalization of Rule Ie. 

Rule 4b: When R) is a spinor, or already has N-box 
columns, the doubling in Rule 4a does not apply. For exam
ple, in SOl 10), 
(tll11O)®(10000) = (t11100) + (t21110) + (11110) 
+ (t 11111): There is not also (lll111). 

Rule 4c: When cancelling and readding in the (N,l) po
sition, this doubling does not apply. Thus, in SO(lO), 
(11111) ® (11000) contains (11111) but not (*11111). 

Rule 4d: The spinor line in R) changes direction once 
for each box "absorbed" in it. 

Rule 4e: When R 1 and R2 have long enough columns, 
one may also form columns of M > N boxes and use the 2N 
index epsilon symbol to create 2N - M box columns. This 
result is not distinct from what would be gotten by cancella
tions only, without readds. Figure 11 shows how this works: 
In SO(8), (1110) ® (1110) contains (1100) via I a---.2,1 cancels; 
b---.2, 1; c---.3,1 cancels J and another (11 (0) via I a---.4, 1; 
b---.5, 1; c---.6,1 epsilon J. Yet in (1111) ® (1110), the (1000) 
from I a---.2, 1 cancels; b---.3,1 cancels; c---.4,l cancels J is the 
only one counted; I a---.5, 1; b---.6, 1; c---.7,1 epsilon J is the 
same (1000). 

~ + ~ a c --:":7 
a 
b 
c 

FIG. 11. In SO(8) (1110) ® (1110) contains two (l100)'s. 
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Rule 4f: When R2 (but not R II is a spinor, and R 1 has no 
N-box columns, do the multiplication just as in SO(2N + 1), 
using Rule 3c. When an odd number of boxes was eliminat
ed, the resulting spinor arrow is in the opposite direction 
from that of R2 if R2 had no N-box columns. 

This covers SO(2N) except when a circumstance pecu
liar to SO(2N) occurs: If both R) and R2 are not self-conju
gate (they are spinors or have N rows), then it makes a differ
ence whether you multiply R I by R2 or by its conjugate. For 

instance, in SOl 10), it is well known that 16 ® 16 
= 1 + 45 + 210, while 16® 16 = 10 + 120 + 126. This 

phenomenon, covered in Rule 5, is distinct from that of rule 
Ie, although the underlying reason for both is the two distinct 
(yet isomorphic) types of spinors available. 

Rule 5: (1000· .. 00) ® (1000 .. ·00) = (11 .. ·111111) 
+ (11 .. ·111100) + (11 ... 110000) + ... , while (10000 ... 00) 
® (lOOO .. ·OO) = (11 ... 11110) + (11 ... 11000) 

+ (11 ... 100000) + .... This is illustrated for SOl 10): 16 ® 16 
in Fig. 12. It is interesting to note that in SO(4N), a spinor ® 
itself contains the 1 representation, and a spin or <lSI its conju
gate contains the "vector" 4N, while in SO(4N + 2), spin or 

<lSI spinor contains 1, while spinor <lSI spin or contains the 
vector. This pattern is easy to verify for SO(4) [isomorphic to 
SU(2) X SU(2): (100)---.1 !,O) and (iOO)---.1 O,~) so 
1 X 1 = I I,D} + 10,0} = (11) + (00) while 1 X i = (10)] and 
for SO(6) [isomorphic to SU(4): 1---.4, i-4, so 1 X 1 contains 
a 6, the vector in SO(6), while 1 X ! has a 1]. It is also obvious 
in SO(8), the first nontrivial SO(2N), because of the symme
try ofSO(8) which says [abed] and [ebad] (and 

[abde] = [abed 1 , of course) are isomorphic. Thus [1000] 
looks like [0001]: the vector and spinor 8v ,8, are alike as 
8s and 8,. So, when taking 8s X 8s, this can't contain 8v , be
cause if it did, the symmetry would tell you that 
8v X 8v contains 8s ' a contradiction since two nonspinors 
can't produce a spinor. This symmetry property is useful for 

[j 

FIG. 12. 16x 16 in SO(8). 
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doing SO(8) Kronecker products. For instance, 
(1111) X (* 1111) is [0002] X [0020] which is related to 
[0002] X [2000] or (1111) X (2000), an easier product to take. 
For this reason, SO(8) is also a good "laboratory" for seeing 
how complicated SO(2N) representations multiply; for the 
remainder of Rule 5, SO(6) and SO(4), where the results are 
easy to derive in a different way, can also be used to illustrate 
the various rules. 

Rule 5a: When R2 is an elementary spinor, 
[000 ... 01) = (tOOO ... ) or [00···10] = (!OO ... ) and RI is a non
spinor with N rows (if R 1 has fewer rows, see Rule 3c). For 
the sake of illustration, we will assume RI is of the type 
[ab ... yz], z > y. If y > z, then one can still use these rules by 
multiplying the conjugates of R 1 and R 2, and conjugating the 
answer: e.g., [0002] ® [0001] = [0003] + [0021] + [0101] 
+ [1010] + [0001] in SO(8), so [0020] ® [0010] = [0030] 
+ [0012] + [0110] + [1(01) + [0010]. The rule is to elimi

nate zero or one box per row in R 1 in all possible ways such 
that an even (odd) number of boxes are eliminated if R2 is 
t(!). Assign a t spinor orientation to each of the results. (The 
z in R I' which must be at least y + 2 since R 1 is a nonspinor, 
dominates even if R2 is !.) 

Rule 5b: When R 1 is a spinor and R2 is an elementary 
spinor, add zero or one box per row in R 1 in all possible ways 
such that the total number of boxes added is of the same 
parity as N (N + 1) if the two spinor arrows are in the same 
(opposite) direction. The results are nonspinors, and if 
R) = (!abc· .. ) they all havey;;.z; if R) = (tab.··) tliey all have 

z;;.y. This rule is shown in Fig. 13, wherein 560 ® 16 is done 

for SO(lO). The 560 is [01(01) or (t 11(00); the 16 is (!.OOOOO) 
or [00(10). The result is 
(11000) + (11110) + (21100) + (l2000) 

+ (22200) + (22110) + (21111). 560 X 16 would contain 
(*21111) = [1(020) rather than (21111). 

Rules 5c-5g will cover the cases where R2 is a nonele
mentary spinor and R) contains N rows. It will be more 
practical, however, to treat these cases by writing R2 as 
t XS-various smaller spinors. For example, in SO(8), (2111) 
X(t1100) = (2111)X {(tOOOO) X (1100) - (!1000) 
- (tOOOO)J = (2111)X ((llOO)X(tOOOO) - (1000) 
X (!OOOO) + (tOOOO) - (tOOOO) J . Each of the two resulting 
triple products is easy to do. Figure 14 shows 
(1111) ® (t 1(00) in SO(8) graphically, to illustrate how sim
ple the tableau method makes things. 

FIG. 13. (111000) ® !(OOOOO) in SO(IO) = (11000) + (11110) + (21100) 
= (22000) + (22200) + (22110) + (2111). 
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§·I05·~·1 ~·l 

tr"I-7IW ·l§· rEP ·1° 
~ · r ~ \r~ 18 t~ 1 
~ ·1 ~ ~ fa \~ }~ 

FIG. 14. In SOlS), (1111) ® (11000) = (1111) ® /(1000) ® (10000) - !(OOOO)J 
= (12111) + 1(1110) + (12100) + (11000) + (11100) + (10000). 

Rule 5c: When R) is a nonspinor of N rows and R2 is a 
spinor containing less than N rows: Combine the nons pin or 
parts normally, and eliminate one box each from an even 
number of rows (if R2 is f; iill odd number if !). All the 
resulting representations are t, except if in combining the 
nonspinor part, you get a representation with less than N 
rows (the bottom boxes were all killed). In that case, for that 
representation, the results are all !, and the number of boxes 
eliminated is of the other parity (odd if R2 if t). This process 
is illustrated in Fig. 15, in which in SO(8), (1111) X (t 1(00) is 
done directly. (1111) X (1000) = (2111) + (1110), 
(2111)-(t2111) + (t2100) + (t111O) + (t1000), 
(1110)-( ! 11 (0) + (!OOOO). After doing this, certain repre
sentations may have to be discarded, as outlined in 5d and 5e. 
Rule 5d: When a representation can be arrived at in two or 
more ways, by elimination of boxes in two or more different 
representations, discard one of those representations. For 
example, in SO(8) (4321)X(t1000), (5321)_(t4311) + oth
ers, (4421)-(t4311) + others, but only one of these 
( t 4311)'s appears in the result. 

Rule 5e: When all the eliminated boxes are the boxes 
coming from R 2 , eliminate one of that kind of representa
tion, even if there appear no others. For exa~ple, in SO(8), 

~. to: 
r0Itr·i EP ·t§·iD 

~ -7 ~B 1 
FIG. 15. Doing (1111) ® (t1000) using Rule 5c. 
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(1111)X(!I000): (1111)X(1000) contains, via !a-1,2j, 
(2111). (2111 )-( t 1111) by eliminating the box at the end of 
row 1, which came from R 2• Thus (11 11) X (HOOO) does not 
contain this (t 1111). On the other hand (2111) X ( ! 1 (00) can 
form (t2111) in two such ways: (3111)_(t2111) and 
(2211 )_( t 2111), so one of these is discarded, and one ap-
pears in the answer. . 

Rule 5f: When Rz is a spinor with N rows and R 1 IS a 
spinor with less than N rows: Multiply the nonspinor parts. 
To each result add an odd or even number of boxes in all 
possible ways, adding up to one per row. The number of 
boxes added is of the same parity as N if R 1 and R z are both t 
(or both !) and the opposite parity otherwise. [Here is an
other case in which SO(4N + 2) differs from SO(4N).] Then 
eliminate one of each set of duplicated representations as in 
5d, and one of each type of representation formed by adding, 
in the 2nd step, boxes that were eliminated in the 1st (as in 
Rule 5e). Also eliminate ope of each type of representation 
wherein just one entire column was added in the two steps. 

Rule 5g: Multiplying two N-row representing is best 
done via the procedure in Rule 5c. However, when both R 1 

and Rz are ofthe form [00 ... 02m] or [00 ... 2m], a simple pat
tern emerges: start with the representation formed by adding 
[00 .. ·2m] (RII to [00 ... 2m] or [00 .. ·2m,0] (R 2 ), to get [00 .. ·2m, 
2m] or [00 ... 4m] and eliminate pairs of vertically touching 
boxes. This is illustrated in Fig. 16 for [00002] X [00002] of 
SO(IO): 
(11111)x(11111) = (22222) + (22211) + (22200) + (21111) 
+ (211 (0) + (20000). This process is applicable to any R 1 

and R2 of the form [OOO ... K] or [OO .• ·K 0], with the 1st M 
columns (M = IK /2 (R;) - K /2 (R 2 )i) untouched by the 
elimination process: [00004] X [00020] in SO(IO) is shown in 
Fig. 17: (22222) X(*11111) = (33331) + (33221) + (22221) 
+ (33111) + (22111) + (11111). 

Rule 6: Products of representations of G2 : the simplest 
diagrammatic means of multiplying two representations of 
Gz relies on the fact that SU(3) is a subgroup ofGz. The 
procedure entails four steps: (1) Break R 1 and R2 down into 
their SU(3) content (SII + S12 + S13"') X (S21 + S22 + S23''')' 
(2) Multiply these SU(3) representations to get 
(Sl1 xS2 Il + (Sl1 XSzz} + ... = T1 + T2 + .... (3) Choose a 
particular T; to be part of the content of some GL representa
tions. (4) From the set! T, j, eliminate the content of that 
representation. Repeat steps 3 and 4 until no representations 
are left over. Steps 1-4 are each explained in some detail in 
Rules 6a-6d. 

§®§ 0 ;.f.[f 
ffi+ff ITl 

FIG. 16. [00(02) ® [00(02)(126x 126) in 
SO(IO) = (22222) + (22211) + (22200) + (2U 11) + (21l00) + 200(0): 

126X 126 = 2772 + 6930 + 4125 + 1050 + 945 + 54. 
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rn· .§ 0 p. r · , 
r [ § 

FIG. 17. (22222)X(*1I111) = (33331) + (33221) + (22221) . 
+ (33111) + (22111) + (11111). Note that the first column remams 

untouched. 

Rule 6a: To get the SU(3) content of a G2 representation: 
write the symbols p, q and 0, one in each box in the Young 
diagram, in all ways such that within a row, the p's precede 
the q's which precede the o's and within a column,p is above 
q, which is above o. Both boxes in one column may not con
tain the same symbol. Each of these arrangements becomes 
one SU(3) representation, fp,q] withp = the number ofp's 
appearing in the labelled tableau, and q = the number ~ q's. 
This process is illustrated in Fig. 18 for 7 = [10]..-3 + 3 4::....!. 
and in Fig. 19 for [11] (64 dimensions in Gz)-15 + 6 + 15 
+8+8+3+6+3. 

Rule 6b: Of course, SU(3) Kronecker products are easy 
to do. But a further factor of two in time spent can be saved if 
one makes use of the fact that the G2 representation always 
contains both Rand j[ of SU(3). 

Rule 6c: The G2 representation to eliminate first is 
found by picking the remaining SU(3) representation with 
the longest first row (when two have equal first rows, the 
longest second row). This is the T; of step 3. Call this repre
sentation (a + b,b ) or [a,b] ofSU(3) (b will always be greater 
than a); then the G2 representation to eliminate this is (b,a). 
The reason this representation is chosen is that the minimal 
G2 representation that contains (a + b,b ) is (b,a). (b,a) decom
poses into SU(3) representations (p + q,q) withp + q<a + b 
and if p + q = a + b, q<b. Thus by eliminating any of the 
other representations, one would never get a G2 representa
tion that includes T; . So, eventually, one will have to use (b,a) 
in G2• This representation, however, will decompose into 
others of the remaining representations, so one should elimi
nate those first. For example," when doing 14 X 7 in G2, one 
has the SU(3) representation (32),3 (21 's), as well as others. If 
you tried to cover the (21 )'s first by using 3 (11 )'s of G2 { (11) in 
G2 contains (21) in SU(3) J, then later, when taking care of the 
(32), you would find you still have to eliminate two more 

o 

GJ ~ [01] B 
GJ -3» [001 

FIG. 18. [10) = (10) in G2 = [10) = (10) + [OJ] = (11) + [00) = (00) in 
SU(3). 
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If 
twJ _. "" [ZI J EfD /' 

tfF -7 [zoJ OJ 

fff -7 [IZJ EIP 

~ -~ [11 J tP 
[W-l ::7 [11 J EP 
~ ~ [10J 0 

~ ~ [OZ J EE 
~~[OI1 B 

FIG. 19. [II] = (21) in G2 contains 
(31) + (20) + (32) + (21) + (21) + (lO) + (22) + (ll) ofSU(3). 

(21 )'s 1 which are no longer available}. But if you start with 
the (32). the dilemma can't occur. 

To illustrate this procedure. [01] X [20] (or 14 X 27) is 
done below: Step 1: G2 [01]-[11] + [10] + [01], 
G2[20]-[20] + [11] + [10] + [02] + [01] + [00]. Step 2: 
the product of the 1st set with the 2nd set is 
1([31] + [12] + [20] + [01]) + ([30] + [21]) 
+ ([21] + [1O])} + 1([22] + [30] + [03] + [11] 
+ [00]) + ([21] + [02] + [10]) + ([12] + [20] 
+ [01])} + 1 ([21] + [02] + [10]) + ([01] + [20]) 
+ ([11] + rOO])} + 1([13] + [21] + [02] + [10]) 
+ ([12] + [01]) + ([03] + [12])} + 1 ([13] + [20] 
+ [01]) + ([10] + [02]) + ([11] + [OO])} + 1 [11] 
+ [10] + [01]}. 

Step 3: The 1st representation to eliminate is [13] because 4 is 
the biggest sum, and among the representations with a sum 
of 4. [13] has the biggest 2nd number, i.e. [13] = (43) while 
[22] = (42). [13]-(31)G2 = [21]G2 • 

Step 4: [21]G2-[31] + [30] + [22] + [21] + [21] 
+ [20] + [13] + [12] + [12] + [11] + [11] 
+ [10] + [03] + [02] + [01]. Of course. the [13] (and [31]) 

are what we picked [21]G2 for. Cancelling these 15 represen
tations, we return to step 3: the [31]. [13] and, by accident. 
the only [22] have all been eliminated; next is [03] = (33), 
since one of them is left. 
[03]-(30)G2 = [30]G2-[30] + [21] + [20] + [12] + [11] 
+ [10] + [03] + [02] + [01] + [00]. Eliminate these 10, and 

repeat step 3. Completing the process, we find that, in G2, 

[20] X [01] = [21] + [30] + [11] + [20] + [01] + [10]. or 
27X 14 = 189 + 77 + 64 + 27 + 14 + 7 in terms of dim en
sions. 
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It is not as easy to formulate rules for the other excep
tional groups. (F4 representations may be decomposed into 
SO(9) representations2 and multiplied as in Rule 6, but the 
simple decomposition rule we have put forth for G2 is absent 
in this case.) 

AN APPLICATION IN GRAND UNIFIED THEORIES 

It is currently popular to postulate that the grand uni
fied group is some large group [usually SU(N) or SO(2N) with 
N>5]. The symmetry is then broken in some series of steps 
down to SU(3) X SU(2) X U( 1). It has been proposed4 that in
stead of elementary Higgs. the scalars should be composites 
made of two fermions. Dimopoulos and Susskind5 give a 
"rule" for determining which fermions might condense out: 
Say the fermions are in representations R I' R2 .... R n • The the 
condensate will form in the "most attractive channel" (this 
assumes that one gluon exchange is the important process). 
To determine the relative attractiveness of channels 
Ri + Rj_S (where 
SE(R i ) ® (Rj ). one compares C2(S) - C2(R i ) - C2(Rj ). Thus 
to apply the maximally attractive channel (MAC) prescrip
tion, one needs to know Ri ® Rj and the quadratic Casimir's 
for the relevant representations. The rules for getting 
Ri ® Rj are given above. Since these large groups don't ap
pear in Ref. 1, it would be useful to find a way to compute 
C2(R ). Fortunately. C2(R ) is. for the classical groups, a poly
nomial of degree 2 in the indices [an] which describe the 
representation. For SU(N + 1), with R = [a la2a3 • .. aN ], 

C2(R)=Ctl k(N-k+ Il(a! +(N+ I)ak 

+ 2it2j~j(N - i + l)aiaj ) 2(N + 1). 

When R is the defining (N + I)-dimensional representation, 
C2(R) is normalized to N(N + 2)12(N + 1). Thus for SU(3), 
C2(R) = n (ai + 3al + a~ + 3a2 + a la2), contrary to the 
formula given in Ref. 1. For SO(2N), with 
R = [a la2· .. aN _ 2yz], 

C2(R) = (:~~ {ka! + [2kN - k (k + l)]ak I 

+ HNy2 + (2N - 2)Ny + Nz2 + (2N - 2)Nz] 

+ 2 ~t: j~jaiaj + :~~ kady + Z)) 

+ (N /2 - l)yz] (2N2 - N). 

For Sp(2N). with R = [a la2· .. aN ], 

C2(R) = (ktl [ka~ + (2N + 1- k)ak ] 

+ ~tllj~~+12iaiaj) 2N(2N+1). 

And for SO(2N + 1), with R = [a la2· .. aN _ 1z], 

C2(R) 

= (:~: [ka~ + (2N - k )ak ] + (NZ2 + 2N2Z)/4 

+ :~ll kakz ~t12 j:~~ I 2iaiaj ) N(2N + 1). 
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The Dynkin index (/ in Ref. 1) is given by 
/ (R ) = C2(R ) X dim(R ). ThesevaluesofC2(R )arenormalized 
such that C2 of an elementary spinor = C2 of the defining 
(2N-dimensional) representation ofSp(2N) = 1. For the pur
poses of MAC analysis, this normalization can be specified 
arbitrarily. 

In principle, one would also like to have at hand rules 
for dimensions, Kronecker products, and C2(R ) for the ex
ceptional groups. However, the procedures would certainly 
contain enough different cases and exceptions that they 
would not shed much light on matters, and would be suffi
ciently cumbersome to preclude any thought of hand calcu
lations. In these cases, the use of Schur functions is required. 

APPENDIX: KRONECKER PRODUCTS 

For compactness, the representations are referred to by 
their dimension, when no ambiguity results and the dimen
sion is less than 1000 so that the representation appears in 
Ref.1. 

SO(7) 

7X7=1+21+27, 
7X8 = 8 +48, 
7X21 = 7 + 35 + 105, 
7X27=7+77+ 105, 
7X35 = 21 + 35 + 189, 
7X48 = 8 + 48 + 112 + 168" 112 = [011], 112' = [003], 
7X77 = 27 + 182 + 330, 168, = [201],168 = [020]; 
8X8= 1 +7+21 +35, 
8 X 21 = 8 + 48 + 112, 
8X27 = 48 + 168., 
8X35 = 8 + 48 + 112 + 112', 
8X48 = 7 + 21 + 27 + 35 + 105 + 189, 
8X77 = 168, + 448; 
21E21 = 1 + 21 + 27 + 35 + 168 + 189, 
21 X27 = 21 + 27 + 189 + 330, 
21 X35 = 7 + 21 + 35 + 105 + 189 + 378, 
21 X48 = 8 + 48 + 48 + 112 + 112' + 168, + 512, 
21 X77 = 77 + 105 + 616 + 819; 
27x27 = 1 + 21 + 27 + 168 + 182 + 330, 
27X 35 = 35 + 105 + 189 + 616, 
27X48 = 8 + 48 + 112 + 168, + 448 + 512, 
27x77 = 7 + 77 + 105 + 378 + 693 + 819; 
35X35 = 1 + 7 + 21 + 35 + 105 + 168 + 189 + 294 
+ 378, 
35x48 = 8 + 48 + 48 + 112 + 112 + 112' + 168, 
+ 512 + 560, 
35x77 = 189 + 330 + 616 + [302] = 1560; 
48X48 = 1 + 7 + 21 + 21 + 27 + 35 + 35 + 77 + 105 
+ 105 + 168 + 189 + 189 + 330 + 378 + 616, 

48X77 = 48 + 168. + 448 + 512 + [401] 
= 1008 + [211] = 1512, 

77X77 = 1 + 21 + 27 + 168 + 330 + 714 + 825 
+ [410] = 1750 + [600] = 1911. 

SO(9) 

9 X 9 = 1 + 36 + 44, 
9X 16 = 16 + 128, 
9 X 36 = 9 + 84 + 231, 
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9X44 = 9 + 156 + 231, 
9X84 = 36 + 126 + 594; 
16X 16 = 1 + 9 + 36 + 84 + 126, 
16x36 = 16 + 128 + 432, 
16X44 = 128 + 576, 
16X84 = 16 + 128 + 432 + 768; 
36x36 = 1 + 44 + 126 + 495 + 594, 
36x44 = 36 + 44 + 594 + 910, 
36X84 = 9 + 84 + 126 + 231 + 924 + [0110] = 1650; 
44X44 = 1 + 36 + 44 + 450 + 495 + 910, 
44X84 = 84 + 231 + 924 + [2010] = 2457, 

84 X 84 = 1 + 44 + 84 + 126 + 495 + 594 + 924 
+ [0020] = 1980 + [0102] = 2772. 

SO(II) 

11 X 11 = 1 + 55 + 65, 
11 X 32 = 32 + 320, 
11 X55 = 11 + 165 + 429, 
11 X65 = 11 + 275 + 429; 
32x32 = 1 + 11 + 55 + 165 + 330 + 462, 
32X55 = 32 + 320 + [01001] = 1408, 
32x65 = 320 + [20001] = 1760; 

55 X 55 = 1 + 55 + 65 + 330 + [02000] 
= 1144 + [10100] = 1430, 

55x65 = 55 + 65 + 1430 + [21000] = 2025, 
65X55 = 1 + 55 + 65 + 935 + 1144 + 2025. 

SO(13) 

13X13= 1 +78+90, 
13X64 = 64 + 768, 
13X78 = 13 + 286 + 715, 

(715 = [110000];715' = [000100]) 
13X9O = 13 + 442 + 715; 

64X64 = 1 + 13 + 78 + 286 + 715 + [000010] = 
1287 + [000002] = 1716, 

64X78 = 64 + 768 + [010001] = 4160, 
64X90 = 768 + [200001] = 4992; 

78X78 = 1 + 78 + 90 + 715' + [020000] 
= 2275 + [101000] = 3925, 

78 X 90 = 78 + 90 + [210000] = 2927 + 3925, 
9OX90 = 1 + 78 + 90 + 2275 + [400000] 

= 2629 + 2927. 

SO(2N + 1)N> 6 

(2N + 1)®(2N + 1) = 1 ®N(2N + 1)®(2N 2 + 3N). 

SO(8) 

{
8X8=1+28+35 (R)=R2)' 

8X8 = 8 + 56 (R)#R 2 ), 

8 X 28 = 8 + 56 + 160, 

{
8X35 = 8 + 112 + 160, 
8X35 = 56 + 224, 

{
8X56 = 28 + 35 + 35 + 350, 
8 X 56 = 8 + 56 + 160 + 224; 

28 X 28 = 1 + 28 + 35 + 35 + 35 + 300 + 350, 
28X35 = 28 + 35 + 350 + 560, 
28X56 = 8 + 56 + 56 + 160 + 224 + 224 + 840; 

{
35X35 = 1 + 28 + 35 + 294 + 300 + 567, 
35X35 = 35 + 350 + 840, 
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{
35X56 = 8 + 56 + 160 + 224 + 672 + 840, 
35 X 56 = 56 + 160 + 224 + 224 + [2011] 

= [BK:1296] (or [1021] or [1012]), 
56X56 = 1 + 28 + 28 + 35 + 35 + 35 + 300 + 350 + 350 + 567 + 567 + 840, 

56X56 = 8 + 56 + 56 + 112 + 160 + 160 + 224 + 224 + 840 + 1296. 

SO(lO) 
Representations appearing here are: 

1 = [00000], 
10 = [10000], 
16 = [00001], 
45 = [01000], 
54 = [20000], 
120 = [00200], 
126 = [00002], 
144 = [10001], 
210 = [00011], 
210' = [30000], 
320 = [11000], 
560 = [01001], 
660 = [40000], 
672 = [00003], 
720 = [20001], 
770 = [02000], 
945 = [10100], 

10 X 10 = 1 + 45 + 54, 
lOX 16 = 16 + 144, 
lOX45 = 10 + 120 + 320, 
lOX54 = 10 + 210' + 320, 
lOX 120 = 45 + 210 + 945, 

1050 = [10002], 
1200 = [00101], 
1386 = [21000], 
1440 = [00012] 
1728 = [1(011), 
1782 = [50000], 
2640 = [30001], 
2772 = [00004], 
2970 = [01100], 
3696 = [01002], 
3696s = [11001], 
4125 = [00200], 
4290 = [60000], 
4312 = [20100], 
4410 = [12000], 
4608 = [31000], 
4950 = [20002], 

lOX 144 = 16 + 144 + 560 + 720, 
lOX 210 = 120 + 126 + 126 + 1728, 
lOX21O' = 54 + 660 + 1386; 

{
16X16= 1 +45+210 ([00001] X [00010]), 

16 X 16 = 10 +-.110 + 126 ([00001] X [00001]), 
16X45 = 16 + 144 + 560, 
16X54 = 144 + 720, 
16X 120 = 16 + 144 + 560 + 1200, 

{
16X 126 = 144 + 672 + 1200 ([00001] X [00002]), 

16X 126 = 16 + 560 + 1440 ([00001] X [00020]), 

{ 
16 X 144 = 10 + 120 + 126 + 320 + 1728 ([00001] X [10010]), 
16X 144 = 45 + ~ + 210 + 945 + 1050 ([00001] X [10001 ]), 

16X21O = 16 + 144 + 560 + 1200 + 1440, 
16X210' = 720 + 2640; 
45X45= 1 +45+54+210+770+945, 
45X54 = 45 + 54 + 945 + 1386, 
45X 120 = 10 + 120 + 126 + 320 + 1728 + 2970, 
45 X 126 = 120 + 126 + 1728 + 3696, 
45X 144 = 16 + 144 + 144 + 560 + 720 + 1200 + 3696s ' 

45 X 210 = 45 + 210 + 210 + 945 + 1050 + 1050 + 5940, 
45x21O' = 210' + 320 + 4312 + 4608; 
54 X 54 = 1 + 45 + 54 + 660 + 770 + 1386, 
54X 120 = 120 + 320 + 1728 + 4312, 
54 X 126 = 126 + 1728 + 4950, 
54X 144 = 16+ 144 + 560 + 720 + 2640 + 3696s 

54X21O = 210 + 945 + 1050 + 1050 + 8085, 
54X21O' = 10 + 210' + 320 + 1782 + 4410 + 4608; 

5280 = [10003], 
5940 = [01011], 
6930 = [00013], 
7644 = [03000], 
7920 = [40001), 
8085 = [20011], 
8800 = [10101], 
8910 = [00022], 
10560 = [00111], 
11088 = [10012], 
12870 = [41000], 
4784 = [30100], 
15120 = [21001], 
16380 = [22000], 
17325 = [30002], 
21860 = [30011]; 

120X 120 = 1 + 45 + 54 + 210 + 210 + 770 + 945 + 1050 + 1050 + 4125 + 5940, 
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120X 126 = 45 + 210 + 945 + 1050 + 5940 + 6930, 
120X 144 = 16 + 144 + 144 + 560 + 560 + 720 + 1200 + 1440 + 3696. + 8800, 

{
120X21O = 10 + 120 + 120 + 126 + 126 + 320 + 1728 + 1728 + 2970 + 3696 + 3696 + 10560, 
120X21O' = 945 + 1386 + 8085 + 14784 

{
126X 126 = 1 + 45 + 210 + 770 + 5940 + 8910, 
126X 126 = 54 + 945 + 1050 + 2772 + 4125 + 6930, 

{
126X 144 = 16 + 144 + 560 + 1200 + 1440 + 3696s + 11088 ([00002] X [10010]), 
126X 144 = 144 + 560 + 720 + 1200 + 1440 + 5280 + 8800 ([00002] X [10001]), 

{
126X21O = 10 + 120 + 126 + 320 + 1728 + 2970 + 3696 + 6930 + 10560, 
126X21O' = 1050 + 8085 + 17325; 

{

l44X 144 = 1 + 45 + 45 + 54 + 210 + 210 + 770 + 945 + 945 + 1050 + 1050 + 1386 + 5940 + 8085 
([ 10001] X [10010]), 

144X 144 = 10 + 120 + 120 + 126 + 126 + 210 + 320 + 320 + 1728 + 1728 + 2970 + 4312 + 4950 + 3696 
([10001] X [lOOO~ _ _ 

144X21O = 10 + 144 + 144 + 560 + 560 + 642 + 720 + 1200 + 1200 + 1440 + 3696. + 8800 + 11088, 
144X21O' = 144 + 720 + 2640 + 3696. + 7920 + 15120; 
21OX21O = 1 + 45 + 45 + 54 + 210 + 210 + 770 + 945 + 45 + 1050 + 1050 + 4125 + 5940 + 5940 

+ 6930 + 6930 + 8910; 

{
21OX21O' = 1728 + 4312 + 4950 + 4950 + 28160, 
21OX21O' = 1 + 45 + 54 + 770 + 1386 + 4290 + 7644 + 12870 + 16390. 

SO(12) 

12X12= 1 +66+77, 
12 X 32 = 32 + 352. (352. = [100001]), 
12x66 = 12 + 220 + 560, 
12X77 = 12 + 352 + 560 (352 = [300000]); 
32X32 = 1 + 66 + 462 + 495, 
32X32 = 12 + 220 + 792, 
32 X 66 = 32 + 352. + [010001] = 1728, 
32X77 = 352. + [200001] = 2112; 
66X66 = 1 + 66 + 77 + 495 + [020000] = 1638 + [101000] = 2079, 
66 X 77 = 66 + 77 + 2079 + [210000] = 2860, 
77X77 = 1 + 66 + 717 + [400000] = 1287 + 1638 + 2860. 

SO(14) 

14X 14 = L+ 91 + 104, 
14X64 = 64 + 832, 
14X~ = 14 + 304 + 896; 
64X64 = 1 + 91 + [0001000] = 1001 + [0000011] = 3003, 
64X64 = !! + 364 + [0000002] = 1716 + [0000100] = 2002, 
64X91 = 64 + 832 + [0100001] = 4928; 
91 X91 = 1 + 91 + 104 + 1001 + [0200000] = 2240 + [1010000] = 4844. 

SO(2N)N> 7 

(2N) Ell (2N) = (1) (2N2 - N) (2N2 + N - 1). 

Sp(6) 
6X6 = 1 + 140 + 21 (140 = [010], 14b = [001]), 
6X140 = 14b +64+6, 
6X 14b = 140 + 70 
6 X 21 = 6 + 56 + 64, 
6X 56 = 21 + 126' + 189 (126' = [400] 126 = [011]) 
6X64= 140 +21 +70+90+ 189, 
6X70 = 14b + 64 + 126 + 216, 
6X 84 = 126 + 378, 
6X90 = 64 + 126 + 357; 
140 X 14b = 6 + 64 + 126, 
140 X 140 = 1 + 140 + 21 + 70 + 90, 
140 x21 = 140 + 21 + 70 + 189, 
140 X56 = 56 + 64 + 216 + 448, 
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140 X64=6+ 14b +56+64+64+ 126+216+350, 
140 X70 = 14a + 21 + 70 + 84 + 90 + 189 + 512, 
14a X84 = 70 + 512 + 594, 
14a X90 = 14a + 70 + 90 + 189 + 385 + 512; 
14b X 140 = 1 + 21 + 84 + 90, 
14b X21 = 14b + 64 + 216, 
14b X 56 = 70 + 189 + 525, 
14bX64= 14a +21 +70+90+ 189+512, 
14b X 70 = 6 + 56 + 64 + 126 + 350 + 378, 
14b X84 = 14b + 216 + 330 + 616, 
14b X90 = 14b + 64 + 216 + 350 + 616; 
21 X21 = 1 + 140 + 21 + 90 + 126' + 189, 
21 X56 = 6 + 56 + 64 + 252 + 350 + 448, 
21 X64 = 6 + 14b + 56 + 64 + 64 + 126 + 216 + 350 + 448, 
21X70= 140 +70+70+90+ 189+512+525. 
21 X84 = 84 + 90 + 512 + [202] = 1078, 
21 X90 = 21 + 70 + 84 + 90 + 189 + 512 + 9240 (924a = [220), 924b = [410]); 
56X56 = 1 + 12 + 21 + 90 + 126' + 189 + 385 + 462 + 9240 + 924b, 
56X64 = 14a + 21 + 70 + 90 + 512 + 126' + 189 + 189 + 525 + 9240 + 924b 
56X70 = 140 + 64 + 126 + 216 + 216 + 350 + 448 + [401] = 1100 + [211] = 1386, 
56X84 = 126 + 350 + 378 + 1386 + [302] = 2464, 
56X90 = 56 + 64 + 126 + 216 + 350 + 378 + 448 + 1386 + [320] = 2016; 
64X64 = 1 + 14a + 140 + 21 + 21 + 70 + 70 + 70 + 84 + 90 + 90 + 189 + 189 

+ 189 + 385 + 512 + 512 + 525 + 9240 
64X70 = 6 + 14b + 56 + 64 + 64 + 64 + 126 + 126 + 216 + 216 + 350 + 350 

+ 378 + 448 + 616 + 1386, 
64X84 = 64 + 126 + 216 + 616 + 350 + 378 + 1386 + [112] = 2240, 
64X90 = 6 + 140 + 64 + 64 + 126 + 126 + 216 + 216 + 350 + 350 + 378 

+ 448 + 616 + [130] = 1344 + 1386; 
70X70 = I + 140 + 21 + 21 + 70 + 84 + 90 + 126' + 189 + 189 + 385 + 512 

+ 512 + 594 + 924 + [202] = 1078, 
70X 84 = 140 + 70 + 189 + 385 + 512 + 525 + 594 + [103] = 1386' + [121] = 2205, 
70X90 = 140 + 21 + 70 + 70 + 90 + 189 + 189 + 395 + 512 + 512 + 594 + 9240 + [121] = 2205; = [0101]), 
27X48 = 8 + 48 + 160 + 288 + 7920 ; 

36X36 = 1 + 27 + 36 + 308 + 330 + 594, 
36X42 = 42 + 315 + [2001] = 1155, 
36X48 = 48 + 160 + 288 + [2010] = 1232; 
42X42 = 1 + 36 + 308 + 594 + 825, 
42X48 = 8 + 160 + 792a + [0011] = 1056, 
48X48 = I + 27 + 36 + 308 + 315 + 792b + 825. 

Sp(lO) 

lOX 10 = 1+44 + 55, 
lOX44 = 10 + 110 + 320, 
lOX55 = to + 220 + 320; 
44X44= I +44+55+65+780+891, 
44 X 55 = 44 + 55 + 891 + [21000] = 1430, 
55X55 = 1 + 44 + 55 + 715 + 780 + 1430. 

Sp(12) 

Sp(14) 

14x14= 1 +90+ 105, 
14x90 = 14 + 350 + 896, 
9OX90 = 1 + 105 + 90 + 910 + [0200000] 

= 3094 + [1010000] = 3900. 

Sp(2N),N> 7 

(2N)X(2N) = 1 + [N(2N - 1) - 1] + [N(2N + 1]. 

12X 12 = I + 65 + 78, 
12X65 = 12 + 208 + 560, 
12X78 = 12 + 364 + 560; 
65X65 = I + 65 + 78 + 429 + [020000] 

= 1650 + [120000] = 2001, 

I J. Patera and D. Sankolf. Tables of Branching Rulesfor Representations of 
Simple Lie Algebras (Les Presses de l'Universite de Montreal, 1973). 

65X78 = 65 + 78 + 2002 + [210000] = 2925, 
78X78 = 1 + 65 + 78 + [400000] 

= 1365 + 1650 + 2925. 
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A method based on the equivalence between finite-dimensional nonlinear and infinite
dimensional linear systems of ordinary differential equations is presented in order to calculate the 
time-dependent solutions of nonlinear physico-chemical systems. The solution is cast in the form 
of power series whose general term is known analytically. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

The time asymptotic properties of nonlinear physico
chemical systems like those in reaction-diffusion, heteroge
neous catalysis, hydrodynamics, and lasers have been exten
sively studied during these last years. 1 On the other hand, in 
spite of their crucial importance, very little is known about 
the transient regimes and, in general, time-evolution prob
lems. Indeed, except for very simple and unrealistic exactly 
solvable models and certain scaling theories,2 no general 
analytic theory concerning transient nonlinear regimes is 
known. Nowadays, numerical integration is the only general 
tool for obtaining quantitative information about phenom
ena like chaos,3 turbulence,4 and time behaviour in nonequi
librium phase transition.5 

In 1931, T. Carleman,6 following a suggestion due to 
Poincare, showed that any finite-dimensional nonlinear sys
tem of ordinary differential equations is equivalent to an infi
nite-dimensionallinear system of ordinary differential equa
tions. This idea remained unexploited until, recently, 
Montroll et aC have applied it. They suggest, essentially, a 
technique using Laplace transform and infinite matrix inver
sion to solve the infinite-dimensional linear system associat
ed with the nonlinear original problem. In this paper, we 
develop Carleman's idea along a different way and obtain a 
nonperturbative and easy to handle theory to find the time
dependent solution of initial-value problems. Our main re
sult is that, for nonlinear systems of ordinary first order dif
ferential equations with analytical vector function in the 
right-hand side, the general coefficient of the Taylor series of 
the solution can be obtained in an explicit and compact form. 
We show that this general Taylor's coefficient is related to 
the eigenvalues and eigenvectors ofthe infinite upper trian
gular matrix associated to the Carleman's infinite linear 
system. 

In Sec. II, we first introduce Carleman's infinite linear 
system of equations and present our method to find the solu
tion in terms of eigenvalue and eigenvectors of the associated 
infinite triangular matrix. We apply, in Sec. III, this method 
to an exactly solvable example and show that it leads very 
easily to the exact solution. 

II. GENERAL METHOD 
A. Extension to an Infinite linear system 

Let us consider the following general system of nonlin
ear ordinary differential equations 

(I) 

with initial conditions 

xi(t = 0) = Xi (0), i = 1, ... ,s, (2) 

and where the Fi ({ X j l) are in general nonlinear analytical 
functions on a compact domain ~ of lR s. 

As a first step, let us separate linear and nonlinear part 
of system (1) 

d 
-x(t) = L x(t) + N(x(t », 
dt 

(3) 

in which x(t) is the s-dimensional vector 
(xl(t ),xit ), ... ,xs(t» and where the sxs matrix L and the 
nonlinear operator ff are, respectively, the linear and non
linear parts of 

We now introduce the linear transformation T: 

Tx = y, (4) 

which reduces L to its upper-normal Jordan triangular 
form8 (note that the new variable y may be complex). Under 
T, system (I) is transformed into 

d 
- y(t ) = L J y(t ) + M (y(t », 
dt 

(5) 

with initial conditionsy j(t = 0) = ~;= 1 TjiXi(O), 
j,i = 1, ... ,s, and where L J = T L T- l is a Jordan triangular 
sxs matrix and M(y) = TN(T- l y) is the T-transformed 
nonlinear operator. 

Using the analyticity of F(x) ofEq. (1) it is possible to 
write the rhs ofEq. (5) as a linear superposition offunctions 
of the form 
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P(m.,m2,···,ms) 

{

m.,m2, ... ,ms = 0,1,2, ... ,00 

m m m and 
= Y. 'Y2 ' ... Ys " s 

L m;>O. 
i= 1 

(6) 

It is always possible to order the functions P(m., ... ,m,) in a 
simple sequence {p.,P2 ,,,,,Pk , ... } of increasing power 
p=l'.: ~ • m;, where the index k is uniquely determined by the 
sequence (m.,m2, ... ,ms)' Following Carleman's original 
idea, we next introduce an infinite-dimensional vector :1' 
whose general component:1' k is identified with Pk , :1' k 

=Pk , In this way, thefinite-dimensional nonlinear system 
(5) [which is equivalent to system (1)] is transformed into an 
equivalent infinite-dimensional linear system which reads 

~ :1'(t) = A:1'(t), (7) 
dt 

with initial condition for component :1' k of :1' given by 

:1' k (I = 0) Pk (t = 0) = Y7"(t = 0) y~,(t = 0) ... y;",(t = 0), 

k = 1,2, .. ,00 

= :1' k(O). (7a) 

An important general feature of (7) is that the infinite matrix 
A is always triangular, a;j = {~;t.;~ j' This is a universal char
acteristic of infinite matrices originating from nonlinear sys
tems of equations like (1). Triangularity of A is of great con
venience for explicit calculations of solutions of system (7) as 
we show below. For convenience, we use from here on the 
Dirac bracket notation. System (7) is thus 

~ 1:1'(t» =A 1:1'(t». (8) 
dt 

The formal solution of system (8) reads 

1:1'(t» = exp(t A )1:1'(0». 

It should be stressed that the existence of solution (9) de
pends on the choice of initial conditions {:1' k (O)} and, in 
general, cannot be ensured for arbitrary value of time t. 

B. Explicit calculation of Solution (9) 

(9) 

A first step toward the explicit solution (9) amounts to 
expanding exp(t A ) in powers of matrix A 

(10) 

or, in terms of components 

00 t n co 00 co 

:1';(t) = L - L L ... L 
n = 0 n! i. = 1 i2 = 1 i" = 1 

Xaii,a;,;, ... a;" 1;,,:1';,,(0), i= 1,2, ... ,00. (11) 

However, in most cases, the explicit calculation of the gener
al term of series (11) is extremely complicated and does not 
lead to a treatable algorithm. To circumvent this difficulty, 
we suggest the following scheme. First, let us calculate the 
eigenvalues and left and right eigenvectors of matrix A 

A lIP (n) = A(n) lIP (n), (12) 

n = 1,2, ... ,00. 

(13) 

By construction of System (7) from System (5), the diagonal 
elements of A, ann' are just linear combinations of the diag
onal elements of L J [which obviously, are the eigenvalues of 
L of System (3)]. Since matrix A is triangular, its eigenvalues 
are equal to its successive diagonal elements 

(14) 

and so are linear combinations of the eigenvalues of L. As for 
the right and left eigenvectors of A, we have to solve the two 
systems (12) and (13) or, more explicitly, 

f amplP~) + (a mm - A(n)IP~) = 0, 
p=m+1 

n,m = 1,2, ... ,00, 

for the right eigenvector lIP (n), and 
m-I L apm t/J~) + (amm - A(n)t/J~) = 0, n,m = 1,2, ... ,00, 
p~l 

(IS) 

(16) 

for the left eigenvector < t/J(n) I. The triangularity of matrix A 
and the recurence relations which, by construction, exist be
tween its elements allow us to solve exactly, in general, Sys
tems (IS) and (16). The explicit solution of (IS) for the Jth 
component of lIP (n) is 

{ 

L (-I)q+1 aj,j,aj,j,.··ajq .. ,jq ,1<.J<n} 
(n)_ ,''''Ij,j+I ..... nJ (aj,j, -A(n))(aj,j, -A(n)),"(ajq_,jq_, -A(n)) 12 

IP . - n = , , ... ,00, 
J 1, } = n 

~ J>n 

(17) 

where 9 {j,j + I, ... ,n} is the set of all possible ordered subsets of {j,j + I, ... ,n l and is defined as follows: 

9 {j,j + I, ... ,n l = {(jI, ... ,jq)!J = jl < j2 < ... < jq = n; (j1, .. ·,jq)C {j,j + 1, ... ,n} J 
the solution of (16) reads 

where 

j>n} n=I,2, ... ,00, 
j=n 

l<j<n 

9 {n,n -I, ... ,j} = «i1, ... ,iq)ln = i l <i2 < ... <iq = j; (i1, ... ,iq)C {n,n + I, ... ,j] }. 
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A more compact form can be written: 

{
"fj 

(_ 1)' [( 1 PAQ)'], 
qJ~l= ,=1 PA;-Alnl jn 

0, 

1<. j <n,} 
n = 1,2, ... ,00, 

}=n, 
j>n, 

(21) 

and 

{

j!.n(_1)'[(PAQ 1 )'), 
ifJ;l= r=1 1,QAQ-Alnl nj 

j>n, } 
n = 1,2, ... ,00, 

j=n, 
(22) 

0, 1<j<n, 

where P is a projector on the diagonal part of matrix A and 
Q = I - P. The orthonormality of the eigenvectors 

(t/'(m)lqJ(n» =on,m' n,m = 1,2, ... ,00, (23) 

and the completeness of the basis of eigenvectors: 

f IqJ (n» (t/'(n) I = I, (I is the unity matrix), (24) 
n=l 

follow easily from the above cited peculiar properties of ma
trixA. Note that in contrast with the eigenvalues of A, which 
are linear combinations of the eigenvalues of the linear part 
of System (5), its eigenvectors depend on the full nonlinear
ity of the original System (5). It is a remarkable features of 
these infinite matrices that their spectral properties, eigen
values, and eigenvectors, can be exactly calculated without 
having recourse to any perturbation technique. 
We are now able to construct the explicit solution of System 
(8); We first project Eq. (10) on thejth component of vector 
!i'(t) 

00 t k 
!i'j(t)=(e(J)I!i'(t» = L ,(e(})IAkl!i'(O», (25) 

k=ok. 

where the ith component of the unit vector (e(J) I is 
eU) =0, i,j= 1,2, ... ,00. 

I I, J (26) 

Let us now introduce in Eq. (25) the closure relation (24). It 
leads to 

or, more explicitely, to 

!i'it) = f t ~ f (e(J}jqJ (n» (t/'(n)I!i'(O»(A(n»k (28) 
x=Ok.n=1 

where use is made of Eqs. (12), (13), and (23). Expanding the 
scalar products, Eq. (28) reads 

!i' j (t ) = f f f t ~ (A(n) )kqJ jn)t/'<:')!i' m (0). (29) 
x=On=lm=l k. 

This is a series of powers of time t: 
}:k=O}:;;'= 1 }:;;;= 1 t kCV~m' whose general coefficient is ana
lytically known, 

C(jl = (Alnl m Inl.,.lnl.!i' (0) 
knm k ! T J 'f'm m , (30) 
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where qJ~1 and t/'~I are given by expressions (17)-( 19) or (21) 
and (22), and Alnl by (14). 

In view of our original problem (5), the only relevant 
components of vector I.!i' (t ) are the s first ones 

!i' j(t ) = Y j(t), j = 1,2, ... ,s. (31) 

The other components of I!i'(t) are powers of the variables 
! Yj(t)J [see Def. (6)]. Thus, thegeneraltimedependentsolu
tion of system (5) is given by 

Y j(t )==!i' j(t ) 

= k~on~1 m~1 t k
[ (A~n~)k qJ~It/'~I!i' m(O)), (32) 

forj = 1, 2, ... ,s. Solution (32) is made explicit by inserting 
expressions (17)-(20) of(21) and (22) of the eigenvectors IqJlnl) 

and (t/'Inll. 

As the rhs of(5) is analytic [because of the analyticity of 
F j (! x j (t ) 1) in Eq. (1)] solution y(t ) of the initial-conditions 
problem (5) is also analytic with respect to time and initial 
values.9 Hence, we can state the following result: power se
ries (32) is the Taylor series of the solutiony(t) of system (5). 
The solution x(t) of the original system (1) and (2) can be 
obtained from (32) by applying the inverse of the linear trans
formation defined in (4). We stress the face that, in (32), the 
general term is known and thus provides an algorithm for 
computing the solution in the whole set of times and initial 
values for which the Taylor series converges. In contrast 
with this, in other methods, due to the increasing difficulty 
of calculating higher order terms step by step, the Taylor 
series is restricted to the low order ones and, thus its validity 
is limited to short time-ranges. The knowledge of the general 
term of series (32) allows for evaluating the error made when 
truncating it, since the error is known to be of the order of the 
next term after the truncation. In the cases where the real 
part of the eigenvaluesA lnl are all negative, the rapidity of the 
convergence of series (32) can be increased by partially-sum
ming it. This yields 

Yit ) = f f i,,,,(t)qJjn)t/'<:,)!i'm(O). (32a) 
n=lm=l 

This is always possible when Eq. (5) admits an asymtotical
ly-stable stationary solution. 

III. AN EXAMPLE: THE LOGISTIC EQUATION 

Here we test our method on the well-known one-dimen-
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sional nonlinear equation 

d - x(t ) = - x(t )[ 1 - x(t )], 
dt 

(33) 

with initial condition x(t = 0) = xo. The exact solution of 
(33) obtained by a simple quadrature is 

x(t) = xo 
xo + (1 - xo)e + t 

(34) 

We now apply the method of Sec. II to calculate the solution 
ofEq. (33). Obviously, for a one-dimensional system, there is 
no need for a transformation of the linear part to the Jordan 
form. 

The infinite-dimensional vector 1(t) of Sec. II, reads 
here 

1(t) = {1 dt )}, with 
(35) 

1dt) = [x(t)1\ k= 1,2, ... ,00. 
From Eq. (33), the equations for 1 k(t) are 

d - 1 dt) = - k1 k + k1 k+ l' k = 1,2, ... ,00, (36) 
dt 

with initial condition 1 kIt = 0) = Xo k. The general element 
of matrix A associated with the infinite linear system (36) is 

akl = - k8k,l + k8k + 1.1' k,l = 1,2, ... ,00. (37) 

From (37), matrix A is upper triangular. As such, it eigenval
ues are its diagonal elements 

Alkl = - k, k = 1,2, ... ,00. (38) 

Using formulas (17)-(20), the jth component of the right ei

genvector irp Inl) of A is: 

(nl_ - (_ ')'( '-1)" ""J"" m. - n J.J . . 
T} J>n 

0, 

{( 
l)n-j (n-l)! 1.;;:: . .;;::n} 

n = 1,2, ... ,00,(39) 

whereas for the left eigenvectors (t/Jln1i one has 

t/J(nl={(j~~~nl~I)!' j>n. } n=I,2, ... ,00, 
} I<J<n 

0, 

(40) 

Inserting expressions (38), (39), and (40) into formula (32), we 
obtain 

x(t ) = I I I t k n
k 

( - 1)" - 1 + k • (j - 1 )! x6. 
k=On=lj=n k! (j-n)!(n-l)! 

(41) 

It can easily be seen by direct calculation that (41) coincides 
with the Taylor expansion of Solution (34) around (t = 0). 
The domain of absolute convergence of (41) corresponds to 
the values t> In 1 (1 - xo)/xo I· 
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IV. CONCLUSION 

This method offers a convenient tool for calculating ex
plicit expressions for the solution of the initial-condition 
problem for a general s-dimensional system of ordinary non
linear differential equations. The interest ofthis approach is 
double. First, it is nonperturbative. Second, the solution is 
obtained in the form of a Taylor series [Eq. (32)1 whose gen
eral term is known in a compact analytical form. This pro
vides a suitable algorithm for computer calculations of tran
sient phenomena which usually can only be attained by 
direct numerical integration. Eventually, the theory could 
be extended to time-and space-dependent systems like, for 
instance, those found in reaction-diffusion, hydrodynamical 
and other nonlinear physico-chemical problems. 
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New integral representations for orthogonal polynomials which possess a generating function are 
obtained by considering their Laplace transforms with respect to order. The method is used to 
derive some uniform asymptotic estimates for the associated Laguerre polynomials and to test an 
approximation scheme used in electron gas theory. 

PACS numbers: 02.30.Qy 

In this paper we outline the derivation of a number of 
new Laplace transform pairs by calculating the transforms 
of any family off unctions, which possesses a generating rela
tion, with respect to their order. This simple device does not 
appear to have been used before and leads easily to a number 
of remarkable formulas. The need for these results arises in 
studying the properties of electron gases in an external mag
netic field and it is the Laguerre functions which are of con
cern. Accordingly, these polynomials are singled out for de
tailed consideration. The paper is concluded with a brief 
assessment of an approximation scheme that has frequently 
been invoked in the aforementioned studies. 

The basic procedure is quite simple. Let the sequence of 
functions I tPn (x)] be given by the generating formula 

! AntPn(x)zn = F(Z). (1) 
n=O 

Let square brackets denote the integer part as usual and con
sider the Laplace transform 

[= fO e - P'A (. ]tP(. ](x) dt. (2) 

By decomposing the range of integration into segments of 
unit length, one sees that all but the exponential function can 
be pulled out of the integral and we easily obtain 

(1 - e -2 p ) - a exp( - x cothp) 

= e - x(1 - e -2 p ) ! L ~)(2x)e -2np (6) 
n=O 

from the generating function given in Ref. I. By following 
the procedure outlined above we find 

1. (cschp)ae-xcoth p i
C+iOO d eP(a+.) 

C - ioo 2m p 

=2ae- xL\'(l12)' )(2x). C>O. 

Similarly, from the identity 

we find 

1. [at V xy cschp) iC+iOO d ep(a+t) r\. /-

C-ioo 2m p 
XexpB(x + y)(l - cothp)] 

(7) 

-(x )a12 r([(1I2)t] +1) L(a) (x)L(a) () 
- y r([(1I2)t]+a+l) (1/2).] (112)'] y. 

C>O. (9) 

Formulas of the type (8) and (9) can be produced in great 
1= p-I(I - e - P) ! AntPn (x)e - np

• (3) profusion with little effort. 
n=O As a demOnstration of the utility and manipulation of 

these formulas, we examine the correction to the uniform Now by using (1), Eq. (3) reduces to 

[= p-I(l - e- P)F(e- P). (4) asymptotic limit2 

Finally, if the function on the right-hand side of(4) is analytic 
in the half-plane Re p>C, we have the integral 
representation 

i
c + ioo d peP' 

A(. )tP(. ](x) = -. - (1 - e - P)F(e - P), (5) 
C-ioo 2m p 

by taking the inverse Laplace transform of both sides of (4). 
Care must be exercised in letting t = n in (5). This is because 
t = n is a point of discontinuity of the function whose La
place transform is being considered and the Bromwich inte
gral representation in (5), like the Fourier representation, 
yields the average of the right and left limits at such a point. 
There are a number of ways of circumventing this problem. 
one of which is described in an example below. 

For the associated Laguerre functions one easily de
rives the relation 

lim n-aLr:)(xln)=x-aI2Ja(2~x). (10) 
n~oo 

We begin by replacing t by 2t in (7) and, as allowed by Wat
son's lemma, closing the contour by a large semicircle in the 
left half-plane which we then decompose into small counter
clockwise circles C k about the points p = bri, k = O. ± 1, 
± 2,. .. , which are isolated essential singularities of the inte
grand. By making use of the periodicity of the hyperbolic 
functions and translating each of these circles to the origin 
we come to 
2ae - xL \~)px) 

___ (csch s)ae - x coths = f _
ds e(2. + a)s 

211'i s 
00 f sds el2• + a)s 

+2 L cos(211'kt) -. 2 2 (cschs)ae-xcoths 
k ~ I 2m s + k ~ 
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00 f ds e(2t + u)s + 211" L k sin(211"kl ) - (csch s)Ue - xcoth s 
k = I 211"; S2 + k 2~ • 

(11) 

Here it is assumed that t = n + to' 0 < E<Jo<' 1 - E < 1, 
where E> 0 is small; we have also combined the integrals 
originally about Ck and C _ k ,k = 1,2, .... The trigonometric 
series are uniformly convergent with respect tos (and to) and 
can be summed inside the integrals: 

! k sin211"kt = _1_ sinh(1 - 2 to)s 
k= I S2 + k2~ 211" sinhs 

! cos211"kt = J..-{ cosh(1 - 2 to)s _ J..-} 
k = I S2 + k 2~ 2s sinh s s . 

(12) 

After some simplification both sides of (11) are seen to de
pend only on [I] = n and there is no difficulty in taking the 
limit t-n+, whence we have 

f 
ds e(2n+u+l)s-xcoths 

L (a)(2x) = 2 - a~ 
n 211"; (sinh st + I 

(13) 

In particular 

L ~a)(xln) = 2 - a~/2n ~ e J. (s) f 
d 2ns - xl2ns 

211"; ~+I 'I' , 
(14) 

where 

¢> (s) = exp{ (a + l)s - :n (coth s - + ) }(S cschs)a + I 

(15) 

is analytic inside the contour and has the series expansion 

00 k (X ) ¢>(s) = L aks, ao = 1, a! = a + 1 - - ,. ... 
k=O 6n 

(16) 

Following some slight simplification after inserting (16) into 
(14) we find the representation 

L ~)(xln) = (nlxteX12n k~oak(x/2n)k ::k {xU/2Ja(2V~)}, 
(17) 

where we have made use of the integral representation3 

_. exp[!Z(s-a2s- I
)]_- =a-aJa(aZ). 1 f ds 

211"1 sa+1 
(18) 

Equation (17) is easily sorted out into descending powers of 
n, whence we obtain the desired correction 

n - aL ~a)(xln) 

= x - a!2{Ja(2V~) 

+ :n [ a(a x+ 1) Ja (2Yx) - Ja +2 (2V~)] } 
+ 0 (n-2

). (19) 

The only prior published results of this sort are due to 
Moecklin4 who treated the case a = 0 by a complicated 
steepest descents calculation. Equation (19) reduces to his 
result in this case. Results in the same spirit have been ob
tained for the Hahn polynomials by Wilson.5 Another inter
esting asymptotic relation is 

(20) 
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which is problem 81 in Ref. 6. This has been established by 
Caloger07 by considering the asymptotic behavior of the ze
ros of these functions. 

We conclude by examining an approximation scheme 
that has frequently been used in studies concerning electron 
gases in an external magnetic field. 8

-
1O For this purpose we 

consider the integral 

H(a) = ~~e-xcothap, C>O, l
c+ ioo d Ip 

c- ioo 2m P 
(21) 

where x, t , and a are positive parameters. This integral is 
typical of those which arise naturally in these investigations. 
As we have seen, the exact value is 

H (a) = e - XLlt 12a 1(2x). (22) 

The approximation scheme follows the procedure used 
above in closing and decomposing the contour into small 
circles surrounding the essential singularities Pn = n11";1 a, 
n = 0, ± 1,. ... Now we allow the radii ofthese circles to 
shrink and argue that the hyperbolic cotangent can be re
placed by the most singular term in its Laurent expansion 
about the pertinent singularity. This leads to the 
approximation 

H(a)~Jo(2Jxt la) - (2111") (axlt )!12J!(2JXI la) 

X ! sin(t 11"nla)/n 
n = 1 

= Jo(2V xt la) - (axlt)! /2J!(2V xt la) 

X(1 -21t 12a}). 

(23) 

The curly brackets denote the fractional part (with the provi
so that the second term of (23) vanishes if t I a is an integer). 
In practice it happens that x is proportional to a which is a 
small quantity and we can compare (23) with (19) for a = O. 
We see that for a <,1 the approximation scheme gives the 
leading term correctly; this part is related to behavior in very 
weak magnetic fields. The second term in (23), which is os
cillatory, relates to the so-called de Haas-van Alphen behav
ior; here, t la is bounded and not less than unity. We set 
t = 2ay and take the values x = t = 1; thus we wish to exam
ine the accuracy of the approximation 

Some comparative values are 

y LHS (24) RHS (24) 

1.2 -0.4345 -0.1442 

4.8 0.0382 0.0360 

10.1 -0.0222 -0.0228 

20.3 -0.0055 -0.0057 

50.6 0.0012 0.0011 

It therefore appears that the approximation scheme is quite 
good in describing the oscillatory behavior of H (a) up to very 
high field strengths. 
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We consider a system ofn bugs located at (x1,yd, ... , (xn,Yn), where bug i runs away from bugi + 1 
with common speed v along the instantaneous line of sight. To close the cycle of flight, bug n runs 
away from bug 1. The computer simulation of this system indicates that random initial 
configurations evolve into stable regular center-symmetric patterns-all of which have a vertex 
angle ofless than rr/2. By utilizing the Lagra~ge multiplier method, we show that for these sta~le 
configurations the perimeter expansion rate P is a local maximum. The most s~able confi~uratlOn 
has the smallest possible vertex angle and is associated with an absolute maX1mum for .P. The 
regular center-symmetric patterns with vertex angles greater than rr/2 also have a statlOnary 
perimeter expansion rate. These are local minima rather than maxima, however, and belong to 
configurations which are unstable. 

PACS numbers: 02.40. + m 

I. INTRODUCTION 

The chase problem, or cyclic pursuit, where a number 
of point bugs pursue one another in a cyclic pattern, has been 
of interest to mathematicians and "natural philosophers" 
for over a century. 1-3 The problem has appeared in the form 
of games, puzzles, research topics, and in a variety of other 
forms. 4

-
11 Here we address the problem of cyclic flight in an 

n-bug system confined to a plane. We define the problem as 
follows: 

Given n bugs located at (x1,ytl, (X2,Y2)' ... , (xoY,), ... , 
(xn ,Yn), it is arranged for bug i to run away from bug i + 1 
with a common speed v along the instantaneous line joining 
them. To close the cycle, bug n runs away from bug 1. Start
ing with n bugs placed at random initial positions, we wish to 
investigate the time evolution of this system. 

In an earlier paper9 dealing with a computer assisted 
analysis of this system, we have reported that random initial 
configurations evolve into stable regular center-symmetric 
patterns, all of which have a vertex angle ofless than rr/2. In 
this paper we show that fo! these stable configurations the 
perimeter expansion rate P is a local maximum, where the 
perimeter P of a bug configuration is the sum total of dis
tances between bug i and bug i + 1. The regular center-sym
metric configurations with vertex angles greater than rr/2 . 
are characterized by local minima rather than maxima for P, 
and belong to configurations which are unstable. 

We will be mainly concerned with configurations which 
maximize perimeter expansion for cyclic flight. However, 
we note that a configuration which maximizes perimeter ex
pansion for cyclic flight will also maximize perimeter con
traction for cyclic pursuit. For the sake of clarity and be
cause there is a relationship between perimeter expansion 
and stability for cyclic flight, we shall restrict the discussion 
to cyclic flight. The relevance to cyclic pursuit, however, is 
obvious. 

II. SYMMETRIC CONFIGURATIONS 

By a configuration we mean the closed plane figure 
which results at a given time by connecting bug i to bug 

i + 1. The bug positions and consequently the resulting con
figurations change with time. A "regular configuration" is a 
bug configuration with n equal sides and n equal vertex an
gles. The line segments joining bug i to bug i + 1, may cross 
or coincide with other lines as long as the resulting figure is 
equiangular and equilateral. 

For n points, the first regular configuration is the famil
iar regular polygon of n sides with vertex angle 
t/> = (n - 2)rr/n. The other possible regular configurations 
depend to a certain extent on whether n is odd or even. 

When n is even, the number of possible regular configu
rations equals n/2, where the associated vertex angles t/>, in 
the order of decreasing value, are given by t/> = (n - 2)rr/n, 
(n - 4)rr/n, (n - 6)rr/n, ... , 2rr/n, O. As already stated, the 
first such configuration is the regular convex polygon for 
which t/> = (n - 2)rr/n; the others are star-shaped figures of 
progressively smaller vertex angles. The case when ~ = 0 
needs special attention. Here the regular configuratlon con
sists of n superimposed sides resulting in a line configuration 
where the odd-numbered bugs are located at one end of the 
line and their mates (the even-numbered bugs) are at the 
other end. This regular line configuration occurs for all cases 
in which n is even when t/> = O. 

When n is odd, the possible number of regular configu
rations equals (n - 1)/2 and the vertex angles t/>, in the order 
of decreasing value, are given by t/> = (n - 2)rr/n, 
(n - 4)rr/n, (n - 6)rr/n, ... , 3rr/n, rr/n. As before, 
t/> = (n - 2)rr/n corresponds to the vertex angle of the reg~
lar convex polygon, while the slimmest star-shaped figure 1S 
represented by t/> = rr/n. Figures 1 and 2 illustrate t~e possi
ble regular configurations for n = 8 and n = 9. In F1g. 1, 
note that among the four regular configurations for n = 8, 
one finds the square where each side is repeated twice, as well 
as the line configuration where one side is repeated eight 
times. In Fig. 2, one of the four configurations for n = 9 is an 
equilateral triangle with each side repeated three times. 

The time evolution of regular configurations, apart 
from the question of stability, has been studied by many 
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4,8 

1,5 

3,7 

¢ ~1f/l 

1 , 3,5,7 

2,6 

FIG. 1. The foul" regular configurations for n = 8. In the square configura
tion each side is repeated twice while in the line configuration one side is 
repeated eight times. 

workers.4 •7•11 Due to the inherent symmetry of the regular 
configurations, it is apparent that as the bugs recede from 
one another, these figures stay regular while the configura
tions expand and rotate in time. 

We treat briefly the case of a regular n-gon II with the 
vertex angle ¢ as shown in Fig. 3. Using plane polar coordi
nates rand 8 to represent the position of a representative 
bug, we note that 

r = v cos(¢ /2), (1) 

(j = (v/r)sin(¢ /2). (2) 

Here the dots represent time differentiation, and v is the 

<1> •• "," 

1.4 .7 

FIG. 2. The four regular configurations for n = 9. In the triangular configu
ration each side is repeated three times. 
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) 

FIG. 3. A regular convex n-gon with a vertex angle ¢J = (n - 2)1Tln. 

common speed of the bugs. Equation (1) indicates that r 
grows uniformly, whereas according to Eq. (2), as r increases, 
8 increases at an ever slower pace. Equations (1) and (2) can 
be combined to give dr/d8 = r cot(¢ /2), whence 

r = ro exp[(O - 0o)eot(¢; /2)]. (3) 

Substitution of Eq. (3) into Eq. (2) results in 

(j = (v/ro) exp[ - (8 - 80 ) cost¢; /2)]. 

Thus, apart from the question of stability, the evolution of 
regular configurations is relatively simple: the sides of the n
gem expand linearly with time while the configuration as a 
whole rotates with respect to the centroid at an ever slower 
pace. We note here that an observer located at the centroid of 
the system sees the bugs receding from him radially with 
speed r = v cost¢; /2). Consequently, in a regular configura
tion the smaller the vertex angle cP, the faster is the radial rate 
of expansion. As a matter offact, the radial expansion rate is 
greatest when cP equals the minimum value. Consequently, 
when n is even, the line configuration with ¢; = 0 is the most 
efficient way for the bugs to get away from one another. In 
this case, the relative distance between each bug pair, R, 
equals 2r and increases at the maximum rate of R = 2v. 
Whenn is odd, we note that the slimmest star configuration 
with the vertex angle ¢ = 1T/n gives the largest expansion 
rate, where in this case, R = 2v cos(1T/n) with 
limn~oo R = 2v. 

III. NONSYMMETRIC CONFIGURATIONS 

Figure 4 shows bug i running away from bug i + 1 with 
speed v. For convenience we denote the instantaneous dis
tance between the bug pair by Ii, and the vertex angle at bug i 
by ¢ i' The equations of motion are given by 

ii = v( 1 + COstPi + I)' (4) 

(5) 

Thus, there are 2n coupled first-order nonlinear differential 
equations to solve. Analytic solutions for such systems are 
hopelessly difficult; however, a computer can be used to in
vestigate the general behavior of the equations and help 
point the direction of a suitable analytical approach. 

The computer simulation of the problem is straightfor
ward.9 A summary of the computer results for various initial 
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_v It q---t-__ 
<Pi 

FIG. 4. A general bug configuration where bug i is running away from bug 
i + I with speed v. 

positions and different numbers of bugs follow. 
When n = 3, the final configuration is always an equi

lateral triangle. For n = 4, the computer takes a very long 
time before finally settling for a line. However, if the input 
configuration is nearly a perfect square or a perfect rhombus, 
the computer settles for a perfect square. For the case of 
n = 5, the final configuration is always a regular star with 
,p = rr/5. The regular pentagon with,p = 3rr/5 is not stable 
and a small perturbation is enought to send it to the star 
configuration. 

For n greater than 5, when n is even, the final figures are 
the possible regular configurations with the vertex angle 
,p < rr /2 depending on initial conditions. In general, regular 
configurations with the smaller vertex angles are more fre
quently obtained as the final result, with the regular line 
configuration having ,p = 0 being the most frequent result. 
However, randomly selected input data always results in the 
line configuration. 

When n is odd, one obtains different regular configura
tions depending on the initial conditions, but most often the 
final configuration is the slimmest star, corresponding to a 
vertex angle,p = rr/n. As mentioned before, randomly se
lected input data always produces the slimmest star as the 
final configuration. However, in all cases whether n is even 
or odd, the final configurations are regular and have a vertex 
angle,p < rr/2. For example, when n = 9, Fig. 2 shows four 
possible regular configurations starting with the polygon 
having the vertex angle,p = 7rr/9 followed by a first star 
with,p = 5rr/9 > rr/2. The regular polygon and this first star 
are both unstable in the sense that a small perturbation sends 
them to the ,p = rr /9 star configuration. In general we ob
serve that for a given n, all regular configurations for which 
,p> rr/2 are unstable. Thus the regular polygons (except for 
n = 2, 3, and possibly 4) are all unstable. Furthermore, there 
is a preference for those regular configurations which have 
the smallest possible vertex angle. 

IV. ANALYSIS 

Figure 4 shows a general irregular n-bug system where 
bug i runs away from bug i + 1 with speed v. As stated be
fore, the equations governing the evolution of the sides and 
angles are (4) and (5). To these can be added the constraint 
equation 

i,pj = (n - 2)rr, (n - 4)rr, 
i= 1 
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Whenever the summation sign appears henceforth, the index 
i will be understood to run from 1 to n. 

We denote ~Jj = P, where P is interpreted as the "pe
rimeter" of the configuration and is a function of time. 
Hence, 

P = 2:/ = v(n + L cos,pj). (6) 

It is apparent that P is the expansion rate of the perimeter 
and that it achieves its maximum value when ~j cos,pj is a 
maximum. Our computer results indicate that random ini
tial positions evolve into the regular configuration with the 
smallest possible vertex angle, for which P = 2vn when n is 
even, andP = [n + n cos(rr/n)] v when n is odd. Thus, in the 
most stable final configurations, the system attains the sym
metric structure in which the distance between each bug pair 
increases at the maximum possible rate. In other words, the 
most stable configuration for a given bug system is associat
ed with the maximum escape efficiency. We therefore en
quire as to whether other stable configurations are charac
terized by local maxima for the function P. 

To identify the configurations for which P is a maxi
mum, we first note that in view ofEq. (6), to maximize Pone 
needs to maximize the function! = ~j cos,pj subject to the 
constraint condition 
~j,pj = (n - 2)rr, (n - 4)rr,(n - 6)rr, ... , which accommo
dates the various possible configurations for a given n. 

To simplify our treatment, we will make the following 
observation. For a given n, it is possible to use only one con
straint equation 

(7) 

for all possible configurations, but with the understanding 
that some of the vertex angles may be counted as,pj + 2rr to 
satisfy Eq. (7). It is easy to see how this can be done if we 
consider the gradual evolution of a pentagon into a star as 
illustrated in Fig. 5. As shown in the illustration, the result
ing star configuration of n = 5 with vertex angle,p = rr/5 

-
r:~=31f 

FIG. 5. The gradual evolution of a pentagon into a star. 
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can be considered to have four angles equal to 1T15 and one 
equal to 1T15 + 21T, thereby satisfying Eq. (7). 

Our task is then to identify the configurations for which 
the function/ = .Ii COs4>i is a maximum under the constraint 
condition .IilPi = (n - 2)1T. To achieve this we use the meth
od of Lagrange's undetermined multipliers. 

Following the standard procedure, we let 

/(lP, , ···,lPn) = ~ COs4>i + A [~lPi - (n - 2)1+ 
where A is the undetermined multiplier. The condition on lPi 
's so that/attains its extremum values is given by 

J/la¢i = - sinlPi + ..1.= 0, 

whence 

sinlPi = A. (7a) 

Since lP i = sin - 1..1. is a multiple-valued function, we cannot 
as yet conclude that condition (7a) specifies the regular con
figurations as the only ones associated with the extremum 
values of P. Let us assume then that a general configuration 
satisfying condition (7a) will have 

n, angles equal to the principal value lPl = sin -1..1., 
n2 angles equal to lP2 = 1T - lPl = 1T - sin-lA, 
n3 angles equal to 4>3 = 21T + lPI = 21T + sin-'A.. 

Then the constraint condition as given by Eq. (7) requires 
that 

n ,(sin -1..1.) + n2(1T - sin - 1..1. ) + n3(21T + sin -IA.) 
= (n - 2)1T, 

resulting in 

..1.= sin(n, - n3 - 2)1TI(nl - n2 + n3). (8) 

Assuming that - 1T12«sin- 'A)<1T12, the solution to the 
extremum problem must be sought amongst triplets n l, n2, 

and n3 such that 

(8a) 

and 

- ~«nl - n3 - 2)/(n , - n2 + n3)<!, 

with the understanding that (nl + n3 ) vertex angles have 
positive cosine values equal to (I - A 2) 1/2 and n2 angles have 
negative cosine values equal to - (1 _ ..1. 2)1/2. 

Therefore, 

/ = L COs4>i = (nl + n3 - nz)(l - ..1. 2)1/2 
i 

= (n - 2n2)(1 -A 2)112, 

which when combined with Eq. (6) results in 

P= nv + v(n - 2n2)(1 -A 2)1/2. (9) 
To maximize Pfor a given n, in view ofEq. (9), we must 

choose the smallest possible values for n2 and A. Clearly the 
absolute maximum for P in Eq. (9) would be achieved by 
letting A. = ° and n2 = 0. This choice for A and n2 substituted 
into Eq. (8) leads to 

n l -n3 =2, 

and through condition (8a) we also have, 
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which results in 

n l = nl2 + 1, n2 = 0, n3 = nl2 - 1, 

lPn, = 0, lPn2 = 1T, lPn, = 21T, 

P= 2vn. 

This solution is admissable only when n is even and corre
sponds to a configuration in which nl2 + 1 angles equal zero 
and nl2 - I angles equaI21T. This is at once recognized as 
the line configuration where half of the bugs are on one end 
and their mates are at the other end. In this case, the expan
sion rate P = 2vn is an absolute maximum. 

We now ask if there are other possible choices of A and 
n2 such that P attains the next highest value. Equation (9) 
suggests that the next highest value for P may be achieved 
either when 

(a) A = 0, n2 = 1 

or 

(b) A = sin(1Tln), n2 = O. 

These choices for A and n2 are dictated by the fact that the 
smallest possible value next to zero for n2 is unity, and that 
for A is sin(1Tln) [see Eq. (8)). We proceed to examine each 
case in tum to determine which one gives the largest P. 
Choice (a), when substituted in Eq. (8) in view of condition 
(8a), leads to 

n l -n3 =2, 
n l + n3 = n - 1, 

resulting in 

n I = (n + 1)/2, n2 = 1, n3 = (n - 3)/2, 

~nl = 0, lPn2 = 1T, <Pn, = 21T, 
p= 2(n -I)v. 
For even n, this solution is not admissable as it gives half 

integer values for n I and n3. However, for odd n, this solution 
gives a most interesting configuration in which all the bugs 
lie along the same line where one vertex angle is 1T, and the 
other angles are either 0 or 21T to satisfy the constraint condi
tion .IilPi = (n - 2)1T. As shown in Fig. 6, these odd-II con
figurations are mimicking the behavior of the most stable 
even-n configurations! However, note that here according to 
Eq. (9), P = 2(n - I lv, which is due to the fact that always 
one bug remains at the same distance from its mate. 

For choice (b), since A = sin1Tln, Eq. (8) leads to 
n , -n3 -2=I, 

- ~ , I 
1 2 3 n=3, P=4V 

-, , , 
1 2,4 3,5 n=5, P=8V 

, I , 
1 2,4,6 3,5,7 

n=7, P=12V 

FIG. 6. Linear configurations for n = 3, 5, 7 which mimic the regular line 
configuration for even n. 
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and 
n\ + n3 = n, 

whence 

n\=(n+3)12, n2 =0, n3 = (n - 3)12, 

tPn, = 1T12, tPn, = 1T - 1Tln, tPn3 = 1Tln + 21T, 

p= nv[1 + cos(1Tln)). 

These values for n \ and n3 are permissible for odd values of n 
only, where in a configuration we have (n + 3)/2 = n\ of 
vertex angles equal to 1Tln, and (n - 3)/2 = n3 of vertex an
gles equal to 21T + 1Tln. This is precisely the slimmest star 
configuration for odd n. Let us examine a few representative 
cases: 

n = 3: n I = 3, n2 = n3 = 0, 

tPn, = 1T13, 
P = 3 [1 + cos(1T13))v = 4.5v. 

n=5: n 1 =4, n2 =O, n3=1, 

tPn, = 1T15, tPn, = 21T + 1T15, 

P = 5[ 1 + cos(1T15))v = 9v. 

n=7: n 1 =5, n2 =O, n3=2, 

tPn, = 1T17, tPn3 = 21T + 1T17, 

P = 7[1 + COS(1T/7)]V = 13.3v. 

As is clearly evident, for odd n case (b), namely A. = sin 
1Tln,n2 = 0 is the winner, a fact which corresponds com
pletely with the .computer results when n is odd. The general 
expression for P in this case is 
P = nv(1 + cos1Tln) > 2v(n - 1); i.e., case (b) results in the 
absolute maximum for P when n is odd. 

We now show that for even n, next to the line configura
tion, the slimmest star with tP = 21Tln has the largest P and 
therefore presumably is the next most stable. We identify 
three cases where A. and n2 are, excepting the cases consid
ered so far, the smallest possible. 

(a) A. = sin [1TI(n - 2)) and n2 = 1. 

This choice leads to 
n\ - n3 - 2 = 1 

and 
n\ + n3 + 1 =n, 

whence 

n 1 = (n + 2)/2, n2 = 1, n3 = (n - 4)/2, 

tPn = 1T1(n - 2), tPn = 1T - 1T1(n - 2), tPn = 21T + 1T/(n - 2), 
I 2 3 

P= nv + v(n - 2)Cos[1TI(n - 2)]. 

These solutions are permissible for even n only. A few repre
sentative examples follow: 

n=4: square n1 =4, n3 =0, 

n =6: star n 1 = 5, n3 = 1, 

n = 8: star n 1 = 6, n3 = 2, 

lL---------~~------+-------~6 

FIG. 7. An example of a configuration for n = 6 which resembles a regular 
star with one side askew. 

n = 4: n 1 = 3, 
tP.n, = 1T/2, 
P=4v. 

n2 = 1, 
tPn, = 1T12, 

n = 6: n 1 = 4, n2 = 1, 

~n, = 1T14, tPn2 = 31T14, 
P = (6 + 2Y2)v. 

n = 8: n 1 = 5, 

tPn, = 1T16, 
P= llv. 

n2 = 1, 

tPn2 = 51T16, 

n3 = 1, 
tPn3 = 21T + 1T14, 

n3 = 2, 

tPn, = 21T + 1T16, 

As is evident, these configurations are mimicking a star with 
one side askew! An example for n = 6 is shown in Fig. 7. 

(b) A. = sin 21Tln and n2 = 0 

This choice leads to 
n\ - n3 =4 

and 
n 1 + n3 = n, 

whence 

n 1 = (n + 4)/2, n2 = 0, n3 = (n - 4)12, 

tPn, = 21Tln, tPn3 = 21Tln + 21T, 

P = nv + v[ncos(21Tln)). 

Some representative solutions are: 

tPn, = 1T/2, P = 4v. 

tPn, = 1T13, tPn3 = 1T13 + 21T, P = 9v. 

tPn, = 1T14, tPn3 = 1T14 + 21T, P = 8(1 + Y2/2)v. 

n = 10: star n 1 = 7, n3 = 3, tPnl = 1T15, tPn3 = 1T15 + 21T, P= 18v. 

These are the stars with the smallest vertex angles for even n. 

(cM = 0 and n2 = 2. 
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This choice lead to 

n, = n3 = 2 and n, + n3 = n - 2, 

whence 

n I = n/2, n2 = 2, 

ifJn, = 0, ifJn, = 11", 

P= nv + v(n - 4). 

n3 = (n - 4)/2, 

ifJn 3 = 211" 

Some representative solutions are: 

n=4: line n) =2, n2=2, n3=0, ifJ", =0, ¢Jn2 = 11", P=4v. 

n =6: line n, =3, n2=2, n3 = 1, t/> =0, '" t/>"2 = 1r, t/>n3 = 21r, P=8v. 

n=8: line n,=4, n2=2, n3=2, t/>", =0, t/> =1r, "2 t/>"3 = 21T, P= 12v. 

As shown in Fig. 8, these configurations mimic the regular 
line configuration. 

A comparison of P for the three cases considered shows 
that case (b) provides the next highest perimeter expansion 
rate for even n after the regular line configuration. That is, 
for even n, P attains its second highest value for the star 
configuration of vertex angle 21r/n. A si~ilar analysis indi
cates that among regular configurations P is the third high
est when the vertex angleifJ = 41rln; Pis fourth highest when 
t/> = 611"ln, etc. Similarly, when n is odd, the second highest 
value of P occurs for the star configuration of vertex angle 
t/> = 311"1 n; the third highest P occurs for the configuration of 
vertex angle t/> = 511"/n, and so on. As mentioned earlier our 
computer simulation of this system indicates that stable con
figurations are all regular, and therefore are also associ~ted 
with the local maxima of the perimeter expansion rate P. 
However, we must still explain the observed computer result 
that for t/>i > 1r/2; the regular configurations are not stable. 

To investigate this question, we allow the angles ifJ; to be 
a function of some parameter x. Differentiating Eq. (6) with 
respect to x, we get 

dP /dx = - vLsint/>; dt/>;idx. 
; 

A second differentiation results in 

d2P /dx2 
= - v(.~sint/>; d 2ifJJdx2 + ~cost/>;(dt/>;idx)2} 

(10) 

However, when the configuration is in the extremum state, 
according to condition (7a) sint/>; = A., and since 
~;t/>; = (n - 2)11", the first term ofEq. (10) is zero and the 
equation yields: 

,- P>o4V , 
4 2 

, I , p.av 

2 3,5 4,6 

",,8 , , . ... uv 
2 3,5,7 4,6,8 

FIG. 8~ Linear configurations for n = 4, 6, 8 which mimic the regular line 
configuration for even n. 
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The perimeter expansion rate will be a maximum ifEq. 
(11) is negative and a minimum if Eq. (II) is positive. In the 
case of a regular configuration with the vertex angles les.s 
than 1T/2, n2 = 0 and Eq. (11) is negative. Hence the penm
eter expansion rate is a local maximum. On the other hand, a 
regular configuration with the vertex angle greater than 1r 12 
has n) = n3 = 0, so that Eq. (11) is positive and the perimeter 
expansion rate is a local minimum. These regular configura
tions we have shown to be unstable.9 We may therefore as
sert that every stable configuration is a regular configuration 
for which the perimeter expansion rate is a local maximum, 
and every regular configuration for which the perimeter ex-
pansion rate is a local minimum is unstable: . 

An interesting situation arises when nelther term 10 the 
brackets of Eq. (11) vanishes. In such a case, the configura
tion is not regular, and it may be possible to vary the angles 
indexed n, and n3 so the expansion appears to be a maxi
mum. At the same time (by a different choice of the paramet
ric dependence of the vertex angles on the variable x), it may 
be possible to vary the angles indexed n2 so that the ~xpan
sion appears to be a minimum. In such a case, the statIOnary 
condition for P corresponds to a saddle point rather than a 
true maximum or minimum. 

An example for which this unusual state of affairs holds 
true is a rhombus or a parallelogram. As shown in Fig. 9, for 
a rhombus n) = n2 = 2, and t/>", = 0, t/>"2 = 11" - O. Suppose 
that the dependence of the vertex angles on the parameter x 

lr'T-----'T"\ 

FIG. 9. The perimeter expansion rate is neither a maximum nor a minimum 
for this rhombus. 
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1 

L-----------~~----------~7 

FIG. 10. The perimeter expansion rate is stationary but is neither a maxi
mum nor a minimum for this regular-looking configuration. 

is such that t/JI = () - X, t/J3 = () + X, t/J2 = t/J4 = 1r - (). Then 
atx = 0,d 2p /dx2 = - 2vcos(},sothattheperimeterexpan
sion is maximized. On the other hand, ifweputt/JI = t/J3 = (), 

2 . 2 t/J2 = 1r - () - X,t/J4 = 1r - () + x, wegetd P /dx = 2vcos(}, 
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and the perimeter expansion is minimized. Hence the rhom
bus is a saddle point rather than a true maximum or mini
mum for perimeter expansion. A more complicated example 
of a saddle-point configuration is the nonagon shown in Fig. 
10. Three of the angles are equal to 60·, and six of the angles 
are equal to 120·. The sides are all equal in length. 
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On the Killing surface-event horizon relation 
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A projective transformation on the scalar norm and twist of a timelike Killingvector can be used to generate 
new space-times. The effect of the transformation on the new Killing surface and its relation to the local event 
horizon is discussed. It is shown that the Geroch transformation will only connect spaces where this relation 
is the same. 

PACS numbers: 02.40. + m. 04.20. - q 

I. INTRODUCTION 

The problem of finding single solutions to the Einstein 
field equations has received much attention. Recently 
the problem has broadened in scope with the introduc
tion and development of methods for generating new 
families of vacuum solutions from a single known solu
tion. l

-
5 Given a metric with a timelike Killing vector 

~a, the technique gives a new metric g~b with the same 
Killing vector. As described by Geroch,4.5 the new 
metric is generated from the base metric by projective 
transformations on the scalar norm, A, and scalar 
twist, w, of the Killing vector, where 

A",~a~a' 

w. = Eabcd~b'l7c~d =Da(w). 
(1) 

The transformations are performed in the three-dimen
sional manifold defined by the Killing trajectories. D G 

is the covariant derivative in this space. 

While the solution sets are relatively easy to generate, 
their interpretation is more difficult. Many applica
tions 6

-
9 have concentrated on the scalars associated 

with a given metric, for example the multipole struc
ture of potentials defined on the transformed space
time. In some cases, comparing this multipole struc
ture at infinity with the structure of Newtonian poten
tials can provide insight into the new metric. The use 
of scalar potentials to interpret the new space-time is 
a clear first step since the transformation itself is a 
simple rotation of potential functions in the three-di
mentional trajectory space, the potentials acting as 
homogeneous coordinates for the norm and twist. 

The vector norm and twist provide another approach 
to gaining information about the nature of the trans
formed space-times. The vector twist is given by (1). 
The vector norm is defined by 

(2) 

Since the structure of the Killing surface A = const is 
determined by these vectors, the difference between the 
transformed and base surfaces can be studied. The 
Killing surface A = 0, in some spaces, will coincide with 
the event horizon. By examining the changes in the 
Killing surface, one can see if this relation is main
tained under the transformation. If it is, this will pro
vide a strong limitation on the spaces that are bridg
able by the Geroch transformation. 

In this note we discuss the effects of Geroch's trans
formation on the vector norm and twist and, through 
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them, on the Killing surface-horizon relationship. The 
discussion is carried out in terms of the Frenet-Serret 
formalism for both null and non-null Killing vectors. 
We briefly review the single Killing vector Geroch 
transformation in the next section. In the third part 
the transformation is applied to the norm and twist in 
a Frenet basis. In the last section we discuss the struc
ture of the Killing surface. We show the Geroch trans
formation takes null-geodesic Killing surfaces into 
similar surfaces in the transformed space-time but 
that it will not produce coincident event-Killing sur
faces from more general spaces. 

II. THE TRANSFORMATION 

Start with a vacuum solution gab possessing a single 
timelike Killing vector ~a. The norm A and twist wa of 
the Killing vector are given by (1). The solution gab is 
described by a set of equations on a four-dimensional 
space G: gab' Geroch4 has shown that gab is also des
cribed by a set of equations written on the three-dimen
sional manifold, ll: hab of Killing trajectories 

Rab = -2 (1' - 1'*)-2 = -2( l' - 1'*)-2(D (a 1'Db ) 1'), 

iJ21' = 2(1' - l' *) -l(D aT )(D bT )hab , 

where l' =w +i'A. and hab=ha/A is given by 

11 ab =gab - ~a~b/A. 

jj is the covariant derivation with respect to hob' 

(3) 

(4) 

To generate a new metric g~bfrom gab' one goes to iI 
and looks for a new solution, 1", of (2) subject to the 
condition iz:b =h.b • The only such solution is 

T'=(ar +b)/(C1' +d), (5) 

which Geroch writes as 

1" =(COS(y)1' +sin(y»/(-sin(y)r +cos(y)l. (6) 

One may show that the transformation is equivalent to 
the potential rotation. 6 

cfJ~= cfJJ cos(2y) - <pMsin(2y) , 
(7) 

where 

cfJJ = w/2'A. , 

cfJM=(A2 +W2 - 1)/4A (8) 

are related to the Newtonian mass and angluar momen
tum potentials. 
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The metric g:b corresponding to the new norm and 
twist is found by inverting (1) for WI to find V[a~/b]' 

One finds 

~: = ~a + AI aa sin2y - AI i3. sin2y , 

with a. and ~a given by 

VraQ!b] = ~Eab"".VC~d, ~aQ!. =w, 

V[ai3bJ"2AVa~b+WEab"'" ~·i3a=w2+A2-1; 

using 1i~b =h.b one obtains 

),lg:&_ ~~!;~=Xgab-!;.!;b' 

(9) 

(10) 

(11) 

The transformation to the space H: h.b is, strictly 
speaking, defined only for nonzero A.4 In order to ex
tend the Geroch transformati.on to the case A = 0, we 
perform the transformation (or nonzero X and then 
take (6) to define the transformation in the limit A, Xl 

- 0, X'!X '" O. The new null Killing vector becomes 

l;~ =~. +.01. sin2y - ~a sin2y , 

with 

(12) 

(13) 

lio and ~. are either zero or null. If they are zero then 
!;~ "l;.. If they are null then by (13) they can be written 
a.=h,!;a,{3. =h2~.,hl>h2 scalar functions. In the X, X' =0 
iimit one can write 

Vi~b=2n.tib 

and similarly for ~a' I~tib is null this becomes 

!;bV.h,-h,Vb!;.=2n.tib 

by Killing's equation. MUltiplying by 1;" we have 

1;&1;" Vahl =h,;a Vb!;.' 

;b!;"V.h l =2h 1nb • 

(14) 

(15) 

(16) 

If nb is not null this gives h, = ° and similarly for h2 so 
again !;~=!; •• If no is null we can only say !;>hs;.,hs, 
a scalar function. 

III. THE EFFECT OF THE TRANSFORMATION 

A. Frenet-Serret formalism 

Before finding the explicit effect of the transformation 
it is useful to write down the Frenet formalism that will 
be needed. There are three separate Frenet tetrads to 
consider. The first is the ordinary Frenet tetrad,JO·ll 
valid for non-null tangents. This tetrad is not useful in 
discussing a Killing surface-horizon coincidence. We 
find the effect of the transformation on the Frenet 
parameters of this tetrad in order to demonstrate the 
similarity of the Geroch transformation and duality ro
tations. ll The second tetradI2 •13 is used to discuss null, 
nongeodesic Killing vectors. This tetrad will be needed 
to discuss spaces where the surface X =0 is not coinci
dent with the local event horizon. The last tetrad is 
valid for null-geodisic tangents and will be used to dis
cuss space-times, where the X = 0 surface coincides 
with the local event horizon. It is necessary to consider 
three separate tetrads since in each case the trajectory 
parameter is different. 

The first tetrad consists of the standard set of Frenet 
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vectors ea(o)' the time like unit tangent, ea(I)' the space
like normal and e"(2)' eatS) the spacelike binormals. The 
tetrad satisfies the Frenet-Serret equations 

ka(o) 0 K 0 ° ea(o) 

'a 
e (1) K 0 71 0 e a

t ,1 

ea(z) 0 -T I 0 72 e·(2) 
(17) 

'a e (3) 0 0 -72 ° ea(S) 

Dot denotes absolute differentiation. K is the curvature 
and T 1,T2 the first and second torsions, respectively. 
In terms of these vectors we have ll 

n· = _XKea 
(I)' nan, *" 0, 

W"=X(-Tle"(s) +T2e'(1)' 

(18) 

The second tetrad consists of two null vectors ~. and 
B" and two spacelike vectors A" and Ca, orthogonal to 
~. and Ba• ~. is identified with the tangent. We have 
~. Ba = 1 " -A" A. = -C·C.. Defining Kl = (_~.~.)112, Kz 
=(1!KI3)[K~ +r :~.), Ks =(1/K~)E"bCd~.ib¥Crd we can write 
the Frenet-Serret equations for this tetrad as 

1;" 0 K1 0 1;. 

A" K2 0 KI A a 

jja 0 K2 ° ~1 I1' 
(19) 

C· Ka ° 0 Ca 

In terms of these vectors we have 14 

n a=K1A·, n"n.,*O, 

W·"KIC" • 

(20) 

The Frenet parametrization makes it obvious there is 
no overlap between the norm and twist on X =0. For 
X = 0, nOna = 0, the Killing surface is null and geodesic 
so a single null vector La suffices to parametrize all 
the vectors. We have 14 •15 

~a=L", X=O, 

na=€L", n'7l a=O, 

w"=IjL" or 0, 

(21) 

with E, I) scalar functions. 

B. The transformation 

1. A*O, nan" *0 

Consider the hypersurface !;"~." A = const in C. The 
normal to this surface is na = ~(x)." and the vector twist 
is wa =(w);a' These vectors can be transformed4 to the 
three-dimensional trajectory space H giving na = ~D"(A) 
and w" = D .(w). In the space jj we have 

w' + iX' =(cosy(w +iX) + siny)!( -~iny(w +iX) + cosy) , 

(22) 

with ii~b=ii'b' Taking covariant derivatives in ii and 
transforming to H using D"=XDa one obtains 

J. P. Krisch 664 



                                                                                                                                    

(

cosa 

= -sina 

with 

+Sinc\ 

cosa) (::) (23) 

cos(a) = -w sin28 + cos2B + w' sin28 - ww' (1 - cos2B) 

= 1- AA'(1 - cos2B), 

sin(a) = A' w(1 - cos2e) - A' sin2e 

= -A sin28 - w'A(1 - cos28) , 

for A, A' *- O. Substituting, Eq. (20) becomes 

).' K' e~(l) = Aea(l )(K cosa +T 2 sina) + AT 1 sina e a(3» 

(24) 

A'T / e~Ca) + A' T~e~(l) = Aea(a)T 1 cOSQ! + Aea(l )(T 2 cosa - K sina) , 

(25) 

multiplying, using h'ab = (A' /A)hab we obtain 

A'(K'2 +T~2 +T~2) OOA(K2 +Ti +T;), (26) 

A,[T? +T;2 ~ K'2J =A rC~S2Q! - sin2al r~ +T~ - KJ 
2T;K Lsm2a cos2a J L 2T2K 

In the limit A, A ' - we obtain from (6) in G' 
, 

w.oo wa' (27) 

By (20) we have 

(28) 

By the discussion following (16) we know ~> ~a. For 
this case we can generate the normals by absolute 
derivates. From (19) we get 

, 
na =n a • (29) 

This result also follows simply, but less rigorously, 
from (24) in the A', A ,,0 limit. 

For the curvatures we obtain by absolute differentia
tion and squaring 

(K;)2 = (K 1)2, 

(K~)2 = (Kz)2 , 

(K~)2 = (K3)2 . 

3. A =0, nana =0 

(30) 

The discussion following (16) and Eqs. (21) indicate 
a 11 the vectors remain null, or zero. 

IV. DISCUSSION 

The formalism we have developed allows a discussion 
of both null and non-null Killing vectors and general, 
null and null-geodesic Killing surfaces. The non-null 
Killing vector formalism can be used to demonstrate 
the similarity between the Geroch transformation and 
duality rotation. 

Honig and Schuckingll have shown that electromag
netic fields can be described by 

(e/m c2)Ha =T 1eaCa) +T 2ea(1) , 

(e/mc2)Ea = Ke a(1)' 
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Duality rotations of these fields have invariants 

K2 +Ti +T~ =(K')2 +(T~)2 +(T~)2, 
, , (31) 

K T 1 = KT 1 ' 

Whil[: ;2h: T~20~~tIZ ~n[:::::ts K:2:::~~Ji [-T~~+:~a::~Jorm as 

, , _ . (32) 
K T 2 sin2a cos2a KT 2 

.J 

Comparing (31) and (32) to (26) we see that the Geroch 
transformation is analogous to a duality rotation with a 
scaling due to the change in metric. This has been pre
vioulsy noticed by Hansen6 in the context of potential 
rotations. 

The null formalism allows one to discuss the horizon 
structure. The event horizon in static space-times 
coincides with the static limit of the Killing surface 
A = const. In static spaces the Killing surface A =0 is a 
null-geodesic hypersurface. If the Killing congruence 
is rotational, this no longer must be true since the 
normal vector na and ~a may become null at different 
points, as in the Kerr space-time. This result is ex
pressed by the well-known equation14 - 17 

(33) 

A =0 doesn't imply a null normal unless the twist is 
also zero. If the twist is zero on A = 0 then the Killing 
surface will locally constitute part of the event horizon. 
Since one effect of the Geroch transformation can be to 
change the rotation of a space-time, it is of interest to 
study the behavior of the Killing surface with regard to 
the event horizon. There are two cases to consider. 
(1) The Killing surface is a null-geodesic hypersur
face. (2) The Killing vector is nUll. 

A. A=0,n8 na =0 

The base space for this case has vectors zero or 
null. The zero Killing surface is part of the local event 
horizon. Under the Geroch transformation the vectors 
remain zero or null. The transformed space will also 
have the zero killing surface as part of the event hori
zon. 

A good example of this occurs in the Schwarzschild 
space-time. For A*-O we have 

dS2 = - (1 - 2.'I4/r)df + dr 2 /(1 - 2M/r) +r(d82 +sin28d !J>2). 

(34) 

The vectors are 

n=_2M~ W=O. 
r2 (grr)1/2' 

Under the Geroch transformation the metric becomes18 

d~ = _ [1 - 2M /r] dt2 + F(r) dr2 +r2F(r)de2 
F(r) (1 - 2M/r) 

+F(r)r2 sin28d!J>2 +d!J>2 (~¥r +2g~<tf14>dt, 
(35) 

with F(r) = 1 + [(1 - 2M/r)2 - 1] sin2y, A' = - (1 - 2M/r)/F(r) : 

, =2Mr (r-2M)(cos8sin2y-2Msin2y) 
gOr/> r2+4M(M-r)sin2y 

The new space has normal 
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4' MCOSot fo' 
n = - ---;:r- ( )liit 

grr' 

and twist 

w' = (_Mlr2) sinot[rl(grr,)l/Z] 

for X' ,,0. On X'= 0 we have w'=O and 1!'=n so the hori
zon structure is maintained. 

B. 'A-O,"'n.=o 
In the base space the Killing surface X =0 is not coin

cident with the event horizon. The Geroch transforma
tion will not connect this space with any space where 
the surfaces are coincident. To see this, note X = 0, 
n"n."O impliesn·n .. =w·w4=K~ by (20). Since by (27) and 
(29) we have n~=n. and W~=W4' we find the same be
havior in the transformed space-time at X' =0. X' can
not be part of the local event horizon if X is not. The 
Kerr metric is an example of this kind of behavior. We 
have for this metric 

X = + [ p2 _ 2Mr JI p2 , 

with p2 =r +cl' cos2 8. 
The norm and twist are 

n=(mlp4)~_r2 + cl' COS28)r~ ; + (2rcl' cos8 Sin8)9#], 

w=(m/p4>[-2arCOS8i'~7-+asin8<-r2 +cl' COS28)(j~ ) J 
(36) 

on the zero Killing surface these become 

n~ =no = (2:r)2:ygr [(-r + cl' cos2 8)fo +(2racos8)e] , 

w~ =wo (2:r)2~r [-2racos8f +(-r +(} cos2 8)9]. 

(37) 

Equation (33) is satisfied in both the base and trans
formed space. 

Consider a space, exhibiting the above behavior, which 
has an axial Killing vector ~~ in addition to the time
translational Killing vector ~~. In such a space it is 
possible to define a mixed Killing vector 

~';, = p sin(l/I)~~ + cos(l/I)~ 4, , (38) 

where the coefficients are chosen so that XM = ~';,~M4 is 
zero on the horizon~. One may either explicitly set 
XM =016 on ~ or equivalently require ~~~ rtJG =019 on ~. 
The latter course gives p sinl/l = -cos1/!( g~~1 go",) andgi yeS 
~';, as 

(39) 
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giving 

XM=p2 sin2(l/I)[ X-go",2Ig",,,,] , (40) 

which is zero on~. This procedure changes the Killing 
surface-horizon relation to that considered in subsec. 
A above, XM=O, n~nMe=O. To see what happens to the 

mixed Killing surface under the transformation, form 
a new mixed Killing vector 

~',:=p sin(l/I){~r - (g~~ g~",H~1 

and (41) 

X~=p2 sin2(1/!)[A'-g~~/g~<I>l 

under the transformation we have from (11) and (12) 

X' =X/F, 

g~<I>=go<l>+XA, (42) 

g''''<I>=Fg",,,,+2go~+X'A2 , 

with 

A =01 sin2y - {3sin2y, 

F =1 +wsin2y +(X2 +W2 -1)sin2y. 

Substituting into (41) we find X~=O on~. The trans
formation also maintains the relation between the 
mixed Killing surface and the horizon. 

In conclusion, we have shown that the Geroch trans
formation will only connect spaces with an identical 
Killing surface-horizon relation. This is a strong limi
tation on the kinds of spaces one may reach for a given 
base space. 
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Starting from a canonical Jf' Jf' space, which by virtue of the self-dual part of its conformal 
curvature tensor being algebraically degenerate, has a single congruence of totally null, extremal 
two-surfaces, along which the coordinates are built, we specialize to the case where the anti-self
dual conformal curvature vanishes, giving us an algebraically degenerate Jf'space with 
coordinates especially adapted to its degeneration. We then solve the Jf' Jf' equation in this case 
and obtain, at one stroke, all algebraically degenerate Jf'spaces in a simple, compact form, useful 
for later applications. The generic solution depends on four arbitrary holomorphic functions of 
two variables, and any special Petrov type desired is easily distinguished. Also, a special 
comparison is made for all such spaces of type D, showing the relation of their parameters to the 
usual real, type-D parameters of mass, Newman-Unti-Tamburino (NUT) parameter, rotation and 
acceleration. Lastly, a contraction to the special cases in which the leaves of the congruence are 
relatively plane is performed explicitly. 

PACS numbers: 02.40.Re 

I. INTRODUCTION 

Within the theory of Jf' spaces, approached along dif
ferent lines by several groups, the problem of an explicit de
termination of the class of all algebraically degenerate heav
ens was one of the first to be systematically pursued. 
Already) in 1975, simple examples were given of all algebra
ically degenerate types. Further progress was made in Ref. 2, 
particularly with respect to their symmetries. Then, Fette, 
Janis, and Newman3 determined all algebraically degenerate 
Jf'spaces, separated according to whether they were diverg
ing or not. The Sachs-Goldberg theorem4 assures us that 
every algebraically degenerate vacuum spacetime has a dis
tinguished congruence of geodesic, shearfree (real) null di
rections. In Ref. 3 the case in which the divergence of this 
congruence was nonzero was investigated, while the case of 
vanishing divergence was completed in Ref .. 4. Their results 
establish, in explicit although somewhat complicated form, 
the metric and the nonzero components of the conformal 
curvature. In particular they give a characterization, by 
complex Petrov type, of the number of arbitrary functions in 
the most general case. In Ref. 2 the current authors also gave 
a complete description of heavens of type N, only-in terms 
oftwo functions of two variables-in a very simpJe and com
pact form. However, both of the above approaches use tradi
tional techniques of integration inherited from the theory of 
real algebraically degenerate spaces. In particular the use of 
the behavior of the real congruence of null geodesics is not 
necessarily what would be motivated by the Sachs-Goldberg 
theorem on a complex manifold. Plebanski and Hacyan5 
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ico 5, D. F., Mexico, and by the C.I.E.A. del I.P.N., Mexico 14, 
D. F., Mexico. 
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have given a complex form of the Sachs-Goldberg theorem 
which shows that there are separate geometric consequences 
of the algebraic degeneration of the self-dual and anti-self
dual components of the conformal curvature tensor. The 
geometric object given because of the degeneration of only 
one side of the conformal curvature is a congruence of totally 
geodesic null two-surf aces-null strings. Although an alge
braically degenerate heaven is degenerate from both sides 
and therefore has two such congruences, whose intersection 
determines the geodesic, shearfree, null congruence men
tioned earlier, it is not the most natural object in the space on 
which to build the character of explicit solutions. Therefore, 
in this approach we consider separate cases detemined by the 
complex expansion of the fundamental congruence of null 
two-surfacesrequired by the complex Sachs-Goldberg theo
rem because of the algebraic degeneration. 

Since these null two-surfaces playa prominent role in 
the discussion which follows, we give here a brief geometri
cal picture of their properties and refer the reader to the 
literature!! for more details. A (two-parameter) congruence 
of totally null two-surfaces/oUates the given four-dimen
sional manifold. A basis for the (reduced) tangent space of 
any point on such a surface contains two orthogonal null 
vectors. In general we can study the curvature of one of our 
two-surfaces by looking at the changes in both the (two-di
mensional set of) tangent vectors and the (two-dimensional 
set of) normal vectors as one moves along the surface. Refer
ring to Ref. 7 for the details of the calculations, we first con
sider the covariant derivative, along a particular leaf of our 
congruence, of the tangent vectors. In general this would be 
expected to have both tangential components and normal 
components. However, for these two-surfaces, the normal 
components vanish, thereby justifying the statement that 
they are totally geodesic two-surf aces-they are extrinsical-
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ly "flat". 
Also, the basis set may always be chosen in such a way 

that the tangential components also vanish-they have a 
vanishing intrinsic curvature. What, then, may one say 
about the structure of these two-surfaces. The desired infor
mation is in the covariant derivative, along a particular leaf, 
of the normal vectors. Particularly important are the normal 
components of these covariant derivatives. These compoents 
simply measure how the normal direction changes as one 
moves (by parallel transport) along a given null string. In 
particular, if these covariant derivatives have vanishing nor
mal components, then the normal directions may all be cho
sen parallel as one moves around. The one-form which has 
the coefficients of these normal components as components 
is then referred to as the expansion of the leaves of the con
gruence. An explicit (coordinate-based) expression for this 
expansion is given in Sec. II. Here we have simply tried to 
give an intuitive geometric description ofthis quantity. We 
also note that, while the general case is one where the expan
sion of the leaves is nonzero, it is certainly permitted to con
sider the case of zero expansion-referred to as plane. Since 
the coordinatization to be used to describe the general case 
depends in an explicit way upon the nonzero value of the 
expansion, it is necessary, in this approach, to perform a 
limiting procedure in order to go to a reasonable coordinati
zation in the plane case. 

We note that every JY' space automatically has two dis
tinct congruences of null strings because of the fact that it is 
half conformally flat, e.g., the anti-self-dual part of the con
formal curvature vanishes. However, the existence of neither 
of these congruences is directly addressed by the extra con
sideration that the JY'space in question is algebraically de
generate. This degeneration guarantees us another congru
ence of null stimgs which are a direct consequence of the 
special case which we wish to consider. Therefore, we want 
to build our characterization of the solutions around this 
particular congruence. In order to do that we note that this 
special congruence is the only one possessed by a more com
plicated family of spacetimes, namely JY' JY' spaces with, for 
example, algebraic degeneration of the self-dual conformal 
curvature but generality of the anti-self-dual part.s The inte
gration procedure for such JY' JY' spaces has already been 
carried out in detail and allows all JY' JY' spaces to be com
pletely described in terms of a potential function W which 
must satisfy a certain nonlinear differential equation and 
certain functions Il, v, 5, and r of two variables only--con
stant on each leaf of the distinguished congruence of null 
strings. By working, therefore, in this more general formal
ism we ensure that the approach is based on the particular 
null string desired. Then, by putting the differential con
straint on the system that the previously general part of the 
conformal cuarvature should now vanish, we descend to the 
desired level of an algebraically degenerate JY' space and 
obtain constraints on the form of W which are sufficient to 
allow us to proceed to a complete integration of the problem. 
In Ref. 7 this alternate approach was pushed forward in a 
simple subcase-nonexpanding JY' spaces oftype N. In this 
paper we proceed with the program in complete generality. 

In Sec. II, we give a brief description of the basic spinor-
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ial formalism9 for JY' JY' spaces and then proceed immediate
ly to the problem of integration. We show that the system of 
differential equations which results when the right side of an 
JY' JY' space is made flat amounts to a natural structure of an 
ideal of two forms in two dimensions. That system is inte
grated in all generality. Then, realizing that a number of the 
functions in the solution are only there because of coordinate 
gauge freedom, in Sec. III we discuss the general (local) 
group of transformations which leave the structural equa
tions form invariant. This group is utilized, leaving only 
those arbitrary functions which have geometric significance. 
In particular, the relation of these functions to the Petrov 
type is detailed. 

In Sec. IV, we discuss in more detail the special case of 
type D JY'spaces and the relation to the type D JY' JY' spaces 
already known. In addition, we show how these relate to 
some common gravitational ins tan tons. In Sec. V, we discuss 
the limiting procedure in those degenerate cases where the 
distinguished congruence of two-surfaces is plane rather than 
expanding. Only JY' spaces of type III or N have this possi
bility, and they are all simple contractions of the more gener
al ones already discussed. 

II. GENERAL INTEGRATION OF THE EQUATIONS 

We recall that a general (expanding) JY' JY' space can be 
described by a pair of spinor coordinates, pA, which are co
ordinates along any given leaf of the congruence, and q B' 

which are parameters which label the various members of 
the congruence. The two-surfaces in the congruence are then 
the surfaces of the (closed) two-form.I = !dqA I\dt/. The 
(nonzero) expansion of the congruence picks out a special 
direction on any given leaf. In order to specify this we pick a 
constant spinor basis JA, K B (such that K A JA = r) and set 

¢J=JApA, rt=KApA' (2.1) 

as coordinates on the leaf, distinguished relative to the direc
tion of the expansion. (In Ref. 9 there is an additional con
stant K in the definition of ¢J, which, although useful in some 
applications, will be dropped in this paper.) The expansion 
form 10 is then proportional to the components of d¢J along 
the distinguished congruence.I. Then the potential function 
W = W (PA ,q B) must satisfy the hyperheavenly equation 

~¢J4(aA¢J -2a Bwj(aA¢J -2aB W) + ¢J -laAW,A . 
-1l¢J4a4>¢J -la4>¢J -IW + (rt1r)PAK(AJB)Il,B =NA~ + r, 

(2.2) 

for some functionsll, r, and NA , functions of the q B only, i.e., 
constant on any given leaf of the congruence. We use the 
symbols 

aA w=aw lapA, W A =aw lat/, a4> w=aw la¢J. 
(2.3) 

The metric is detemrined by the tetrad 

ds2 = 2e2 ® e2 + 2e3 ® e4 = 2EA ® eA, (2.4) 
s s s 
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EA = - dpi + QABdqB = e:), 
QAB = _ f/J 3(fAf/J -2a B1w + (p,lr)f/J 3KAKB. (2.5) 

The spinorial expressions for the connections and the con
formal curvature9 will also be needed: 

with 

r ll = - f/J -IJA~' 

r 12 = -!f/J (aAf/JQAB)eB - ¥p -IJBE B 

r 22 = -f/J6(NB +MBApA+f/J-2JAaBw,A)eB 

+ f/J 3 [aBf/J -IJAaA W + (p,h)f/JKB ]EB, (2.6) 

MBA = [(1I2T)K CEBA - (lIr)KBKAJ c lP,Co 

r AB = f/J (f/Ja(AQBlc + EC(BJDQA)D)eC + f/J -IJ(AEBi' 
(2.7) 

(We note that the expansion one-form is just 
r 11 = - [(aA (lnf/J ) ]~, in this choice of coordinates. 10) 

C m = 2f/J 5(NAJA - pAf-l,A)' (2.9) 

C(I) = 2f/J 7[f/J3(ph)K ANA +JA(r+ 3f-lW),A 

+ 2(NAJ AJB - P(BJA)f-l·A )aBW 

+ JBNB,ApA + (p,/2r)f/J 31]KAf-l.A - ~ApBf-l,AB]. 

The obvious way to specialize such a solution to a gen
eral JY' space is by setting f-l, NAJA' and r equal to zero. 
However, this would give us a space parametrized over the 
pair of null srings possessed by all JY'spaces. (Actually an 7i" 
space in this case.) On the other hand, by requiring that Wbe 
such as to make CABCD vanish, we obtain an arbitrary alge
braically degenerate JY'space parametrized over the special 
null string the space possesses because of its degeneration. 
This requirement tells us that Wis a fourth-order polynomi
al in f/J and 1], 

W= (p,/4r)f/J 21]2 + !AABcPApBpC + ~BABPApB + CApA 

+ i5, (2.10) 

whereA ABCo BAB , CA, and 15 are, as yet, arbitrary functions 
of the qA only, 

However, W must still satisfy the hyperheavenly equa
tion (2.2). Since the unknown functions depend only on qA' 
this takes the form of a coupled system of six equations for 
the ten unknown quantities, as well as the four quantities f-l, 
r,NA 

~ABC'C + JCACD(ABDB) + (N(A +f-lC(A)JB) = 0, 

BAB,B + (~BBCBBC + r + 3f-l15)JA + 2JBCcAABC = 0, 
(2.11) 

CA,A + 2J AC BBAB = O. 

These equations can be made much more tractable by rein
terpreting them as equations involving some appropriate 
one-forms. 
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A =2A ABci A J BdqC -adt + Pdw, 

D =2A ABCJ A K Bdqc Pdt + ydw, 

E =2A ABCK A K BdqC _ ydt + 8dw, 

B =B ABJ AdqB ==-Edt + tdw, 

F =B ABK AdqB ==-tdt + ijdw, 

C CAdt/ edt + Kdw, 

(2.12) 

where the combinations of the qA have been chosen so as to 
be adapted to the expansion direction, with 

t_KAqA' w==-iAt/. (2.13) 

We note that not all the components of these forms are inde
pendent. Rather, the obvious constraints are 

A A dt + D A dw = 0 

=DAdt+EAdw 

=BAdt +FAdw. (2.14) 

The complete contraction of Eqs. (2.11) with J A then 
leads to part of the equations involving only a closed subideal 
of our forms 

dA=2BAA, dB=CAA, dC=2CAB, (2.15) 

while the remaining equations become 

dD =FAA +BAD + T(Nc + Cc)Jcd~ AdqA' (2.16) 

dF = FAB + CAD + ~T(r + 3f-l15)dt/ AdqA' 

dE = 2F AD + 2nN C + f-lCc)K cdt/ A dqA' (2.17) 

Equations (2.15) form a very simple set of equations which 
are, in fact, simply the Maurer-Cartan equations for the 
connection over SU(2). A very convenient form in which to 
display their solutions is obtained by considering an orthon
ormal pair of spin or function SMA, LB such that MALA = 1. 
In terms of the three independent functions remaining, the 
solution is then calculated to be 

A =LAdLA, B=MAdLA =LAdMA, 
C = MAdMA. (2.18) 

By exhibiting the solution in this form an explicit in variance 
under constant SL(2,C) transformations is retained, allowing 
degenerate cases to be handled more easily. 

For the inhomogeneous equations we set 

QB=MBD_LBF, 

~R B = TM B (N C + f-lCc)J C - ~TL B (r + 3f-l15), (2.19a) 

T = 4T(N C + f-lCc)K c, 
which allows the equations to be written more simply; 

dE=QAAQA +~Td~AdqA' 
(2.19b) 

Since the entries in these equations are all two-forms in two 
dimensions, they are (locally) closed and therefore (locally) 
integrable. To demonstrate this explicitly we introduce three 
potentials 

S BC . =R B HA -T. X A -SBCS ,c-, ,A= , ,A= BC' (2.20) 

lt is then immediate that there should exist some functions 

J. D. Finley, III and J. F. Plebanski 669 



                                                                                                                                    

pA such that QA = SAiJdqiJ + dPA. However, SAiJ has con
siderable freedom of choice since any solution of the defining 
equation (2.20) serves as well as any other. In particular, if 
S~iJ is a suitable such potential, then SAiJ = SgB + pA.8 will 
also satisfy the potential equation. Therefore, without loss of 
generality, the dpA term may always be absorbed in the oth
er, giving us the general solution 

QA=SAiJdqiJ, E=(XA+HA)dqA' (2.21) 

where an arbitrary dp term in the integration for E has, simi
larly, been absorbed in the X AdqA term, while no particular 
choice of the potential H A has yet been made. 

We have acquired a general solution of Eqs. (2.15)
(2.17) in a rather simple form. However, the constraints giv
en by Eqs. (2.14) must still be imposed in order to guarantee 
that we have a solution of the hyperheavenly equation. In 
this notation they take the form SAiJ JiJ + 7L ~ = 0 and 
XAJA = SAiJLAKiJ' where we have chosen HA = (h - f)JA 
and the sUbscript w indicates partial differentiation with re
spect to w. This implies that there is some spinor Z A such 
thatS A8 = ZAJB - L ~KB. WritingXA =fJA + bK A, the 
solution to all the constraint equations is then given by 

T= T(h - f)" 

/, = 2cL AL Aw - 2bM AL Aw - bw' 

RA = 7(cLA - bM A) _7L A 
t WW~ 

(2.22) 

where only/, (as opposed tof) appears in the final result and 
the equations for Tand R A are to be interpreted as determin
ing the previously unknown functions N A and r + 3p15 in 
terms of the arbitrary functions c, h, and b. At this point, we 
summarize the solution by giving, in terms ofthe three inde
pendent components of L A and M 8, as well as b, c, and h. 

A =LAdLA, B=MAdLA, C=MAdMA, 

D = bdw - LiJL !dt, E = - hdw + bdt, 

F= cdw - MiJL !dt, 

2N AJ,j=TV=b, +LiJL~w +bMAL: -cLAL: 

- 27pMAM1, (2.23) 

2KANA=7S=~h, +!bw +CLALAW-bMAL~ 
+ 27pMAM~, 

r+ 3pD = - c, + CMAL1 - bMAM: -MAL~w' 
Having the one-forms A through F and the functions 

v,s,r+ 3p15intermsofL A,M 8 (whereM AL A = l)andb,c, 
h, and 15, we could insert these in Wand have the general 
solution in terms of seven arbitrary funetions of two varia
bles. However, some of these functions simply express the 
gauge freedom still available. Therefore, in the next section 
we look at the gauge freedom. 

III. GAUGE TRANSFORMATIONS IN jf"jf" SPACES 

There is no reason to believe that there is any essential 
physics in a particular parameterization of the leaves of our 
special null congruence. Therefore we consider an invertible 
transformation to new parameters q~ = q~ (qA)' Since the 
specific form of the tetrad given in Eq. (2.4) has been used to 

670 J. Math. Phys., Vol. 22, No.4, April 1981 

acquire the particular forms given above, we determine new 
longitudinal coordinates p's so as to preserve the form of the 
tetrad in terms of the new variables: 

dq~ = Di<AdqA' 

p'R=A -ID-IARpA +~, 

¢'=A- 1/2¢, (3.1) 

E,i< =,.1 -I(D -IARE A - ile'R), 

where DR A ,A,~, and il are arbitrary functions of the q 8' 

In Refs. 7 and 9 a number of elementary consequences 
of this transformation are worked out. However, the restric
tions which must be maintained in order to maintain the 
expansion direction as special are not given there. In order to 
do this we may specifiy anew, constant spinor basis J ' R ,K 's 
such that K 's J' S = 7' ao7. These restrictions are sufficient 
to ensure the existence of a completely analogous potential 
description in terms of W'fp,R,q's), p', v', etc. It is straight
forward (if somewhat lengthy) to show that the most general 
such transformation is determined by four arbitrary func
tions S,s,e,v of qA' one arbitrary functiong = g{w), only, and 
four arbitrary constants, J'R ',K ,s', and ao = 7'/7. Then one 
finds the explicit form of the transformation to be given by 

q~ = (1/T)(P~ +gK~/ao), 

DR A = (l/T)(J ~S ,A - yK ~rj fa), 

where y = dgldw,or 

t' = aoS (t,w), w' = g(w), A -1/2 = S,' 
~=SJ'R, detDRA=A -1/2y #0, (3.2) 

2il¢ -2 = a~ faq,I< + (A 1/21y)pA (A -I) . 
,A 

=A 1/2TS , -(A - 3IZly)(¢aw +7Ja,)A.. 

Having new coordinates, the transformations of the po
tential functions which determine the metric are shown to be 

W=A 3/2(YfW' +..!.A 1/2YPA(..!.PiJS,iJ)'A 
27 y 

PSw A,1( 1 SWA,) 11 A - 2rs, '1'. 7J + "2 -C 'I' + !-·YP S.A 

+ to¢ 3 + v, 

p =A -3/
2p ', v = aarA -IV' + Uysp, + 3py(AS)" 

s = A -1/2(Yfs' - A I/ZSw V - 270, 

-A I/Zys\A(Swp, -PwS,)+~(SwA, -Aws,)j, 
(3.3) 

y = y2y' _ 3pv + (y) + 112 [(y) - 1/2]" _ ytY7SV 

+ (AYS)2'Tp, + Ad (ys)2(3pA, - Up,). 

By insisting that W' should be expressed in terms of the 
components of some A " B " etc., we then easily find the de
sired transformation equations for them 

A' = AyA, B' = B - ytysA + ~d (lnlly), 

C' = (Ay)-I [C - AysB + A(AYS)2A - !d (AyS)] , 

D' = anA 1/2[D - A I/ZSwA - 27pAysdw], 

E' = a~(y)-I [E - 2A IIZSwD + A (Sw)ZA 
- 2pA 3127Syds - 4rOdw] , 
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F' = ao(A 1/2y)-1 [F - A 1I2;wB - ytys(D - A II2;wA) 

- dA 1I2;w + yt 1/2(lny)'d; + !Tjt(Aysfdw], 

15' = A -3/2(y)-2{15 - v - TAYS[CA - ytYSBABJ B 

+ tjAysfA A B(:-/ B J C] J A - !TA (y)2(AS2), J. 
As a first step, we note that, in Eqs. (3.4), v appears only 

in the transformation equation for 15 and, moreover, that 
r + 3jt15is invariant under v. We may therefore always 
choose to eliminate 15 via the freedom in v, which we assume 
done from now on. Again, () appears only in the transforma
tion for 8 (the dw-part of E) and so we may always eliminate 
it from the scene, making [via Eq. (2.23)] h vanish as well. 

In order to proceed further we must have the transfor
mation behavior of M A and L B. Working from the behavior 
of A, B, and C, we find that 

L IR = (Ay)1/2G R
ALA, 

(3.5) 
M'R = (Ay)-1/ 2G R

A(M A - ytysL A), 

where G R
A is an arbitrary, constant matrix from SL(2,C). 

Similarly, by working with D, E, and Fwe find, consistently, 
that 

c' = aotl -1/2(y)-2[C - ytysb 

- (aw -A 1I2;wa,)A.II2;w 

+ A 1I2;w(MA - 0ysLA) 

x (2aw - A II2;w a,)L A + !Tjt(AYS)2], (3.6) 
b '= aotl 1l2(y)-1 

X[b +A1IZ;wLA(2aw -A II2;wa,)LA - 27jtAyS]. 

Since g is a function of only one variable it is reasonable 
to try to gauge either L A or M B to be a function of only one 
variable so as to use y to affect it further. In general the only 
way this can be done is to cause (MR ),' = 0 (vanishing of E 
and iF). By consulting Eqs, (3.4) we find that choosing a trans-

-2 - -
formation with s, = !as - 2ES + 2(J causes (J I to vanish and 
then a transformation withA, = - 2EA will cause f! to van
ish (and maintain if' as zero). So using up s and A, will cause 
(M R )t' = O. Dropping primes, we assume this has been done. 
This implies thatMA depends only on wand that there is also 
a spinor function BA (w), only, such that LA = aMA + BA, 
where a is an arbitrary function of qA' We then find that 
a' = Ay(a + I) where 1= l(w) is a new gauge freedom, and 
B 'A = (Ay)GR,..dBA-1MA). By proper choice ofl and Aw we 
can arrange for B ,R to be constant, Lastly, usingy(w) to 
gauge to one a proportionality constant that appears, we can 
finally write L A and M B in the form 

MA,=wBA+A A, LA=aMA+BA, (3,7) 

where A ABA = 1 and are both constant, which allows us to 
determine explicit forms for A, B, etc. having used up essen
tially all the gaug~reedom. The results are most easily 
quoted by giving W, v, 5, and r in terms oftheJour arbitrary 
functions of two variables, jt,a,b,c 
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TV = b, - (a 2 
- aw)w - ca" 

T5 = - 2Tjt + !bw + ba - c(a2 
- awl, 

r= -c, +2aw ' 

Also, for convenience we note that 

+ [,u¢2+at71¢-(aZ-aw)¢2]dt® dt 

- (2jtrJ¢ 2 + b¢ 2 + at rJ2)dw ® dt 
s 

+ [,urJ2¢ + (a2 - aw)712 + brJ¢ + 47arJ 

+ 27C¢ + 4r]dw® dwj. 
s 

(3.9) 

The curvature and other quantities are determined by jt, V,5, 
rand Wvia Eqs. (2.6)-(2,9), 

IV. PETROV TYPES, ESPECIALLY D 

The solution given contains all possible algebraically 
degenerate JY spaces. Therefore, it includes complex Petrov 
types II, D, III, N, and flat. It is interesting to point out the 
specializations obtained by insisting that the solution be of a 
particular type. To have Petrov type III it is only necessary 
to insist that jt=O, leaving us with three independent func
tions of the q A • Petrov type N is obtained by putting both jt 
and v to zero, which gives the simple constraint between the 
three remaining functions 

b, - (02 - aw)w - cat = 0, (4.1) 

which we may think of, for example, as determining b, re
ducing the number of independent functions to two. It is 
worth noting that the most general type N JY spaces, with 
two arbitrary functions of two variables, were, in fact, al
ready published in Ref. 2 sometime ago. However, as already 
mentioned, they were in a form more suited for their study as 
if they were real manifolds rather than as the complex mani
folds they are (without real Minkowski sections). The JY 
space would be flat if, in addition to jt = 0 and v = 0 [Eq. 
(4.1)], we also would insist that 

rt = 0 = (2a w - cl ),· (4,2) 

Clearly, at this point the extra arbitrary function left over 
simply represents some residual gauge freedom which was 
not available in general. 

In the above list we have omitted Petrov type D JY 
spaces. In general, a type II space can be constrained to be 
type D (when a tetrad is used in which C (5) vanishes) by insist
ing on the constraint 

2[C(Zlf = 3C(I)C(3), CI3J~O. (4.3) 

This is clearly [from Eqs. (2.9) and (3.8)] a very messy set of 
coupled equations to solve for the coefficients of the various 
powers of ¢ and rJ. However, there is a more useful gauge to 
demonstrate the solutions of type D, which also makes a 
bridge to the work of Garcia and Plebanski II which demon
strates the usual real Petrov type D seven-parameter solu
tion of Pie ban ski and Demia6ski l2 in the canonical form of 
an JY JY space. 
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Starting with the general form for W of Eq. (2.10) and 
all gauge freedom, we note that C (3) =1= 0 assures us that,u =1= o. 
However, Eqs. (3.3) allows us to use the gauge freedom of A 
to make,u = ,uo, a (nonzero) constan t. Then the freedom of S I 

may be used to make v' zero, from which we see that C (2) is 
now gauged to zero. The requirement to be type D [Eq. (4.3)] 
now tells us that C (J) must vanish. However, again from the 
transformation equations in Eqs. (3.3), we may choose 0, to 
cause 5 ' to vanish and V, to cause Y, to vanish, leaving 
CO) = 6,uotP 71'W" which indicates that there is a choice of 
gauge for type D in which,u is a constant ( = ,uo), and W is 
independent of t. Therefore, all the coefficients [in Eq. (2.10)) 
which define W must be functions of w only. We also note 
that the gauge freedom indicated in Eqs. (3.1)-(3.3) is re
tained with the restriction that s, 0, and V must now be func
tions of w, while; = zot + z(w), where Zo is a constant. Since 
the functions that deterI)1ine Walso depend, in this case, on 
w only, this restriction causes no trouble at all. As before, we 
use 0 = 0 (w) and v = v(w) to eliminate 8 and 15. 

To proceed further we first consider the general case in 
which a =1=0. In this case one may choose z'(w) to make P' 
vanish, and then a transformation withy(w) may be per
formed so as to make (' vanish, still allowing constant y 
transformations. With these transformations, the appropri
ate differential equations (2.11) may be rewritten in terms of 
the variables in Eq. (2.12) as 

E'w = aif, rw = 4r,uoK, (4.4) 

ifw = 2E'if, ° = E'ij - rif + ry. 

These equations can already be completely integrated. The 
solution is given explicitly by 

a = ao, ij = - 21',uoifolao + roE'/ao + 2r,uoEZ /a~ 
P = 0, if = ifo + E'2/ao, 

(4.5) 

E' arbitrary, 5 = 0, 

(= 0, Y = 2,u0E'3 /a~ + 6,uoifoEiao + roifo/r, 

where ao, ro' and ifo are arbitrary constants while E is an 
arbitrary function of w. However, it is reasonable to perform 
a transformation with s = 2E1a, which ensures that E"=O. 
Also, since a is a nonzero constant, we use the constant value 
of g' to gauge it to one. Similarly we can use a transformation 
with the constant zo (which changes the constant value of ,uo) 
to arrange for if to become one. The solution (4.5) is then 
much simpler and gives (with the numerical constant 1'set 
equal to one for simplicity) 

W = l(p,~¢; 2712 + 1713 + Y~ 7J¢; 2) - ,u~¢; 2 + 71, (4.6a) 

a solution depending on only two, complex, constant param
eters, with 

v=o, Y=Yb, (4.6b) 

The remaining case of a:==O can be reached by contrac
tions of the above. However, for simplicity we note them 
here. There are two subcases. If f3 =1= 0, then it may be gauged 
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to one and the solution is quickly found to be 

W = 1¢;7J2(p,04> + 1), ,u = ,uo, v = 0, r = 0. (4.7a) 

On the other hand, if, originally, f3 =0, then the solution is 
found to be 

W = 17J2(p,0¢; 2 + 1), ,u = ,uo, v = 0, Y = 0. (4.7b) 

Referring back to the general form of this way of writ
ing the type D ~ spaces, we want to show the relation of 
these to the general solution given in Eqs. (2.23), and to the 
solution in Ref. 11. It is very straightforward to see that Eqs. 
(4.6) are simply the W generated by Eqs. (2.23) with the 
choices 

h =0, b = Yo' 

XOAYOA = 1, (4.8) 

MA= +XoAcost+YoAsint, c= -2,uo' 

where Xo A, Y/ are still constant SL(2,Q gauge relics. 
More interestingly, we recall that Ref. 11 gives a form 

for W for the real seven-parameter Petrov type D solutions 
of Plebanski and Demianski (considered as complex ~ ~ 
spaces). By restricting these spaces so that CABel> = ° 
(m = in, m the mass, and n the NUT parameter), we acquire 
(at least) a large class of type D ~ spaces (W = _ ¢; 3", 
where 11 is the key function of Ref. 11 and 

JA = ( = ~), KA = (~ J r = 2 

W = - m¢; 2712/16 + (i + 2iY)7J3/48 - (i - 2iy)¢; 271/16 

+ im(¢; 2 - 712 )116 - Y7J/4, (4.9) 

where we have put tildes over the E and r of Ref. II-param
eters related 12 to the acceleration and rotation-to distin
guish them from the similar symbols being used elsewhere in 
this article. This would appear to have three independent 
complex parameters. It would be exactly the form of solution 
given in Eqs. (4.5) if E'had not been gauged to zero. The 
correspondence 

,uo = - m, a = i + 2iy, Y= -i+ 2iy, 

i = - im/4, 

ij = + im/4, if = - y/4, iJ=O=8=(=D, 
(4.10) 

matches this W to the general form and is clearly a solution 
ofEqs. (4.4), so it is clear that all type D JY'spaces are, in fact, 
included in this restriction of the ~~spaces of Ref. 11. We 
may also note that the allowed gauge transformation 

,u[) = - mqo- 3, y~ = - w + 4r + 2im2)qo- 2, 

qu-(m2/4-y(i+2iy)]!12, (4.11) 

qo7J' = (i + 2iY)7J - im, ¢; , = qo¢;, 
'1 '1(- 2'-)-1 3 t = '1.qut, W = '1. E + lY qow, 

shows the Win Eq. (4.9) to be equivalent to the general form 
for type D,)Y' spaces in Eqs. (4.6). [It is to be noted that this 
transformation does not reduce the number of parameters in 
the more general ,:W"£,' space (which have all the real cross 
sections) from which these spaces were obtained.] 

Since the solutions of Ref. 11 originate from the com
plexification of the usual "black hole" type real solutions 
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with parameters which are at least partially understood 
physically, we note that this association of the two sets of 
parameters is of some interest. Also, the contractions to, for 
example, the pure Schwarzchild-NUT JY' space is of inter
est. Since they are previously unreported in the literature, we 
give first the contraction of the general Plebanski-De
mianski seven-parameter solution down to the Kerr-NUT 
case, which requires a contraction, as explained in detail in 
Ref. 12. The JY' JY' canonical form for this solution is then 

W = H tP772 - YtP (1 - 2itP77) + iptP77 ( 1 - itP77) 
+ IF(1 - 4itP77)3/2] , 

v=o=s, Y-l -4' JA=(~J KA=(~J 
T = 1 -Kerr-NUT. (4.12) 

The identification with the usual Boyer-Lindquist coordi
nates is obtained by setting 

- l/tP = q + ip, + il77 = l/q - ilp, 

-p=m+in, -ji=m-in, (4.13) 

and then making the identification given in Ref. 12. This is of 
course not yet an JY' space. We arrange for that by setting 
ji = 0. Then we also perform the contraction on the usual 
Schwarzchild-NUT self-dual solution (wtih m = in), 
obtaining 

W = - atP (1 + 2mtP ) + atP772( 1 - 2mtP ), (4. 14a) 

p = - 2m,v = ° = S,y = !,JA = (~ J = KA,T = 1-

self-dual Schwarzchild-NUT. By performing the gauge 
transformation 
tP' = tP, 77' = eU(77 + 2mtP + 1), u' = u + 2mv, 

v' = - e- v, 

this becomes simply 

W' = !tP '77,2/PtP ' + 1), v' = ° = S' = y', (4. 14b) 

which is in the canonical form given as a degenerate contrac
tion of our general solution by Eq. (4.7a). The identification 
with the usual Schwarzchild variables is 

tP = I 
(r+m) 

77 = - [(r - m)l(r + m)] cos8, 

u = r + t + m In(sin28), v = - iq; -In tan812. 

V. THE LIMIT TO PLANE ,;y SPACES 

All the algebraically degenerate JY' spaces given in 
Sees. III and IV were based on a congruence of null strings 
which had nonzero complex expansion-the general case. 
However, it is possible for an JY' JY' space of complex Petrov 
type [III] ® [Any] or [N] ® [Any] to admit a nonexpanding 
(plane) congruence of null strings. This is a particularly de
generate case which can be obtained from the more general 
case by a limiting contraction. Following the suggestions in 
Ref. 9, this contraction may be explicitly performed by 
setting 

p = Eji, 

K= I, (5.1) 
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where 

i==iAi, -_vA J- K-A -77==n.. PA, A = T, 

and taking the limit as E--+<>. In order to actually calculate 
the limit one must determine the behavior of a, b, and c as E 

goes to zero. Insisting that e be finite gives the behavior 

a =fo + (f~w + go)E + hE2 + jc + O(E4
), 

b = - 41' foC + bE3 + o (E4
), 

c = 21'cc + 0 (E3), 

(5.2a) 

wherefo and go are constants, h,j, b, and c are arbitrary 
functions of the q A and ji is now a shorthand for 

(5.2b) 

With a gauge transformation of elinear in ij and a res
caling of the variables to gauge fo to one and go to zero, the 
most general form for eeasily becomes 

e = (l/r)(pAI'A + a)ij2 - (l/T)ij(¢ - w), 

y=o, 
(5.3) 

where I and a are arbitrary functions of the two qA formed as 
combinations of h andj, while band c have been gauged 
away. We note that 

C(2) = -lu;w, 

C(I) = ij[(lilil2f -lwi lw 
-lwwwi+au;w. (5.4) 

We note that the very special case of plane type N :7t' 
spaces-those which have lww = 0- have already been 
treated by this approach.7 However, they do not appear par
ticularly similar. The reason is that although CA B C i> = 0, as 
is essential for an,;y space, FAR :;;60, whereas the solution 
given in Ref. 7 is, in fact, in a gauge in which FAR vanishes. It 
turns out, however, that such a gauge is possible, within the 
Wor if formalism, only for these plane N spaces. Although 
there is, of course, an SL(2,q gauge transformation which 
transforms FAR away, since the anti-self-dual curvature two
form n AR vanishes, this transformation cannot generally be 
written in the form of an element of the group of automor
phisms which preserves the canonical form of an JY' JY' 
space. 

VI. CONCLUSION 

In summary we point out that we have given simple 
explicit expressions for the potential function W (or e) 
which generates the metric for all possible algebraically de
generate JY'spaces [Eqs. (3.8) and (5.3)]. The solution is, of 
course, generically of Petrov type II, and depends on four 
arbitrary holomorphic functions of two variables. We point 
out the simple constraints that must be imposed in order to 
restrict attention to solutions of more degenerate Petrov 
type. In the case of type III one need only setp = 0, but there 
are two cases, depending on the complex expansion of the 
leaves of the distinguished congruence. In general, JY'spaces 
oftype III depend on three arbitrary functions of two varia
bles with one of these disappearing when the leaves of the 
congruence are relatively plane. 
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For /Jr spaces of type N both ft and v must vanish [Eq. 
(4.1)] and again there are two possibilities for the expansion 
of the congruence. The general case depends on two arbi
trary functions of two variables, while the plane case de
pends on only one. For type 0 we have shown that the set of 
/Jr spaces obtained by the obvious specialization of the four
parameter solutions of Pie ban ski and Demianski12 do in fact 
exhaust all type 0 /Jr spaces, and have given explicit correla
tion with some known gravitational instantons. 13 Since all 
real Euclidean algebraically degenerate manifolds are neces
sarily of type 0 or conformally fiat, this does exhibit all the 
self-dual algebraically degenerate instantons. We note that, 
in this form, the invariant CABCDCABCD which one needs for 
calculation of the topological invariant of such a space is 
simply proportional to Ip,p 3)2. 

Although these /Jrspaces have already been deter
mined by Fette, Janis, and Newman, 3,4 we believe for several 
reasons that it is of considerable value to give them again in 
this approach. The form which we have is quite simple and 
allows one to consider easily the entire set of these /Jr spaces 
as a single entity. For instance, work is now proceeding on 
the question of Killing vectors admitted by these spaces. 
This, of course, uses the formalism already set up for Killing 
vectors in arbitrary /Jr and /Jr /Jr spaces. 

Another reason for this study is the extensions the ap
proach has to more general situations. In particular all real, 
algebraically degenerate spacetimes are contained in the 
(complex) /Jr /Jr spaces. In this study we set CABCD = 0 and 
found the corresponding algebraically degenerate /Jr spaces. 
However, by looking, instead, for those C ABeD which would 
be, for example, of type [Any] ® [N], or [Any] ® [III], and 
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then inserting this information into the /Jr /Jr equation, com
pletely analagously to this study, we will be able to deter
mine, for example, all complex spaces oftype [N]® [N]. 
Having this explicitly one may begin looking for the real 
cross sections. Spacetimes of type N are particularly amena
ble to such a process and work on this approach is under 
way. 

ACKNOWLEDGMENT 

Weare particularly appreciative for some useful discus
sions with C. P. Boyer on these SUbjects. 

'J. F. Plebanski, J. Math. Phys. 16,2396 (1975). 
2J. D. Finley, Ill, and J. F. Plebanski, J. Math. Phys. 17, 585 (1976). 
3C. W. Fette, A. I. Janis, and E. T. Newman, J. Math. Phys.17, 660 (1976), 
and C. W. Fette, A. I. Janis, and E. T. Newman, Gen. Relativ. Gravit. 8, 
29 (1977). 

4J. Goldberg and R. Sachs, Acta Phys. Pol., Suppl. 22,13 (1962). 
5J. F. Plebanski and S. Hacyan, J. Math. Phys. 16, 2403 (1975). 
6See J. F. P1ebanski and I. Robinson, Phys. Rev. Lett. 37,493 (1976) and 
Refs. 5 or 9 for early discussions. A more complete discussion is to be 
found in Sec. 5.1 of Ref. 7 or in C. P. Boyer and J. F. Plebanski, Rep. Math. 
Phys. 14, 111 (1978). 

7c. P. Boyer, J. D. Finley, III, and J. F. Plebanski, General Relativity and 
Gravitation, Vol. 2, edited by A. Held (Plenum, New York, 1980). 

"J. F. Plebanski and I. Robinson in Asymptotic Structure of Space-time, 
edited by F. P. Esposito and L. Witten (Plenum, New York, 1977). 

9J. D. Finley, III, and J. F. Plebanski, J. Math. Phys. 17, 2207 (1976). 
"'This particular form for the expansion is first worked out in Ref. 9. 
I' A. Garcia and J. F. Plebanski, N uovo Cimento B 40, 224 (1977). 
12J. F. Plebanski and M. Demianski, Ann. Phys. 98, 98 (1976). 
uSee also A. S. Lapedes, "Type D Gravitational Instantons," Princeton 

preprint. 

J. D. Finley, III and J. F. Plebar'lski 674 



                                                                                                                                    

The wave equation In asymptotically retarded time coordinates: Waves as 
simple, regular functions on a compact manifold a) 
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The Minkowski-space scalar wave equation is represent-ed on a spatially compact manifold with 
an asymptotically retarded time. In this coordinate system, with hyperbolic space slices and space 
coordinates generated by a conformal map, the wave equation takes a simple time-independent 
form which may form a model for numerical integration calculations with nonlinear wave 
equations. 

PACS numbers: 02.60.Lj, 04.30. + x, 02.40. + m 

1. INTRODUCTION 

The use of asymptotically retarded time (ART) coordi
nates has been suggested as a way to simply numerical calcu
lations of gravitational radiation from strong-field sources. I 
In such coordinates, waves could be followed all the way to 
future null infinity in a finite number of steps on a finite grid. 
Numerical calculations could then incorporate rigorous re
tarded boundary conditions and use the exact definitions of 
emitted radiation, stated at future null infinity, to interpret 
the results. 

This simple and attractive idea gives a surprising 
amount of trouble when one tries to construct asimp/e exam
ple of its use. The essential problem is the need to combine 
two distinct features: (1) the asymptotically retarded time 
coordinate itself and, (2) the introduction of a compact space 
coordinate system. The compact space coordinate system is 
needed in order to realize the primary benefit of asymptoti
cally retarded time-the description of waves by regular 
functions on a compact manifold. The example presented 
here does combine these two features. 

York and Smarr have used an asymptotically retarded 
time representation of Minkowski space as an example of 
their minimal distortion shift vector condition.2 The result
ing spacetime metric and therefore the resulting form of the 
scalar wave equation remain quite simple in that case, but 
the spatial coordinate patch is not compact. 

There is no difficulty in imagining the introduction of 
compact space coordinates on each surface of asymptotical
ly retarded time. However, one must choose these space co
ordinates carefully if a truly simple example is to result. 

Here, I present a spatially compact, asymptotically re
tarded coordinate system in which the Minkowski-space 
scalar wave equation takes a simple form. The resulting form 
of the scalar wave equation on Minkowski is so simple and 
easy to work with that it cannot be entirely new. However, I 
am unable to find any evidence of it in the current literature 
of general relativity and feel that it should be more widely 
known. All of the expected formal advantages of such a co
ordinate system are realized explicitly in this example. Also, 

alSupported by the University Grants-in·aid Program for Faculty of Vir
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the method of constructing this coordinate system and the 
properties of the resulting form of the spacetime metric may 
give clues to the use of ART coordinate systems in curved 
spacetimes. 

The key to this particular asymptotically retarded 
(ART) coordinate system is the conformal transformation 
that one ultimately hopes to make. This conformal transfor
mation turns out to contain the structure needed to perform 
the time coordinate transformation. Section 2 reviews the 
familiar conformal map of spheres in order to establish the 
notation that will be used in this paper. The transformation 
to asymptotically retarded time is performed in Sec. 3. 

Section 4 performs the ART transformation of the wave 
equation in one space dimension. This example shows the 
essential features of the transformation. In order to establish 
that the simplicity of the transformation is not a peculiarity 
of (I + I)-dimensional Minkowski space, Sec. 5 performs the 
ART transformation on the 3 + I wave equation. 

The problem for general relativistic applications is to 
decide which features of this example are peculiar to simple 
wave equations in Minkowski space and which can be gener
alized to curved spacetimes. Section 6 discuss,es this problem 
and lists a few properties which might be used to define ART 
transformations in more general situations. 

2. NOTATION FOR CONFORMAL MAPS ONTO 
SPHERES 

A Euclidean R n space-coordinate manifold M is to be 
mapped onto an n-sphere sn: Denote the space coordinates 
by Xi. It is convenient to represent the n-sphere as the 
surface 

(xlf + (X2)2 + ... + (xn)2 + w2 = e2, 

in another Euclidean manifold m which I will call the "host 
manifold." The host manifold m is (n + 1 )-dimensional with 
coordinates xi and w. The virtue of working in the host 
manifold is that its coordinate functions are smooth every
where on the n-sphere. Thus, it provides a simple way to 
decide questions of differentiability. 

Radius functions are defined in M and m according to 

R = [(X 1)2 + (X2f + ... + (xn)2r/2, 

r = [(XI)2 + (x2f + ... + (xn)lr/l, 
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so that the n-sphere definition Can be written as 

r + w2 = e2
• (2.1) 

The point on the n-sphere with w = - e will be called the 
source-point while the point with w = e will be called thefar
field boundary. The n - 1 subsphere with w = 0 is the 
equator. 

In spherical polar coordinates, a point in M can be re
presented by the value of R and a set of polar angles n. 
Similarly, a point in m can be represented by values of r, w, 
and a set UJ of polar angles which locate the point's projection 
in the w = 0 plane. 

A conformal projection which takes the origin of the 
space-coordinate manifold into the source-point, infinity 
into the far-field boundary, and the sphere of radius R = A 
into the equator of the n-sphere is given by the relations 

r=2e RIA 
R21A2+1' 
R21A2_1 

w = e -"..----:---
R2IA2+1' 

UJ=fl. (2.2) 

The following consequences ofEq. (2.2) will be needed: 

RIA = r/(e - wI, (2.3) 

(R I A )2 = (e + w)/(e - wI, (2.4) 

(R I A )2 + 1 = 2el(e - wI, 

(R I A )2 - 1 = 2w/(e - wI, 

eAalaR = (e - w)(ralaw - walar). 

(2.5) 

(2.6) 

(2.7) 

A far-field polar angle 8 will be defined by the relations 

w = ecos8, 

r = esine, (2.8) 

so that the far-field boundary is at e = 0 while the source 
point is at 8 = 1T. 

3. ASYMPTOTICALLY RETARDED TIME 

Now add a time coordinate T to the space coordinates 
to form the spacetime coordinate manifold M X R. The wave 
equation on M XR is 

a21/! laT 2 - a21/! la2X I _ •.. _ a2 1/! la2X" = j, (3.1) 

where} is a source with compact support within a distance A 
of the origin in M. 

A direct conformal mapping of the level surfaces of T 
into the sub-manifold S "XR ofm xR achieves a compact 
manifold on which to give initial conditions and evolve solu
tions. This type of transformation has been used with some 
success in the study of Einstein's equations.3 However, the 
solutions of the wave equation typically have zeros which 
collect arbitrarily close to the far-field point in this picture. 
Such solutions cannot be extended to regular functions on 
the compact n-ball bounded by the far-field boundary. Thus, 
conformal mapping alone does not secure the full advan
tages of dealing with functions on a compact manifold. 

To obtain a picture in which retarded solutions are reg
ular, take advantage of the fact that retarded wave solutions 
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have the general form 

I/!(X,T) = F(X,T - R), 

where all of the rapid spatial dependence is in the second 
argument of F. Change to a new time coordinate t which is 
regular at the source point and goes asymptotically to the 
retarded time T - R at great distance from the source. Once 
a suitable asymptotically retarded time coordinate t has been 
found, apply the conformal transformation to its level 
surfaces. 

The choice of a new time coordinate must be made care
fully if the extreme simplicity ofEq. (3.1) is not to be lost. To 
avoid obscuring the time-translation invariance of the equa
tion, the new coordinate t must be linear in the old one. Thus, 
the candidates can be taken to have the form 

At = T -Af(X), (3.2) 
where the constantA makes t andfdimensionless and the 
functionf must go asymptotically to RIA at large values of 
R. To avoid conical space slices, the functionfmust have a 
gradient which vanishes at R = O. 

Equation (2.5) reveals that the desired function is al
ready implicit in the conformal transformation. Thus, 
choose 

f= [2el(e - W)]I/2 = [(R IA)2 + lr/2. (3.3) 
With this choice, the level surfaces of the new time coordi
nate t are just the future hyperbolas given by 

(T - At f - R 2 = A 2. (3.4) 

The essential feature of this choice is that the hyperbolic 
radius A is the same as the radius parameter which enters 
into the conformal transformation. This meshing of the time 
transformation with the conformal space transformation is 
essential if simple structures are to result when the transfor
mations are combined. 

Now apply the conformal map to the level surfaces of t 
and drag the essential structures of M X R into S n X R. I will 
adopt the usual ambiguous notation in which the same sym
bol is used for an object and its image under a diffeomor
phism. The S" X R image of the derivative with respect to 
Minkowski coordinate time is evidently given by 

eA ala T = alat, (3.5) 

while the image of the derivative with respect to the Min
kowski radius coordinate is found to be 

eAalaR = (e - w)J - (l/2)rfalat, 

where 

J = - alae = ra/aw - walar. 

(3.6) 

(3.7) 

The retarded time T - R takes an especially simple 
form in the new coordinates. Using Eq. (2.4) for Rand Eqs. 
(3.2) and (3.3) for T, one finds 

T - R = t + tan(814), (3.8) 

where e is the far-field polar angle in S n. 

The expected form of a retarded wave can also be 
dragged over to the compactified picture. One expects these 
solutions to have the form 

I/! = F(UJ,e,t + tan(e 14)). (3.9) 
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This form shows the expected behavior: the waves move 
form the source point to the far-field boundary of the sphere 
with a nearly constant speed. Each wave departs through the 
far-field boundary a finite time after its emission from the 
source. 

The function 

u: = tantO 14), (3.10) 

plays a central role in the compactified picture of retarded 
waves. It ranges from a value of zero at the far-field point to a 
value of one at the source point. Because waves propagate at 
constant speed in this coordinate, I will call it the "wave
distance function." 

The wave-distance function simplifies the compactified 
forms of several useful functions and differential operators. 
A bit of algebra and repeated use of the half-angle formulas 
yields the following relations: 

2RIA=u- J-u, 

A (a/aT - a/aR) = 2(1 + ~)-J(a/at + ~a/au), 

4. THE VIBRATING STRING COMPACTIFIED 

The wave equation in one space dimension, 

a2tf/ /aT 2 
- a2tf/ /ax 2 = j(X,T), 

(3.11) 

(3.12) 

can be split into two equations on the positive real line, one 
for the positive parity part and the other for the negative 
parity part: 

j=j++j_, tf/=tf/++tf/_, 

a2tf/./aT 2-a2tf/./aR 2=js, s= + or -. (4.1) 

In this form the equation can immediately be put into ART 
coordinates by using Eqs. (3.12) and (3.13). The resulting 
equation on S J X R is 

4(1 + ~)-J(a/at + ~a/au)~(1 + ~)-J(a/at - a/au)tf/s 
= A 2js. (4.2) 

Here the space manifold has been mapped into half of the 
circle. The space coordinate u ranges from zero at the far
field point to a value of one at the source point. 

Although the ART form of the wave equation appears 
to be complicated at first glance, it turns out to be simple 
enough to be solved by standard techniques. From the fac
tored form ofEq. (4.2) and the fact that the factors commute, 
the general solution outside the source is just 

tf/,(u,t) = F(t + u) + G(t + 1/u). 

The retarded solution F remains regular near the far-field 
point while the advanced solution G is singular there. In 
these coordinates, the retarded characteristic surfaces are at 
45° to the time axis while the characteristic surfaces for the 
advanced solutions accumulate at the far-field point. 

For a periodic source, one's first idea of how to proceed 
is to seek solutions of the form 

tf/ = a(u)eitU(t + a i. 

This idea works perfectly. Make this substitution into Eq. 
(4.2) and obtain a first order linear equation for the derivative 
a'. This equation reduces to quadrature by the standard for-
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mula. Be careful to perform the integrals so that the bound
ary condition a'(O) = ° is built into them. Otherwise, the ad
vanced solutions will appear as essential singularities. Make 
use of the boundary condition at the source point (imposed 
by the parity of the wavefunction) in order to perform the 
final integration. I have not included the details of this proce
dure because it does not generalize to nonlinear wave equa
tions such as the ones encountered in general relativity. 

The procedure which is being tried in general relativity 
is direct numerical integration.4 To get Eq. (4.2) into a form 
which is suitable for this procedure, define the advanced 
field momentum 

ct>: = (atf/ / at - atf/ I au)/( 1 + ~), (4.3) 

and replace the somewhat intimidating second order form of 
the wave equation which appears in Eq. (4.2) by a simple first 
order system: 

act> fat + ~act> /au + 2uct> = A 2[(1 + ~)/(~)li, (4.4) 

atf/ fat - atf/ /au - (1 + ~)ct> = 0. (4.5) 

Equations (4.4) and (4.5) can now be converted into differ
ence equations by one of the standard schemes and evolved 
numerically, subject to the boundary conditions: 

ct> 10'=0 = 0, atf/ lat - 2ct> 1,,= J = 0, for even 
parity, (4.6) 

and the same outgoing boundary condition with 

tf/ 1(7= J = 0, for odd parity. (4.7) 

Equations (4.4)-(4.7) offer several advantages for nu
merical evolution. A transient source which oscillates just a 
few times will produce wavefunctions with just a few zeros at 
any given ART. These waves will all disappear into the far
field boundary in a finite amount of coordinate time. Thus, 
one can achieve accurate results with relatively few grid 
points and the effects of artificial viscosity terms (required to 
suppress numerical instabilities) are limited by the finite evo
lution time. 

The ability to follow waves all the way to future null 
infinity in a finite number of steps becomes extremely impor
tant when one applies the compactification procedure to a 
nonlinear wave equation. Because of the self-scattering of 
such waves, rigorous outgoing wave boundary conditions 
and precise definitions of the amount of radiation that is 
finally emitted can only be stated at future null infinity. 

5. THE THREE-DIMENSIONAL WAVE EQUATION 
COMPACTIFIED 

The three-dimensional wave equation in spherical 
coordinates, 

[az/aT 2 - R 2(a/aR)R 2alaR - R -2L 2]tf/ = j, 
can be rewritten in the form 

(alaT - alaR )(at/JlaT + at/JlaR) - R -2L 2t/J = Rj, 

where 

t/J: = Rtf/. 

Equations (3.11)-(3.13) may be used to convert this equation 
into the first-order system 
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4a¢' fat - 4<J2a¢'/au + 8u¢' - (1 - c?)-tL 2", 

=A3u -3(1-c?fj, (5.1) 

a",/at = a",/au + (1 + c?)¢" (5.2) 

with the boundary conditions 

(5.3) 
This system is nearly identical to the system that de

scribes the (1 + 1 I-dimensional wave equation. The only dif
ference is the angular momentum term which introduces 
some coupling between the two first-order evolution equa
tions. A numerical evolution requires one to layout a grid of 
evaluation points on the 2-sphere in order to evaluate this 
term. All of the comments of the previous section apply to 
this form of the (3 + I )-dimensional wave equation. 

6. COORDINATE CONDITIONS FOR GENERAL 
RELATIVITY 

In general relativity, where the coordinates evolve 
along with the field variables, a choice of coordinates means 
imposing restrictions or coordinate conditions on some of 
the variables. In order to use asymptotically retarded coordi
nate systems in general relativity, one must choose coordi

nate conditions which define them without restricting the 
geometry of spacetime. 

The problem of choosing coordinate conditions which 
are suitable for numerical evolution schemes is only now 
being resolved for the familiar Minkowski-like coordinate 
systems.2.4 For the unfamiliar ART coordinates it is much 
too soon to advocate a particular set of coordinate condi
tions. However, it may be useful to consider the properties of 
the simple ART coordinate system of Minkowski space. 

Because the constant-time surfaces are hyperbolas in 
Minkowski space, they have constant extrinsic scalar curva
ture. In the usual notation, 

TrK=k= -3/A, (6.1) 

where K is the second fundamental form of a constant-time 
surface. This type of coordinate condition has been studied 
extensively by York and others and has been suggested as a 
way of realizing ART coordinates. 2 

The inverse spacetime metric tensor in ART coordi
nates is 

g-t = (2u/A )2[(1 + c?)-2nXl- (1 - c?)-2g-ts ']' 

(6.2) 

where 

n = a/at + c?a/au, I = a/at - a/au, (6.3) 
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and 
-\ 

g s" 

is the inverse metric on the unit 2-sphere. 
Equations (6.2) and (6.3) show that this example lends 

itself to a null-tetrad or spinor formalism. Such a formalism 
is appropriate near future null infinity but may not be very 
useful near a complicated source which admits no preferred 
null directions. 

Most numerical evolutions of Einstein's equations have 
adopted a 3 + 1 splitting of spacetime properties. The spatial 
metric and second fundamental form as well as the lapse and 
shift function are usually the values that the computer 
evolves. In this example, the lapse function is found to be 

N = A (u- t + u)/2, (6.4) 

while the shift vector has the single nonzero component 

Nt = I-c? (6.5) 

The second fundamental form or extrinsic curvature 
tensor of the constant-time surfaces is just the extrinsic cur
vature of a hyperbolic spacelike surface in Minkowski 
spacetime: 

Kij = -A -tg'l, TrK = - 3/A. (6.6) 

The simplest ART coordinate condition that one can 
impose just fixes the lapse and shift functions to be those 
given by Equations (6.3) and (6.4) This simple approach will 
encounter focusing problems. The constant-position lines in 
such a coordinate system will intersect one another just as 
they do in hypersurface-orthogonal geodesic coordinates. 
However, because ART coordinates show outgoing waves 
reaching infinity in a finite coordinate time (which can be 
comparable to the wave crossing-time of the source), this 
focusing problem may not be as serious as it is in the usual, 
asymptotically Minkowski coordinates. 

'The earliest reference to this idea that I know of is w. C. Hernandez Jr. 
and C. W. Misner, Astrophys. J., 143.452-464 (1966). 

'Larry Smarr and James W. York, Phys. Rev. D 17, 2529-2551 (1978). 
'Abhay Ashtekhar, "Asymptotic Structure of the Gravitational Field at 
Spatial Infinity" in General Relativity and Gravitation, Vol. 2 edited by A. 
Held (Plenum, New York, 1980). pp. 37-68; Abhay Ashtekhar and R. O. 
Hansen, J. Math. Phys. 19, 1542-1566 (1978). These papers cite a large 
number of additional references to earlier work. 

4Larry Smarr, "Basic Concepts in Finite Differencing of Partial Differen
tial Equations" and "Gauge Conditions. Radiation Formulae and the 
Two Black Hole Collision." in Sources a/Gravitational. Radiation, edited 
by Larry Smarr (Cambridge University. Cambridge, 1979). pp. 139-160 
and 245-274. 
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The method of the Lie theory of extended groups is applied to the Henon-Heiles problem. Only 
one generator for a one-parameter group is found. The corresponding first integral is the energy. 
It is inferred that no other exact integral exists. 

PACS numbers: 03.20 + i 

I. INTRODUCTION 

The Henon-Heiles problem I concerns the Hamiltonian 

H = !(pi + p~ + qi + q~) + qiq2 - iq~ (1.1) 

(PI = q"P2 = q2)·1t has been posed as a model for the mo
tion of a galactic cluster. Computer analysis of the problem 
has suggested that for sufficiently small values of the energy, 
there exists a first integral independent of the energy. This 
has been termed the third integral (the first being the energy, 
the second being the angular momentum of the total system 
of which the Hamiltonian above is part). The tantalizing 
suggestiveness of the numerical results has lead to much ef
fort to find the third integral. It would be fair to say that 
progress has not been great and that the problem remains 
intractable. Indeed the term "notorious" has been applied to 
the problem,2 a comment which doubtless stems from the 
sense of frustration produced. 

In this note another method of attack is employed, that 
of the Lie theory of extended groups. Recently it has been 
used with considerable success on linear systems3 and with 
some success on a nonlinear time-dependent system.4 In the 
latter instance one of the chief results is that the possible 
existence of an invariant is determined by the nature of the 
time dependence.5 

Before commencing the analysis, we give a brief sum
mary of the method. Given a system of Newtonian equations 
of motion 

N(q,q,q,t) = 0 , (1.2) 

the system admits a one-parameter Lie group with generator 

G (q,t) = 5 (q,t )alat + 1](q,t )·Vq 

provided 

G(2)N=O 

(1.3) 

(1.4) 

whenever Eq. (1.2) is satisfied. G (2) is the second extension of 
G and is given by 

G(2) = G + 1](1) ·V. + ",(2) .V .. 
q -. q , (1.5) 

where 

1](1) = 1] - t4, 1](2) = ij - g4 -2tij. (1.6) 

If such a generator exists, there exists a corresponding 
first integral, I (q,q,t), which is constructed by applying the 
double requirement that 

G'·)I=O, DI=O, (1.7) 

where D represents the total time derivative. If more than 

one generator of a one-parameter Lie group exists, there may 
be more than one first integral, although it does not follow 
automatically. As a trivial counterexample, the one-dimen
sional free particle has eight linearly independent gener
ators; yet only three linearly independent first integrals are 
obtained. 

We mention that the Lie theory is more general than 
Noether's theorem6 in its conception. The generators for the 
latter constitute a subset of those of the former. This distinc
tion applies to nonlinear as well as to linear systems. An 
excellent example of this distinction is seen in the treatment 
of the classical Kepler problem by Prince and Eliezer. 7 

2. THE FORM OF THE GENERATORS 

Applying the Lie method leads to sufficient complexity 
in the case of one-dimensional systems, let alone in systems 
of higher order, to warrant the determination of the permis
sible form of the generators for a given type of Newtonian 
equation before considering a particular problem. Suppose 
the system has Newtonian equations of the form 

iii + .t;(q,t) = 0, 1= l,n . (2.1) 

Adopting the usual convention of summation on repeated 
indices, the twice-extended generator is 

G(2) = talat + 1];alaq; + (iI; - tq;)alaq; 

+ (ij; - gq; - 2tii;)alaii; . (2.2) 

Applying this to Eq. (2.1) and separating out the terms 
which are of second and third order in the velocities, we have 

q/JAja2t laq;aqj = 0 (2.3) 

C};qja 21]tlaq;aqj - 2qlq;a2t laq;at = 0 . (2.4) 

From Eq. (2.3) it is apparent that 

5(q,t) = a(t) + b;(t )q; . 

Substituting this into Eq. (2.4), we have 

qAja 21],laq;aqj = 2q,q/); . 

(2.5) 

(2.6) 

Differentiating with respect to qm and qn in tum and assum
ing that 1]1 is sufficiently regular for the order of differenti
ation to be immaterial, we have 

a 21],laqmaqn = Dlmbn + Dlnbm . (2.7) 

It then follows that 

(2.8) 

Thus for a system of Newtonian equations ofthe type given 
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by Eq. (2.1), a generator of one-parameter Lie group has the 
form 

G(q,t) = (a + bkqk)818t 

(2.9) 

where a, b, c, and d are functions of time to be determined 
according to the particular functions.t;(q,t). 

3. EQUATIONS DETERMINING THE TIME-DEPENDENT 
FUNCTIONS 

As the algebra involved in the determination of the 
functions a, b, c, and d tends to be messy no matter what the 
system may be, it is just as easy to consider a general two
dimensional system of which the Henon-Heiles problem is a 
particular case. We take the Hamiltonian to be 

H = !( p; + p~ + qi + q~) + Aq~ + Bqi qz 

+ Cqlq~ + Dq~ , (3.1) 

the Henon-Heiles case being given by A = 0 = C, B = 1, 
D = - j-. The two Newtonian equations corresponding to 
Eq. (3.1) may be written as 

(3.2) 

wherelmn I is symmetric in the indices m and n and the re
peated indices are summed now over 1 and 2 only. Applying 
the second extension of the operator given by Eq. (2.9) to Eq. 
(3.2), the coefficients of the terms of second and third order 
in the velocities vanish indentically. The terms linear in the 
velocities are 

3b'k(qkql + qkql) + 2C1kQk - aql 

- bkqMk + Imn kqmqn ) - 2bkQk(q/ + Imn Iqmqn) = O. 
(3.3) 

From the coefficients of the second order terms in the dis
placements, it is obvious that 

bl-O, b2=0. (3.4) 

From the terms now remaining, it follows that 

2c;j = a8ij + aij (3.5) 

where the four aij are as yet arbitrary constants. 

Turning now to be velocity independent terms, those 
independent of the coordinates yield 

dl + dl = ° , (3.6) 

those linear in the coordinates give 

2dmqJmnl+Clmqm +2aql =0, 

and the second order terms are 

2aqmq,Jmn 1_ c1kqmqJmn k 

(3.7) 

+ cmkqkqJmn 1+ cnkqkqmlmn 1= 0 . (3.8) 

Differentiating Eq. (3.8) with respect to q; and qj in succes
sion and making use of Eq. (3.5), 

4. SOME POSSIBLE GENERATORS 

From Eq. (3.6) it is evident that 

dl = Elsint + Flcost, 1= 1,2. 
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(3.9) 

(4.1) 

Substituting for c(t ) in Eq. (3.7), four equations result, viz. 

ii'+4a+4dml l
ml =0, (4.2) 

ii'+4a+4dmlzm2 =0, (4.3) 

dml l
mz = 0, dmlml

2 = O. (4.4) 

The pair of equations in (4.4) are identical and, in terms of 
the coefficients in Eq. (3.1), are 

Bdl + Cdz = 0 . (4.5) 

A consistency condition between Eqs. (4.2) and (4.3) (in the 
case a(t )~O) requires 

(3A - C)dl + (B - 3D)dz = O. (4.6) 

If ti(t )=0, Eqs. (4.2) and (4.3) require that 

(4.7) 

For the moment let us confine our attention to the case 
for which a(t ) is a constant. There exist three relations, Eqs. 
(4.5) and (4.7), between d l and d2• For these to be consistent 
A, B, C, and D are related by 

B 2 =3AC, C Z =3BD, BC=9AD. (4.8) 

To within a scaling constant, possible values which the coef
ficients may take are 

A B C D (4.9a) 
1 0 0 0 (4.9b) 
0 0 0 (4.9c) 
I ±3x 3xz 

±x3 (4.9d) 
-1 ± 3x - 3x2 ±X3 (4.ge) 

where x is a positive constant. The generators for such sys-
tems are 

G I =818t, 

corresponding to a(t ) constant and 

Gz = sint 818q2' G3 = cost 818q2 

Gz = sint 818ql' G3 = cost 818ql 

Gz = sint ( ± x818ql - 818qz), 

G3 = cost ( ± x818ql - 818qz) 

G2 = sint( ± x818ql + 818q2)' 

G3 = cost (± x818ql + 818qz) ' 

corresponding to (4.9a) to (4.9d), respectively. 

(4.10) 

(4.11) 

First integrals for the systems above are easily con
structed by using the result that if I is a first integral, then so 
also is G ( 1'1. Taking the first of (4.9), the energy is 

E = !(q; + q~ + qr + qD + Aqi , 

II = G~l)E 
= Q2sint + q2cost , 

12 = G~I)E 

= qzcost - qzsint . 

In the case of the third of (4.9), 

E = !(q~ + q~ + q; + q~) + A (ql ± xqZ)3 , 

II = sint ( ± xq I - q2) + cost ( ± xq I - q2) , 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

12 = cost ( ±xql - q2) - sint( ±xq) - q2)' (4.17) 

The resemblance of Eqs. (4.16) and (4.17) to Eqs. (4.13) and 
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(4.14) is not accidental. Consider the transformation 

t=t QI=QI±Xq2' Q2= ±XQ\+Q2' (4.18) 

Under this transformation the generators become 

GI = alat, (4.19) 

G2 = - (1 + x2)sint alaQ2' 

G3 = - (1 + x 2)cost alaQ2 , (4.20) 

and the energy is 

E=!(1 +x2)(Qi +Q~ +Qi +QD+AQ~. (4.21) 

The transformation has separated the system into two un
coupled parts so that four linearly independent first integrals 
exist. The integrals linear in the coordinate and velocity cor
respond to the harmonic oscillator part ofEq. (4.21). They 
represent Qz{O) and QiO). That similar integrals do not exist 
for QI is not surprising in view of the quadrature required to 
express QI as a function of time. 

The generators discussed above for the case when a(t) 
is a constant do not apply to the Henon-Heiles problem 
since the coefficients for that problem do not fit in with the 
scheme in (4.9). Allowing a(t ) to be not constant is of no use 
for the Henon-Heiles problem as the consistency condition 
ofEq. (4.6) is not satisfied. Moreover, returning to Eq. (3.9), 
the admissible time-dependent forms of a(t ), which involve 
sines and cosines [cf. Eq. (4.2)] can only occur when all the 
fmn ' are zero. The last remaining source of a generator is to be 
found in the a part of c(t). From Eq. (3.9) we see that the a's 
must satisfy 

akJkj' + a k/ ki ' - a,Jij k = O. (4.22) 

In terms of the coefficients in Eq. (3.1) the conditions in 
equation (4.22) constitute the system of equations 

3A -B 2B 0 

0 3A -c C B 

[au] 2B 0 2C-3A -B a l2 =0. 
-C 2B-3D 0 2C a 21 

C B 3D-B 0 a 22 

0 2C -C 3D 
(4.23) 

Unfortunately, when the Henon-Heiles values A = 0 = C, 
B = 1, D = -.t are substituted, all of the a's must be zero 
and so no integral can arise from this source. 

For the possible cases listed in (4.9), a's do exist. In 
corresponding order they are 

±x ±x 

a 22 
1 
o 
1 

(4.24) 

For example, the integral corresponding to the first case is 

(4.25) 

Finally we note for other values of the coefficients A, B, C, 
and D, a-based generators do not exist. 
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5. DISCUSSION 

We have seen that the Henon-Heiles problem gives rise 
to only one one-parameter symmetry group. Consequently, 
any first integral of the motion must satisfy the requirement 
that 

G <1 '(q,q,t)J (q,q,t) = 0, (5.1) 

where G ( I , is the first extension of the generator G. In this 
case G is simply the generator of time translations and so 

G (I, = G = alat . (5.2) 

Thus the invariant satisfies the equation 

aJ(q,q,t )Iat = O. (5.3) 

In the formulation of this problem the velocity and momen
tum are identical, and we may rewrite (5.3) as 

aJ (q,p,t )Iat = 0 , (5.4) 

from which it follows that J is a function of the canonical 
variables only. Since the invariant, now J (q,p,), has zero total 
time-derivative, 

(5.5) 

i.e., it has zero Poisson bracket with the Hamiltonian. We 
have already seen in an earlier paper8 that the only time
independent invariant with this property is the Hamiltonian 
itself. 

Those who are familiar with the application of the Lie 
theory to linear systems will know that there exist generators 
for which the corresponding invariants contain time explic
itly. In particular there are invariants corresponding to the 
initial conditions of the motion. Such invariants do not arise 
in the case of the Henon-Heiles problem, nor is this lack of 
occurance peculiar to it. A similar situation applied to the 
one-dimensional anharmonic oscillator4 and to the Kepler 
problem.9 We surmise that the apparent absence of initial 
condition type invariants for nonlinear systems may be due 
to nonlinear operations being required to invert expressions 
for variables to expressions for constants (of integration). 

6. CONCLUSION 

The Lie method has given a negative answer to the ques
tion of the existence of an integral other than the energy for 
the Henon-Heiles problem. It is known that a formal inte
gral exists for which various expansion techniques are avail
able. 10 The result of our investigations suggests that such 
series are indeed formal. The Lie method, being based on the 
Newtonian equations of motion, provides the largest possi
ble set of generators of dynamical symmetries. For the 
Henon-Heiles problem only one generator exists, and hence 
there is only one exact first integral, the energy (==the 
Hamiltonian). 

What then is to become of the Henon-Heiles problem? 
In spite of the contrary evidence presented here, there is still 
the fact that the system does possess remarkable regularity at 
low energies. This suggests that the formal integral is a rea
sonable approximation for small enough values of the varia
bles. It may be possible to use the idea of an approximate 
symmetry to construct a corresponding approximate inte
gral. This is a matter for future investigation. 
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Converging waves with nonzero initial critical amplitude are completely characteriied. It is 
shown that for a converging wave a necessary and sufficient condition for the initial critical 
amplitude to be zero is that the converging wave is spherical. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

Bowen and Chen· have discussed the growth and decay 
behavior of converging and diverging waves, and they have 
completely characterized diverging waves with nonzero ini
tial critical amplitude; but they do not refer to the corre
sponding characterization for converging waves. The pur
pose of the present paper is to characterize these converging 
waves completely. It is shown that all spherically converging 
waves will grow into shock waves before the formation of the 
focus, no matter how small their initial amplitude. 

II. BEHAVIOR OF CONVERGING WAVES 

The differential equation governing the amplitude art ) 
of an acceleration wave propagating into a homogeneous 
material medium, assumed to be at rest initially, is ofthe 
form· 

da - z 
- = - /Jto - !unK)a + f3aa , 
dt 

(2.1) 

where f..to is a constant depending on the type of material 
under study and the uniform conditions prevailing ahead of 
the wave,f3o is a nonzero constant depending solely on the 
elastic response of the material, Un is the constant normal 
speed (taken to be positive), K is the mean curvature of the 
wavefront at any time t expressed as 

- - - 2 2 
K=(Ko-2Kou"t)/(I-Kount+Kount ), (2.2) 

where Ko = k. + k2 is the initial mean curvature and 
Ko = k.kz is the initial total curvature with kJ and k2 being 
the initial principal curvatures. When k. and kz are both 
non positive, the wave is divergent; and when one or both the 
initial principal curvatures are positive, the wave is conver
gent. In the following discussion, we shall consider only con
verging waves. 

The solution of (2.1) in view of (2.2) can be written as 

a(t) = [1.(t )exp( - f..tot l)/[1/a(O) - f3aI2(t l], (2.3) 

wherea(O)¥O is the initial amplitude, and the functionsl.(t) 
and 12(t) are given by 

1.(t)={(l-k.u"t)(l-kzu"tl}-IIZ, (2.4) 

12(t) = L {(I - k .Un 7)( 1 - k 2un 7)} - .l2exp( - l1(7)d7. 

(2.5) 

a)On leave from Applied Mathematics Section, I. T., B. H. U., India. 

b) Applied Mathematics Section, I. T., B. H. U., India. 

In the analysis of converging waves, where at least one 
a/the initial principle curvatures is positive, the integral 12(t *) 
plays a crucial role, where t * is the smallest positive root of 
the equation (1 - k.Unl *)(1 - klunt *) = 0. One can easily 
show that the integral 11(t *) in (2.5) is infinite if and only if 
both k. and k2 are positive and equal, i.e., k. = k z > 0. For, if 
k. = kl > 0, by substituting z = t * - t, we find that the sin
gularity I_I * in the integrand of 12(t *) isoftheformz-·f/J (z) 
as z-o, where f/J (z) is both bounded and bounded away from 
zero, and the function z-· is not integrable on any interval 
[O,T], T> 0. If k. ¥ k2 and at least one of k., k2 is positive, 
then the integral 12(t *) is finite; this follows from the argu
ment that the singularity as t-l * in the integrand of 12(t *) is 
of the type z - l!/l(z) as z-O, where the function !/I(z) is again 
bounded and bounded away from zero, and the function z - I 

is integrable over every interval [O,T], T> 0. 
Thus for converging waves, irrespective of the sign of 

110' we have the following two situations: 
(i) k. ¥k2 and at least one a/them is positive: in this case, 

when sgna(O) = sgn/3o, it follows from (2.3) that not all con
verging waves will grow into shock waves, i.e., there exists a 
critical value of the initial wave amplitude, given by 

(2.6) 

such that waves with initial amplitude less than r form a 
focus (i.e., la(t) 1- 00 as t_t *), waves with initial amplitude 
greater than r form a shock before the focus (i.e., there exists 
a positive I( < t *) given by 12(1) = rf3oa(O)] - J, such that 
la(t ) 1- 00 as t-+t), and waves with initial amplitude equal to 
r form a shock and focus simultaneously (i.e., i = t * and 
la(t )1-+00 as t_t *). 

(ii) k. = k2 > 0: in this case, which corresponds to a 
spherically converging wave, the integral I 2(t *) is infinite and 
thus, the initial critical amplitude given by (2.6) vanishes; 
further, it follows from (2.3) that when sgna(O) = sgn/3o, 
there exists a positive i < t *, given by 

such that as t approaches i, the denominator of(2.3) vanish
es, whereas the numerator remains finite, i.e., la(t 11-00 as 
t_i. This means that all spherically converging waves will 
grow into shock waves before the formation of the focus, no 
matter how small be their initial amplitUde. This result is, in 
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effect, that for a converging wave a necessary and sufficient 
condition for the initial critical amplitude to be zero is for the 
converging wave to be spherical. 

It is interesting to note that when sgna(O) = - sgn{3o, 
the denominator in (2.3), in both the situations mentioned 
above, is always bounded away from zero, and la(t 1/-00 as 
l-t "', i.e., in this case all converging wa ves form a focus only. 
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A functional which generates N distinct point solutions to a classical wave equation with random 
coefficients in the presence of external sources is constructed. Statistical averaging over the 
random coefficients is then implemented using replica and/or anticommuting field techniques. 

PACS numbers: 03.50.De, 03.40.Kf 

I. INTRODUCTION 

Consider the wave equation 

- - c2_ tp(x,t) = 0. [a
2 a2] 

at 2 ax2 
(Ll) 

In many applications, the velocity of propagation, c, is 
adequately considered a fixed parameter determined from 
average physical characteristics of the medium supporting 
the wave motion. There are many interesting situations, 
however, in which the medium may appropriately be charac
terized in terms of physical characteristics which fluctuate 
on a small macroscopic scale. 1 

The existence of such fluctuations implies that the 
speed "c" cannot be treated as a fixed parameter of the sys
tem. In this situation it is fruitful to write an index of refrac
tion which contains a part characteristic ofthe large-scale 
average medium, and a second part which may be consid
ered a random variable. 

The problem of wave propagation in a fluctuating medi
um thus becomes one of solving an ensemble averaged ver
sion of Eq. (1.1), 

[a
2 a2] a2 

-2 - C~-2 (tp (x,!) = (n(x,t) ~ ) . at ax ax (1.2) 

Of course each element of the ensemble over which one is 
averaging is to be considered a unique, deterministic system. 
A wave will propagate in a particular sample of the fluctuat
ing medium in a way which depends upon the precise man
ner in which the fluctuations occur in the particular sample. 
The real problem, then, is to determine not only how an 
average over propagations in samples of the medium be
haves, but to infer how closely propagation in a particular 
sample resembles propagation in the averaged medium. In 
short, one must examine not only (tp),but higher moments 
as well.2 

In this paper, we formulate the problem of computing 
the distinct N-point ensemble averaged correlations 

(tP (l ... M;M + l...N) )=(tp*(x1,tIl···;tp (xM + II tM+ I)") 
(1.3) 

in terms of generating functionals. 3.4 In this manner, the 
averaging problem takes a form which is very familiar in the 
statistical mechanics of, e.g., quenched impurities and spin
glasses.5 The averaging procedure can then be implemented 
by borrowing techniques such as the replica method which 
have been successful in the study of condensed matter.6•7 

II. GENERATING FUNCTIONAL 

For the sake of generality, consider the linear second 
order differential equation which follows from the stationar
ity requirement 

8S [tp] = 0, (2.1) 

S = J ddxdt [tp *(x,t}L (x,t)tp (x,t) + Jtp * + J*tp ], 

where the operator L (x,t ) in d spatial dimensions contains 
coefficients which may be functions of spatial coordinates. 
In this equation, J (x,t ) is a prescribed source, and we are 
interested in causal solutions to the equation. 

In a standard manner, real sources give rise to real solu
tions of Eq. (2.1), but we shall, for convenience, more gener
ally consider complex representations for the sources. Then 
we must solve for complex tp, and extract the physically 
meaningful real part at the end of the calculation. 

By virtue ofEq. (2.1), it is clear that if the points (x,t ) are 
all distinct, the product of solutions, denoted tP, satisfies the 
following equation: 

L(i)tP(l...M;M + l...N) =J(i)tP(l...LM; ... N) 

+ J*(i)tP (1...M; ... LN). 
(2.2) 

We employ a notation for functions of indexed variables 
"'(x; ,t; )=t/J(i). The symbol /indicates the ith agrument is ab
sent. We shall restrict our considerations to the case of dis
tinct points. 

Let us now attempt to construct a functional which gen
erates the quantities tP subject to the equation (2.2). We seek 
our generating functional in the form 

tP = J.. ~ ... J.. _8_ J.. 8 ... J.. _8_.7 I 
i 8j(l) i 8j(M) i 8j*(M + 1) i 8j*(N) j=j"=O 

. (2.3) 

Clearly the auxiliary currents j (x,t) are fictitious functions 
which cannot appear in any physical quantities of interest. 
Nevertheless, it is useful to reserve imposing the conditions 
j = ° to the end of the calculation. 

Forj=/-O, then, we introduce the ansatz 

.7(j,j*) = z' (j,j*)/z' (0,0); 

z'(j,j*) = J j.!iJtp*.@tp exp(iS [tp]) 

X exp (;j dxdt Utp * + j*tp ] ). (2.4) 

685 J. Math. Phys. 22 (4). April 1981 0022-2488/81/040685-05$1.00 © 1981 American Institute of Physics 685 



                                                                                                                                    

It is readily verified that Eq. (2.2) is satisfied by the ansatz, 
with a correct normalization, once the conditionsj = 0 are 
imposed. Forji=O, however, one has the set of Schwinger
Dyson equations 

{£(i)+ 8j~(i) - Uti) + J(i)] }Y= O. (2.5) 

Thus, the generating functional Y satisfies the desired 
conditions, but unfortunately suffers a drawback which is 
readily apparent in the expression 

ip(l)ip(2) = [f£-IJ·L [f£-IJ·L -£-1(1,2).(2.6) 

Because all points are assumed to be distinct, the correct 
equation is satisfied by ip( 1 )<P(2), but one would like to project 
pieces such as that displayed in the equation above which do 
not connect to the physically interesting currents J. 

The required projection will be implemented as part of 
the averaging process, to which we now tum. 

III. AVERAGING 

The functional expression Eq. (2.4) above is convenient 
for purposes of averaging because the quantities to be aver
aged appear in the exponential. Although it was not explicit
ly stated earlier, the coefficients in L (x,t ) over whichaverag
ing is to be performed appear only linearly. Thus, one is 
basically asked to express the characteristic functional of the 
probability distributions over which the averaging is being 
performed.9 

It is well known, however, that there exists a nontrivial 
complication in performing the averaging which arises from 
the normalizing factor z J(O,O) which is present in the func
tional . The normalizing factor contains L, which depends 
upon the random variables to be averaged. Thus, one has 

(ff) = f f !Pip. !Pip exp[i(J + j)ip.] exp[i(J· + j.)ip ] 

X (exp(if f ip ·Lip )fz'(O,O)). 

(3.1) 

A.Replicas 

The so-called replica trick has been introduced in statis
tical mechanics to attempt a separation of the characteristic 
functional from the normalization factor in Eq. (3.1). Within 
the present context, this trick may be viewed as consisting of 
the following set of observations. 

(1) Before averaging, the functional integrals defining 
Yare Gaussian. Not only can they be performed explicitly, 
their meaning, term by term, is known. 

Thus, explicitly, 

z'(j,j.) = ff = [DetiL ]-1 

X exp( -;f f [J. + j·]L -I[J + j]). (3.2) 

The denominator, or normalizing factor, in (2.4) is of the 
same form, with j = O. 

Now, the Det which appears in both numerator and 
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denominator of Y consists of all closed loops, with propaga
tor L -I, which connect neither to J nor to j. 

Similarly, the JJ factor which appears in the denomina
tor multiplying the Det consists of all single lines represent
ing L - 1 which join distinct J points. 

Clearly the role of the denominator is to leave an ex
pression in which there are no closed loops, and in which 
each line L -) couples to at least onej. But this implies that 
any method at all which accomplishes the desired cancella
tion of terms from the numerator will give a correct expres
sion for Y. 

One is thus motivated to achieve cancellation of unde
sired terms in the numerator without making reference to 
the denominator. To this end, consider the functional 

z'(j,j.)-p~ J f !Pip;9Jq;p exp(i~p~qip ;L8pq ipq) 

X exp(i; [ip ; (aJp + (3jp) + ip p (aJ; + (3j;) ]. 

(3.3) 

Figure 1 displays the graphical structures generated by this 
expression. 

It is routine to demonstrate that the following assertion 
is true: 

<P (l...M;M + l...N) = lim _1_2 (~)N(~)N K - N 
a'p,K->O (N!) aa a(3 

X (;,J+ 8;1)L.· .. [+ 8j.~N)LN 
X z' (j,j.) Ii ~j" ~ o' (3.4) 

(2) Equation (3.4) asserts that the replica method suc
ceeds in killing all disconnected graphs. Furthermore, the a 
and (3 restrictions kill all JJ graphs, and in addition allii 
graphs. This latter observation means that the minor prob
lem with ip( 1 )ip(2) cited in Eq. (2.6) is resolved. 

All of the above holds true for the free theory, before 
averaging. It implies that the object to be averaged consists 
of precisely the desired pieces, if the limits of Eq. (3.4) are 
performed prior to averaging. But now one is to interchange 
the averaging operation with the limiting operation. As long 
as a graphical expansion method of the same character as 

[ I + 0 + 0 + ••• ] 0 

[ J....--J* .] I + a 2 J __ J* + a4 + •• • 
J-----J* 

[ + [32 j -----
i ------ i It .] i * + (34 + ••• i ________ i lt 

[ C J*) ] I + a[3 J;+ + 
J-J 

FIG. 1. Formal expansion ofx' in terms ofFeynman graphs. Only the a and 
/3 coefficients are explicitly displayed. The graphs carry weights obtained by 
counting the number of configurations, and factors K for each line, open or 
closed. 
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that used to motivate the replica method is utilized after 
averaging. it is apparently valid to interchange the limits.6 
More will be said on this point below. 

Having made the necessary caveats on the known range 
of validity ofthe method. we are now in a position to 
construct 

(7:') = J lZ)cp*lZ)cp(exp(icp*.L 1.cp) 

X exp{i[(J + j).cp* + (J + j*).cp]) (3.5) 
(3) The expression for the characteristic functional of 

most value in considering Eq. (3.5) is the cumulant expan
sion. For a single random variable. we remind the reader of 
the expressions8 

( eis'P ) =exp [ i K ((iqJ) )P] 
[s]- p=1 p p! • 

K2 = (52) - (5 )2. etc. (3.6) 
Functional generalizations of these expressions are 

readily available.9 Consider as an example 

s= J J[p(xl(Zr - T(X{!r + J(Xlv(X)]dXdt. (3.7) 

If the tensions. or elastic constants. are distributed about a 
mean value To. one has 

(eiS ) = eiS(To)expL~2r··J dX 1 dtl· .. dxpdtp 

X [i(::)1 .. [i(:~ y]Kp(X 1.X2 ..... Xp)}. (3.8) 

It should be evident from this example. which will be 
considered in more detail momentarily. that higher order 
cumulants can potentially become increasingly singular at 
short distances. creating severe ultraviolet convergence 
problems in the theory. A likely concomitant is that. much 
as in the theory of phase transitions. the high order cumu
lants will be relatively unimportant in the long-wavelength 
regime. However. care must be exercised in defining the di
mensional coupling functions such as Kp in terms of observ
able quantities and cutoffs. These remarks will be expanded 
when we examine the linear chain in detail. 

(4) The upshot ofthe averaging procedure is thus seen to 
be a replacement of the original problem by a nonlinear 
problem in which the strengths ofthe nonlinearities are di
rectly related to the cumulants of the statistical distributions 
in question. 

To the extent that the "induced" nonlinearities can be 
viewed as weak. the new problem can be treated by conven
tional perturbative methods. The additional complications 
introduced by the replicas and the a and f3 constraints are 
not severe. and collapse to the following rules in graphs: 

A. Draw only graphs which connect J with}. initially 
with propagators L -I. 

B. Set down points with emerging lines to represent 
nonlinear vertices appropriate to the order of perturbation 
theory being computed. 

C. "Break open" the lines joiningj with J. and recon
nect these with the lines emerging from the vertices in ail 
possible ways. 
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D. Examine the replica index loop structure which 
emerges. Count a factor K for each initialjJline, considering 
it a trace over the replica indices. Delete all index loop struc
tures in the final diagrams which lead to higher powers of K 
upon tracing than the power K deduced from the freejJlines. 

B. Antlcommutlng field variables 

It is evident from the discussion of "replicas" given 
above that the essential point of the replica method is to 
cancel the graphs generated by DetiL. But clearly, DetiL is 
cancelled without recourse to graphs in the expression 

Z' (J.}*) = (DetiL )z' U.j*). (3.9) 

This simple observation is turned into a calculational tool 
with the introduction of a functional integral representation 
for DetiL over anticommuting scalar fields: 

DetiL == J J lZ)1f lZ)l/Ji¢Lr/J. (3.10) 

The "trick" Eq. (3.10) has been introduced into gauge 
field theory by Fadeev and Popov. 7 Its relevance to the class 
of problems heretofore studied using replica methods has 
been noted recently by McKane. 7 

Using the Padeev-Popov technique. we have an expres
sion formally free of DetL. 

i'U.j*)== f .. J lZ)qJ*lZ)qJ fg1f lZ)l/Jei¢Lr/J 

X i'P oL<pe'P O(J + Jle i'P(Jo + jO) (3.1I) 

The averaging procedure modifies the integral in Eq. 
(3.11); using Eq. (3.7) as an example once again. we have 

Thus. (i') is to be computed as a theory of interacting 
bosons and to fermions. The choice of dealing with 
(i') or( r) in perturbation theory is left to the reader's 
taste. 

In principle. however. the virtue of i' is that no inter
change of averaging and graph selection occurs. Thus. one 
may seek genuinely nonperturbative effects in (i') with con
fidence that any effects observed are at least as valid as the 
original functional representation Y. 

One nonperturbative method which has proved fruitful 
in recent years has been the calculation of functional inte
grals such as (i') by the method of steepest descents. One 
might also profitably bring renormalization group methods 
to bear on the problem of computing (i') when a straight
forward perturbative approach is not valid. The principal 
difficulty in applying modem field theoretic methods to the 
problem at hand appears to be that one gains little intuition 
from the anticommuting fields in the integral. But this 
should not be a crucial drawback to the method. 
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IV. DISORDERED LINEAR CHAIN IN PERTURBATION 
THEORY 

To illustrate the methods described above, we return to 
the special one-dimensional case 

[P(X)~ - aT a _ T ~]y' (x,t ) = J (x,t ). 
at 2 ax ax ax2 (4.1) 

It is supposed that the density p is homogeneously statistical
ly distributed about a mean Po, and the tension Tis similarly 
distributed about a mean To. 

The average of the solution is clearly 

(y'(x,t) = f fdX'dt'(G(x,x';t,t')J(X',t')' (4.2) 

Inasmuch as we consider only time-independent fluctu
ations in p and T, it is convenient to introduce the Fourier 
transform 

G (w,x) = f dt r jW'G (x,O;t,O). (4.3) 

For this simple example, it suffices to compute 

(exp{ - tJtix[ w2
p(X)y2 - T(xl(: Y)}) p.T· (4.4) 

We shall assume Gaussian distributions in p and T, and so 
write 

(F)pt T 

= f f gp gTF [p,Tlexp{ - .1\f dx[p(x) -pol2} 

xexp{ - .1\f dx[T(x) - Tol2} / 

ffgp[p,Tlexp{- il\ f dX[P(x)- pol2} (4.5) 

Now, ifp(x) and T(x) were smooth, differentiable func
tions, we could derive the sourceless version of(4.1) as the 
continuum limit of the discrete set of equations 

d 2y. 
~ dt: =kj+1 [yj+1 -Yj] -kj[yj -Yj_I]' (4.6) 

The "mean", or ideal, theory in whichp and Tsimply as
sume their mean values is obtained from (4.6) under the 
conditions 

Mj = M = PcP, Vj; 

kj = k = T 01 a, Vj. (4.7) 

It is important to notice the manner in which the lattice 
constant enters into these expressions. For if we now ask a 
microscopic interpretation to assign the fluctuation param
eter.1 T which enters into (4.5), we have 

&,[T(x) -.Tol = exp - G\a3~8k7} 
That is, 

a3c5k7/.1~:::::1 

essentially measures the spread in the spring constants. But 
this implies a scaled spread in the actual value of the tension 
given by 

.1 T /a =.1 T/a3/2. 
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A similar argument applies for the density spread parameter 
.1p • 

Consequently, displaying the explicit powers of "a" inferred 
from the above consideration, we find 

(zJ) = f!iJ Y exp { - ~ f dX[ W
2
Poy2 + To(: Y]} 

X exp[ - a W4\.1[)2 f dX(y2(X) r 
X exp[ _ a(ilTffdx(!L. ar)2]. 

16 ax ax (4.8) 

Next, in perturbation theory, graphs generated by the 
induced nonlinear interaction may diverge in momentum 
space, as can readily be deduced using standard power
counting arguments. 10 Figure 2 shows an example of the 
replica index routings which are possible at nontrivial order 
in the perturbation, and of a graph which diverges. The di
vergence is regulated by introducing a cutoff at momentum 
(or, more properly speaking, wavenumber) 21T/a. 

There is a competition, therefore, between explicit pow
ers of "a" which enter into defining the fluctuation param
eters, and internally generated powers of 1/ a. Retaining only 
terms up to linear in a, the graphical expansion to second 

13 

(a) 

a 

(b) a ;:l 

(e) 

P2 

0 
'* 

13 
P 3 

~+P2+~ 

~P 

21T K 
a 

a a.. K2 

a 

FIG. 2. (a) A vertex induced by averaging. The (*) denotes the vertex carries 
a factor PtP-,/J3 (p, + P2 + p,). (b) A bareL - 'linedressed by interaction with 
the vertex of Fig. 2(a). The point vertex has been split open to display the 
replica index routing. The two independent routes supply a factor K 2. (c) A 
second possible index routing, which supplies a factor K. In both Figs. 2(b) 
and (c), the closed momentum (wavenumber) loop provides a divergent inte
gral which is regulated by cutting the integral off at wavelength "a". 
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order in the proper self-energy can be summed to give 

(G (w,k) -I = Po{w2 _ c2[ 1 _ 1T( .:iT~2]k 2 

-ia;;[(:y(~y +k2(~j2]}. 
(4.9) 

Thus, one observes: 
(1) A finite renormalization of the speed of sound; 
(2) Pseudodissipation at order "a". The term "pseudo" 

refers to the fact that total energy is conserved in the system, 
but backscattering can deplete the amplitude in a given di
rection of propagation. 

(3) Dispersion at order "a2
" (not displayed). From the 

discussion relating to Eq. (4.6), it should be clear that one is 
investigating a physical system using a set of equations ap
propriate to the long wavelength limit. In particular, one has 
not abandoned the information that the macroscopic system 
is more properly described by microphysics starting at some 
length scale "a". The dispersive terms are necessary to pro
vide a sound mathematical meaning to the "long wave
length" limit. 

Consider now a source of the specific form 

J (x,t ) = / rP (x)l>(t). 

In one dimension, it is easily seen that this source corre
sponds to providing an acceleration impulse to the medium. 
Using the derived average Green function, the average caus
al signal at x > 0 is 

(y'(x,t)z /0 [1- E..d TC· ) 
4pc* U\2(aax)1/2 

+ (::Y/2exp( _ ::~)], 
where 

T=t - x/c*,c*==c[ 1 -1T/2(.:iT /T)2], 

a==!1T[(.:ip/p)2 + (.:iT IT)2]. 
Observe that all of the dimensional parameters in the 

problem have organized themselves into the combinations 
aa/x, and c*T/(aax) 112. Our approximation has consisted of 
treating a and "a" as small parameters. But there is no real 
meaning to saying that "a is small." Some further criterion 
based upon wavenumber-lattice spacing dimensionless 
combinations is provided by higher terms in the perturba
tion expansion, as was argued earlier. However, even with
out displaying such higher order terms, we see in Eq. (4.10) 
still a different possible criterion for the validity of perturba
tion theory emerging-it is that the range may play an essen
tial role in determining the validity of the perturbative ex
pansion. This is not unexpected, and corresponds physically 
to the likely possibility that small fluctuation-induced dis
turbances can add up over long propagation paths.4 

V.SUMMARY 

The essential point of this paper is the introduction of a 
generating functional for "N-point amplitudes" of a wave 
equation with random variables entering as coefficients. The 
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generating functional which we have introduced is not re
stricted to any special approximation to the full wave 
equation. 

When a perturbative treatment of the fluctuating ran
dom variables is appropriate, the replica approach to calcu
lating averages over fluctuations is convenient because the 
graphical rules the method generates are simple. 

In addition, it is straightforward to write the 
Schwinger-Dyson equations for the averaged functional 
(z'), and so infer sets ofSD equations for any amplitudes of 
interest. These may be viewed as resummations of the per
turbative expansion, i.e., equations inferrable in principle 
from a careful enumeration of graphs, and so can be consid
ered valid in their "replica"form. It should then be correct to 
attempt nonperturbative methods for the solution of the set 
of equations. An analogue here is the Coulomb problem: no 
finite set of graphs can give rise to bound states, but bound 
positronium solutions to the Bethe-Saltpeter equation can 
be viewed as corresponding to the sum of an infinite set of 
graphs. 

An important virtue of the functional approach, then, is 
the convenient summary of perturbation theory which it en
tails. In addition, it may be possible to reach interesting and 
valid nonperturbative results via functional methods, which 
would be difficult to generate by other means. The safest 
avenue for this approach is the representation c, using anti
commuting fields. 
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The indefinite metric state space Y M of the covariant form of the quantized Maxwell field M 
contains, as is known, a family of continuously many, isomorphic, isometric pre-Hilbert spaces 
!f

q
, called Lorentz spaces, each of which corresponds to one square-integrable, prescribed, 

classical, spatial distribution q(x) of the total charge Q = O. The quotient spaces !fq / JVq modulo 
the subspace JVq c !f

q of all elements with norm 0 are indeed Hilbert spaces in Y M and it 
appears that any QED which has to do with YMhas to be formulated not on Y M as a whole but 
on the family of these Lorentz spaces. To support this assumption we embed any !fq/JVq in!fq 
in an isomorphic-isometric way and thus get Hilbert spaces t'I in Y M' but not in a unique way; we 
will show that the different possibilities of this embedding correspond exactly with the different 
gauges. The main results about any embedding space t"l are, however, that it is a maximal Hilbert 
space in Y M (under a premise referring to the expectation values of charge distribution), and that 
any Hilbert space of Y M which is "physically important" in some sense is necessarily one ofthese 
t'I. In this way the family {t'llqEO) of Lorentz spaces (defined by the index set 0) has some 
outstanding properties so that the t"l are now characterized by these qualities (and no longer in the 
heuristical way via generalization of the classical Lorentz condition). Starting now with the 
prominent role of the t'I we get not only a deeper understanding of the Lorentz condition of 
classical electrodynamics-the properties of the t'I lead us automatically to the definition of a 
positive-definite state space of QED with the use only of these t'I. (Our considerations refer not to 
full but to some restricted QED; the restriction is primarily given by the above-mentioned index 
set 0 so that extensions to full QED seem possible). We show that our definition of a state space is 
consistent with time evolution, given by the Hamiltonian H, and that the QED on the basis of this 
state space is a constraint-free theory because the otherwise-necessary selection rules of Lorentz 
condition and charge conservation are now superfluous (and not present in a hidden form either). 
Furthermore, the properties of Lorentz spaces lead us automatically to a new concept of 
observables, all of which commute from the beginning with the operator of charge distribution. 
As a special observable we discuss the number operator N (k) of photons by showing that this, in 
general, cannot be of the form aJi-+ aJi-. A modified form of N(k) and with it a reformulation ofthe 
Hamiltonian H of QED is given. All these considerations go back to the properties of the Lorentz 
spaces and thus, basically, to the canonical quantization of the Maxwell field. 

PACS numbers: 03.50.De, 12.20.Ds 

1. INTRODUCTION 

The state space Y M of the quantized Maxwell field I M 
is one of the basic mathematical structures of physics. In any 
QED it is a "partner space" within the whole state space of 
the theory. Beyond QED the space Y M will have a certain 
model character, for the state space of gravitons,2 e.g., or 
with respect to the state space of the unified gauge theory of 
the weak and electromagnetic interaction. 

tical interpretation of a quantum theory in the sense of 
Bom.3 The cause of this defect lies in the canonical commu
tation relations of the operators All (x), "v (x') in the Schro
dinger picture, which mainly determine the structure of 
Y M • 

In this paper Y M is to be investigated for itself and 
within the framework of QED respectively. If a quantized 
four-current density JJi- (x) in the Schrodinger picture is in
troduced together with the state space Y J' spanned by the 
creation operators of electrons and positrons in the usual 
way, then the first choice for the state space of this QED is 
the tensor product Y J ® Y M' 

But in this way we do not get a useful state space, for in 
Y M the Cauchy-Schwarz inequality cannot generally hold, 
as we know I (we use the famiIar Gupta-BIeuler-metric). As a 
consequence, the space Y J ® Y M does not admit the statis-

One way out of this dilemma is the possibility oflooking 
for subspaces of Y M which are positive-semidefinite with 
respect to the Gupta-Bleuler metric or even Hilbert spaces. 
Then we have to examine in what way these spaces can be 
used as partner spaces of Y J' The discovery and examina
tion of such subspaces is first of all a purely mathematical 
problem. In order to test their relationship with physics one 
can introduce a pseudo-interaction on only Y M as an impor
tant heuristic aid: we prescribe any classical, conserved, 
four-current and examine to what extent its interaction with 
M can be described on the detected subspace of .Y M' 

The task of finding positive-semidefinite subspaces of 
YMhas so far been treated as follows: Gupta4 and Bleuler 
introduced a generalization of the Lorentz condition of clas
sical electrodynamics for the free M. They named such ele-
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ments a of Y M "physical" which satisfied the condition 

L (k)a = 0 for almost any kER 3, (1) 

whereL (k): = kVav(k). In this way they introduced theeigen
space !/,O of the operator L (k) to the eigenvalue 0 and 
showed that !/,O is positive-semidefinite. In order to be able 
to describe at least the above mentioned pseudo-interaction 
on Y M' in a further step 1 the following generalization of ( 1 ) 
was made: 

L (k)a = q(k)a for almost any kER 3, (2) 

where q = q(k) is taken from the set :0 of all complex-valued 
square-integrable functions over the R 3 so that 
q*(k) = q( - k). Consequently, the Fourier transform 

q(x): = (211")-3/2f d 3k (2Ikl) \/2eikXq(k) (3) 

is real-valued and square-integrable. To each eigenfunction 
q of this kind the eigenspace 

!/,q: = {aeY MIL (k)a = q(k)a for almost any kER 3} 

was introduced and called "Lorentz space". For these Lo
rentz spaces the following statements were proved: 

Theorem 1: 
(a) Any Lorentz space !/,q is positive-semidefinite; the 

space of equivalence classes !/'q;./Y'q modulo ./Y'q 
: = {ae!/'ql (ala) = O} is Hilbert space with respect to the 
scalar product of Y M' 

(b) Any pair of different Lorentz spaces !/,q,!/,plp =fq) 
satisfies .!?qn.!f P = IO}; but between .!fq and .!f P there ex
ists an isometric isomorphism !/,q a!= !/,p. 

(c) In the span6 sp{ .!fq,!/'Pl of two different Lorentz 
spaces the Cauchy-Schwarz inequality cannot hold, so that 
any subspace of Y M which contains the span of any pair of 
different Lorentz spaces is indefinite by necessity. 

(d) For test purposes a pseudointeraction between the 
quantized Maxwell field M and any prescribed, classical, 
stationary four-currentjJL(x) may be introduced. But it can 
only be described on the Lorentz space !/,q, for which 
q(x) = jo(x), where q(k) is given by Eq. (3). 

According to (d) any classical, prescribed, charge densi
ty determines its own Lorentz space. One might rather ex
pect that this is true for any total charge. In the cases to be 
discussed the charge vanishes because of the square-integra
bility of q and Eq. (3). The one-to-one correspondence be
tween charge densities and Lorentz spaces, however, per
mits an interesting physical interpretation: according to 
Theorem I the !/,q form positive-semidefinite "islands" in 
the indefinite Y M' The admitted charge densities corre
spond with these islands; on the other hand these correspond 
with the photon robes which surround the charge densities, 
and which build up the Coulomb fields as quantum theoreti
cal expectation values. Thus the one-to-one correspondence 
indicates at the same time the inseparability of charge densi
ties and photon robes. The indefinite character of Y M which 
renders possible this inseparability, no longer appears as a 
formal disadvantage, but has a direct physical meaning. 1 

The properties of the Lorentz spaces .!fq, which we 
have described so far, and their physical interpretation, sug
gest the conclusion that each interaction theory which has to 
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do with Y M must be brought in connection with these !/,q, 
not with Y M as a whole. Because of the far-reaching conse
quences of such a conclusion the Lorentz spaces, especially 
their quotient spaces !/'q; ./Y'q,will have to be furtherinvesti
gated. As we need Hilbert subspaces of Y M' we embed any 
quotient space !/'q;./Y'q isomorphicaIIy in !/,q. The resulting 
subspace t'" of .!fq is not defined in a unique way. One result 
is, that the different possibilities for embedding .!fq;./Y'q in 
2'q correspond exactly with the gauges (Sec. 2). However 
now the Hilbert space t'" in !/,q is selected: in Sec. 3 it can be 
shown that t'" is a maximal Hilbert space in Y M (under an 
additional premise referring to the expectation values of 
charge densities). This maximality of any t'" means a consid
erable refinement of Theorem 1 (c). Vice versa, any physically 
important Hilbert space in Y M is necessarily one of our t"'. 
In this way the important role of the Lorentz spaces has been 
proved, and this permits us to forget about the heuristic way 
for the detection of the Lorentz spaces via generalization of 
the classical Lorentz condition, and to start directly from the 
outstanding properties of the Lorentz spaces. Then we can 
attempt to answer some important questions: 

(i) In classical electrodynamics (CED) the Lorentz con
dition (CLC) plays a dubious role: it is added "from outside" 
to the Hamilton equations of motion of the classical poten
tial AJl and its canonical momentum flv and is motivated 
only afterwards by the results (we arrive at Maxwell's equa
tions). A deeper understanding of CLC is impossible within 
the framework of CED. Now the first step from CED to
wards QED is the theory of pseudo-interaction between pho
tons and any prescribed classical four-current as it is used 
here as a heuristic aid. This theory can, however, be com
pletely described on the family {t"'J of Lorentz spaces. Ifwe 
return from this theory to CED, we will automatically get 
CLC there. Thus, CLC is a consequence of the outstanding 
properties of the Lorentz spaces in Y M (Sec. 4). 

(ii) The Lorentz spaces should, of course, above all play 
a decisive role in a "true" QED with quantized four-current 
JJL (x). We construct (Sec. 5) ihe positive-definite state space 
of such a QED, which results almost automatically from the 
properties of the t"', and define "observables" on this state 
space according to the Lorentz subspace structure of Y M' 

The properties of the Lorentz spaces lead immediately to the 
statement that these observables commute with the operator 
of charge density (theorem ofStrocchi and Wightman7

). 

However, our results refer not to full but to some restricted 
QED, defined essentially by the above mentioned index set 
O. Extensions to full QED seem possible but exceed the in
tention of this paper (Sec. 5). 

(iii) As an example of an observable in the sense of Sec. 5 
we discuss the operator N (k) of photon number (Sec. 6). We 
show that N (k), as a consequence of our definitions, is a non
negative operator, but in general it cannot have the form 
aJL+ (k)aJL(k) which is usually given. 

2. THE ISOMETRIC EMBEDDING OF THE QUOTIENT 
SPACES .!/q/JVq IN .!/q AND THE GAUGE PROBLEM 

First we repeat the definition of the Lorentz spaces 
.!fq c Y M and give it an alternative form which will become 
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important for later considerations. 
D may be the set of all complex-valued functions 

q = q(k) over R 3 with the property that q(k) and (jkj) li2q(k) 
are square-integrable in the Lebesgue sense and that 
q*(k) = q( - k) for any kER 3. Then it follows that 

q(x): = (21T) -1f d 3k (2jkj) 1I2e'kxq(k) 

is real-valued and that Q: = S d 3X q(x) = O. The function q(x) 
has-according to Theorem l(d)-the meaning of any sta
tionary charge density with vanishing total charge. 

We choose any qED and define the subspace 2"Q of Y M 

as the eigenspace of the "Lorenti operator" L (k): = k Va,,(k) 
to the eigenvalue function q = q(k): 

!.t'q: = {UEY MIL (k)u = q(k)a for almost any kER 3J. (4) 

The definition of Y M is given in the Appendix. The charac
teristics of the spaces 2"q which have been known up to now 
are briefly summarized in Theorem I and explained in Ref. 
1. Especially, 2"q is positive-semidefinite, i.e., it contains 
elements a#O with (aja) = O. We introduce the subspace 

A,~q:= !aE!.t'qj(aja) =OJ. (5) 

The quotient space !.t'q / JVq is not only positive-definite, but 
even a Hilbert space with respect to the (Gupta-Bleuler) 
metric (I) of Y M; we call it a Lorentz space, too. 

Instead of defining !.t'q as the eigenspace of L (k) to the 
eigenvalue function q = q(k) as above, one can also begin 
with the operator 

(6) 

Then 2"q is the eigenspace of L (x) to the eigenvalue 
function q = q(x) ofEq. (3). According to these two possibili
ties for defining 2"q, the notation 2"q leaves open whether 
one thinks especially of the eigenspace of L (k) to q(k) or of 
L (x) to q(x). However, the latter has the advantage that L (x) 
is self-adjoint on each Lorentz space (because 2"q is not a 
Hilbert space, the term "self-adjoint on !.t'q" remains to be 
defined. We call any operator il self-adjoint on}? q if 
il2"Qc;;,!.t'q and (ajila)ER for any aE!.t'q). 

Only the Lorentz spaces !.t'0 and !.t'0 / JVO contain the 
state lUO: = (1,0,0,··.) of the bare vacuum (Appendix), which 
can also be defined by (lUojlUo) = 1 and afL (k)lUo = 0 for all,u 
and k. The quotient space !.t'q / JVq can be embedded isomor
phically in Y M in many ways. Because of the isometry of 
any two Lorentz spaces, !.t'q / JVq could also be embedded in 
any !.t' P with P # q. Because of the meaning of q as a charge 
density, however, we think !.t'q/JVq embedded in "its;' Lo
rentz space !.t'q. For any qED such an isomorphic-isometric 
embedding of 2"q / JVq can be choosen. We denote this sub
space of!.t' q by f"!. The Lorentz spaces f'l are Hilbert spaces 
in Y M and - up to the zero element 0 of Y M-pairwise 
disjoint (Theorem I, (b). Thus the Hilbert spaces f"! represent 
"islands" in the indefinite Y M which, as it appears, are of 
special importance for physics. However, no one island f"! is 
embedded in !.t'q in a unique, physically motivated way. For 
example, with f"! the subspace ti: = W! kg J f"! is also a pos
sible embedding of !.t'q/JVq in !.t'q, where W! kgJ is the 
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Weyl operator (Appendix) produced by the four-vector func
tion gfL (k): = kfLg(k) to any scalar function g(k). In this way 
we get continuously many isomorphic-isometric embed
dings of !.t'q/ffq in }?q. 

If one claims that all possible embeddings of !fq 
/ ffq in 

!.t'q are equally valid physically, then the change from one 
embedding to another one can only mean a gauge transfor
mation in a sense to be defined. Operators are not influenced 
at all by this change of the embedding, for we maintain, as in 
Ref. 1, that the dynamical variables A" (x), llv (x) of the the
ory are gauge-invariant ab OVO, which is then also true for 
their functionals, especially the Hamiltonian. Therefore, we 
define a gauge transformation in the following way: 

Definition I: Let f( and c;q be two embeddings of 
!.t'q/A/"q in !fq

• Then a gauge transformation consists in the 
replacement of the transition element (allilfJ1 J to any 
al,fJlE e.q 

by the element (a zIDfJ2)' where il is any operator 
with il!fq c;;, !.t'q and a z,fJ2 are elements from Ii so that 
a 2 - alE.ffq andfJ2 - (3I E ./Vq. 

We now need a special algebra!1. q of operators to any 
fixed Lorentz space !.t'q: 

Let f!. q be the set of all operators il so that il!.t'q c;;, !fq 

and il is self-adjoint on !fq
• 

Lemma 2a: 
ta) Any operator ilE!1. q can be defined on !.t'q /.ffq also, 

and so on any embedding space f'l. 
(b) The matrix elements of any il6!l q are gauge invar

iant, i.e., (aljDfJl) = (azlil/32) foralla~a2,fJl,/3zaccording 
to definition 1. 

(c) The algebra f!. q is irreducible on !.t'q/ffq and so on 
any embedding space f'l if we agree that irreducibility 
means: anyelement/3 #0 from !.t'q/ffqcan be mapped onto 
any element aE!.t'q / ffq by a suitable ilEf!. q. 

Proof 
ta) We have to show: ilJVqc;;,JVq. Let aEffq and 

(3E!.t'q. Then theCauchy-Schwarz-inequality, which holds 
on !.t'q, says: 

I (fJ lila) 12 = I (il/3ja) 12< (il/3lil/3) (ala) = 0, so that 
(fJ jila) = O. 

With fJ: = DaE !.t'q we get the assertion. 
(b) This follows immediately from ilffqc;;,.A;q. 
(c) The irreducibility means that there is always an oper

ator lla/3 from il q so that a = lla/3/3, where a and/3 #0 are 
prescribed elem~nts from !.t'q/A;q. 

In the case of (a 113 ) # 0 one takes the projector II a/3 

: = la) (a/ll (a 113 ) I which is obviously anoperatorfrom.q q, 

for na/3f3 = ei'Pa with some cpER; because of the usual ray
equivalence in the Hilbert space !.t'q/ffq

, the elements a 
and ei'Pa are identified. In the case of (a 113 ) = 0 one takes 
lla/3: = 1!(f3lfJ H ja} (f31 + 113) (aj J and obtains directly 
lla/3f3=a .• 

Lemma 2b: 
(a) Let f( and ti be two different embeddings of 

2'q / .A:"q in !fq. Then e.qnti = {O J . 
(b) To any element aE 2'q with ai Jy"q there exists pre

cisely one embedding t'q of !.t'q/ffq in !.t'q so that aEt'q. 
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Proof 
(a) If we had u: = I'(nt'i =I {O), then every operator 

flEf!.. q would satisfy flu k u. This contradicts the irreducibi
lity of the algebra fl q (Lemma 2a). 

(b) Choose t"':-=' {flalflEflq) .• 

It is impossible to pick out one embedding as especially 
significant among all possible embeddings of !f q I ffq in 
!fq

• In the case q = 0 the subspace tof "transversal" pho
tons I could be given a special role. By the destruction opera
tors dO)(k) of "scalar" and d 3)(k} of "longitudinal" photons 
(Appendix) the subspace tc !fa is defined as follows: 

t: = {aEY M IdO)(k)a = 0 = a(3)(k}a for almost any k). (7) 

In Ref. 1 we have shown that tis Hilbert space in Y M and 
isomorphic to the quotient space !f0 I~. So, tis some em
bedding of !fa I ~ in !fa. Because tcontains the bare vacu
um UJo: = (1,0,0,..·) (Appendix), we have as a consequence of 
Lemma2b: 

Lemma 2c: tis the embedding ~ of !f°/~ in !fo 
which contains the bare vacuum UJo. Each embedding differ
ent from ~ then contains no longer the bare vacuum UJo' but 
instead a "modified" (Friedrichs8

) vacuum UJ, which can not 
be characterized by the vanishing of a", (k)UJ. 

It has already been mentioned that from any embedding 
t'" one gets another possible embedding Ii: = W { kg) t'" by 
the application of the Weyl operator W { kg) to any scalar 
function g = g(k). The following theorem says that in this 
way one will get all embeddings of !fqlffq in !fq. 

Theorem 2: Let I'( and t'i be two embeddings of 
!fqlfftl in !fq. Then there exists a scalar functiong = g(k) 
so that t'i = W {kg) 1'(. 

Proof It is sufficient to limit the proof to the case q = 0, 
for-according to the Appendix-there is always a Weyl 
operator WIg) so that!f° = W{g)!fq. Then ~ 
: = W {g) I'( and ~: = W {g) t'i are embeddings of !fa I ~ 
in !fa. If it can be shown that there is a scalar function g in 
the sense of the theorem then it follows that 

t'i = W{ -g)~= W{ -g)W{kg)t:> 

= W{kg)W{ -g)t:> = W{kg)l'(. (8) 

to is now taken as any embedding of !fa I JVO in !fa, and ~ 
as the embedding which contains the bare vacuum UJo. Now 
it is sufficient to show that there is always a scalar function g 
so that to = W I kg)~. Then there are scalar functions gl 
andg2 so that t:> = W{kgd~ and ~ = W{kg2)~' From 
this follows immediately ~ = W {k (g2 - gtl) t:>. 

In order to prove to = W { kg) ~, it is sufficient to show 
with reference to the modified vacuum UJ of to (which be
longs to the same equivalence class modulo ffD as the ele
ment UJo) that there exists a scalar function g with the proper
ty UJ = W {kg)UJo' Then we have to = W {kg)~, for 
W f kg I ~ is a possible embedding of ,Yo I JVO in ,Yo and 
contains the element UJ¥O from to, and consequently must 
be identical with to according to Lemma 2b. In order to 
show that UJ = W [ kg J UJo with a suitable scalar functiong we 
define first the components of UJ in the usual way (Appendix) 
as follows: 

tp: = (UJoI4l) 
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and 

tp"' •.... ""Jkl, .... ,kn ): = [1/(n!)1/2](UJola"" (ktl···a",.fkn)UJ) (9) 

for all nEN. Now we assert that there is a scalar function 
g = g(k} so that for all nEN: 

tp", .... ",.!kl, ... ,kn) = [1/ ~ -;!]k"" ... kl'~g(kl)···g(kn)' (10) 

We prove this by induction: in the case n = 1 we have to 
show that 

tp",(k) = (UJola",{k)UJ) = kl'g(k). 

To prove this we use the Heisenberg operators for the free 
case 

A", (x): = (217-)"':' ~f d 3k 1(2Ikl)1/2eikXa", (k) + cc, (11) 

_l 

Fj.ty(x): = i(21T) 2 

X f d 3k 1(2IkIlI/Vkx{ a", (k)kv - av(k)kl' ) + cc. 

(12) 

A straightforward calculation yields [Fj.tv(x),L (k)] = 0 so 
that F",v{X)!fqk'yq for any qED.. Furtheron, Fj.tY(x) is self
adjoint on any !fq

• As a consequence, the matrix elements of 
Fl'v(x) are gauge-invariant (Lemma 2a) so that 

(UJoIF",y(x)UJ) = (UJoIF",y(x)UJo) = O. (13) 

We generalize this equation for later purposes to the 
following statement: 

(UJolFl'vlx)aj.t. (kl) .. ·a",.fkn)UJ) = 0 for all nEN. (14) 

Herep: = aj.t. (ktl· .. a",. (kn)UJ is an element from !fo and 
lies in the same equivalence class moduloA/U as the element 
p ': = a",. (kl)···O",.fkn)UJo' According to Lemma 2a, the ma
trix element (UJoIF",y(x).8) is gauge-invariant, so that 
(UJoIFj.ty(xYJ) = (UJoIFj.tv(xYJ') = O. This is Eq. (14). 

The term (UJoIFj.tv(x)UJ) = 0 represents now the rota
tion-free integrand of the curve integral 

(15) 

where we have integrated along any smooth curve 
S I' = S I'(s), S = curve parameter, from the point 0 to the 
point x = (x",) of the Minkowski space. Therefore, the inte
gral (15) represents a function A (x) ofthe point x alone, for 
which we have 

AI", (x) = (UJoIA",(x)UJ). (16) 

If one applies this equation to the Fourier integral 

A (x) = (21T) - ~f d 3k eikxA (k) 

and to the equation 

(UJoIAj.t(x)UJ) = (21T) - if d 3k 1(2Iklll/2eikxtp", (k) (17) 

which follows from the definition of tpj.t' we get immediately 
the form tp", (k) = k",g(k). 

Induction: We start with the equation 

(UJolaj.t. (ktl",o",..fkn)UJ) = kl' •... k",,,g(ktl·"g(kn ) (18) 

and discuss the term (UJolaJL" + I (kn + I )01-'. (kl) .. ·al-'"fkn )UJ). 
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Analogously to the method used in the case n = 1 we replace 
a"", ,(kn + 1) in Eq. (18) by the potentialA".H ,(x). The curve 
integral analogous to Eq. (15) represents again a function ofx 
alone, because the rotation of the integrand vanishes (Eq. 
14). So all conclusions ofthe beginning of the induction can 
be repeated and one gets the desired form 

(wola". (kd···a"" + ,(kn + 1 )w) = k", ... k"" + ,g(kl)···g(kn + 1 ). 

(19) 

Since we can now write all components of w with the help of 
a single scalar function g, we define with this g the Weyl 
operator W I kg I and assert: w = W I kg I Wo' 

In order to prove this it is sufficient to show that the 
components (jJ,(jJ" •.• "" of w result, if one calculates 

[l/(n!)1/2] (wola". (kd···a"..!kn) W I kg lwo). 

But this follows immediately from the familar relationship 
(Appendix): 

a" (k) W I kg I Wo = k"g(k) W I kg I Wo (20) 

and the equation 

(wol W I kglwo) = 1.. 

Theorem 2 effects the connection between the concept of 
gauges which is used here and the one used in Ref. 1. There 
we started from the Hilbert space JY'Ir of "transversal" pho
tons (our space t= t;?) and introduced the subspaces ~ in 
!£,O by the definition ~: = W I kg I JY'Ir. These spaces ~ 
are identical with our ~ = W I kg 1 t;? However, it was not 
discussed in Ref. 1, whether any embedding of !£,O I~ in 
!£,O can be reached from JY'Ir by applying the Weyl operator 
W I kg 1 to a suitable scalar functiong. This gap is now filled. 

3. THE MAXIMALITY AND UNIQUENESS OF THE 
LORENTZ SPACES (Q 

In the preceding section we considered the different em
beddings t(,/i, ... of the quotient space !£,qlffq in !£,q. Now 
we select for any qeD. precisely one Hilbert space t"l in any 
way. Because then any charge distribution determines its 
own t"l the question arises whether it is possible to extend at 
least one of these spaces t"l by the "adjunction" of suitable 
elements of .Y M in such a way that a subspace u ::J t"l arises 
which is a Hilbert space, too. The following considerations 
will essentially show that this is impossible, so that the t"l are 
maximal Hilbert spaces in .Y M' 

Lemma 3a: Let ('P and t"l be two (different) Lorentz 
spaces and a#O any element from ('P. Then there exists an 
element /3et"l such that (a 1/3 ) # O. 

In this way, two Lorentz spaces are never orthogonal to 
each other. 

Proof We exploit the isometric isomorphism between 
the Lorentz spaces (Appendix). First, the functionp = p(k) 
defines the four-vector p": =t%p(k)lko and by it the Weyl 
operator W {p 1 which has the property to depict some em
bedding ~ of !£,O / ~ in !£,O onto the given ('P: 

('P=W{pI~· 
According to Theorem 2 there exists a gauge operator 

W I kg 1 to some scalar function g = g(k) so that 
~ = W I kg I tfj, where t;? is the space tof"transversal" pho-
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tons (Lemma 2c). Altogether we have ('P = W Ip + kg I tfj. 
Consequently, there exists an element aoetfj such that 

a = W{p + kglao. (21) 

By analogous conclusions there exists to q" 

: = £%.q(k)lko and a suitable scalar function h = h (k) the 
Weyloperator W {q + kh 1 such that t"l = WI q + kh J tfj. 
Now let us define the element /3e {"l by the equation 

/3: = Wlq + kh Jao· (22) 

We will prove (a 1/3 ) #0. 
Up to a nonvanishing exponential we get first for 

(a 1/3 ) = (aol W I - p - hgJ WI q + kh Jao) the expression 
(aol Wlq - p + k (h - g)Jao). Thefour-vectorr which de
termines this Weyl operator obviously has the form 
r = 8'J(k) + k i'e(k) with scalar functionsf(k),e(k) such that 
the exponent ofthis Weyl operator can be written as 

f d 3k Ira,,+ - f;a"J = f d 3k If(k)ao+ (k) - f*(k)ao(k) 

+ e(k)L +(k) - e"(k)L (k) J. (23) 

In the scalar product (aol W Iflao), we separate now 
W If J into the factors 

exp fd3kf(k)ao+(k)' exp f d 3k e (k)L +(k) 

.exp [ - fd3ke"(k)L(k)).exp[ - fd3kJ"(k)ao(k)) (24) 

up to a non vanishing exponential. The exponentials on the 
right we apply to the element a o on the right. Because 
L (k)ao = 0 and ao(k) = dO'(k)ao = 0 this yields the element 
a o itself. In an analogous way we apply both first exponen
tials to the element (aol on the left. So we reach a nonvanish
ingexponential (aolao> = (ala)#Obecausea#Oisele
ment of a Hilbert space .• 

Lemma 3b: Let ('P and t"l be two different Lorentz 
spaces and a#O any element from ('P. Then the Cauchy
Schwarz inequality cannot hold in the span spi t"l,a I which 
is the smallest subspace of .Y M containing t"l and a. As a 
consequence, spi t"l,a I is necessarily indefinite. 

Proof We go back to the spaces !£'P and !£,q and will 
prove: If ae !£'P is any element with (ala) #0, then the 
Cauchy-Schwarz inequality does not hold in the space 
sp{ !£,q,a I. 

We prove this statement in the following way: We show 
that there exists an element ve ffq with the property 
(via) #0. If, in contradiction to Lemma 3b, the Cauchy
Schwarz inequality were to hold on the span of !£,q and a, 
the above elements would satisfy 

I(vla) 12.;;;; (vlv) (ala) =0, so that (via) =0. 

According to Lemma 3a there exists an element/3e!£,q 
such that (al/3) #0. Then theelements/3o: = WI - q J/3and 
a o: = W { - p Ja are both elements from !£,O. Now we define 
v: = WI q J S d 3 k h (k)L + (k)/3o, where h (k) is any complex
valued, square-integrable function over R 3. We show that ve 
ffq. 

Proof 

(vi v) = f d 3k d 3k' h *(k)h (k') (f3o IL (k)L +(k')/3o) = 0 be-
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cause of [L (k),L + (k')] = 0 and L (kl.Bo = O. 
In the next step we show that VE2'q. 

L (k')v = L (k')W{ql j d 3k h (k)L +(kl.Bo 

= W{ql W{ - qlL (k')W{ql jd 3k h(k)L +(kl.Bo 

= W{qIL(k')jd 3k h (k)L +(kl.Bo 

+ q(k')W{ql j d 3k h (k)L +(kl.Bo 

= W {q I j d 3k h (k)L +(k)L (k'l.Bo + q(k')v 

=q(k')v. 

Let us now compute 

(via) = jd 3kh *(k)<PoIL (k)W{ -qla) 

= jd3kh*(k)<PoIW{ -qIW{qIL(k)W{ -qla) 

= j d
3
k h *(k){ (fJIL (k)a) - q(k)<Pla) I 

= j d 3k h *(k){p(k) - q(k) I <pIa). 

Because <pIa) #0 andp#q in the Lebesgue sense, we 
can always find a function h (k), which is different from zero. 
So we have (via) #0. This result is in contradiction to the 
presumed Cauchy-Schwarz inequality .• 

In particular, no Hilbert space f"i can be extended to 
another Hilbert space by the adjunction of any element a # 0 
of some {'P. Now we generalize this statement by dropping 
the condition ae {'P. However, we must include a condition 
about the expectation values of L (x) which is physically mo
tivated: As f"i consists of eigenvectors of L (x) with a possible 
charge density as eigenvalue function, a physically useful 
extension of f"i will at least have to produce expectation val
ues of L (x) which can be interpreted as admitted charge 
densities. 

Lemma 3c: Let f"i be any Lorentz space and ae Y M 

any element so that ai f"i,(ala) #0 and qa = qa(k) 
: = (a IL (k)a )eO. Then sp { f"i,a I cannot be Hilbert space in 
Y M • 

Proof We prove this by contradiction again and assume 
that u: = sp{ f"i,a I is a Hilbert space. Then we can apply the 
familiar spectral theory to the operator L (x) which is self
adjoint on the Hilbert space u because qaeO. 

To each point xeR 3 there is then a special spectral fam-
ily of projections {E q(x) IqeR I with the usual properties 

(a) E q(x)<E PIx) if q<p, 
(b) E q+ E(x)-+E q(x) for E" __ + 0 and all qeR, (25) 
(c)Eq(x)--D forq __ - 00; Eq(x) __ l forq __ + 00, 

so that L (x) can be written in the form 

L (x) = f-+ 0000 q dE q(x). 

Further on we introduce the additional projections 
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(26) 

Eq-(x): = lim Eq-E(X) and 
E_+O 

dE q(x): = E q(x) - E q - (x). (27) 

Up to this point q has been any real parameter, not a function 
in each case. 

Now we choose any function q = q(k)eO. The real-val
ued function q(x) is taken according to Eq. (3). To this func
tion q = q(x) we define now the projection E q of u in u by the 
equation 

(28) 
XER 1 

q ~ q(x) 

In an analogous way we define with the help of E q - (x) 
the projector E q - and then dE q: = E q - E q - . Obviously 
we have 

(29) 

Because any projector u--u maps a either onto 0 or 
onto a itself, we consider for any given xeR 3 the set of real 
numbers 

~(x) = {peR IE P(x)a = a I. (30) 

Each of these sets is not empty and has a lower bound be
cause of (c) so that ~(x) contains a smallest number 
p/ = p/(x). Then for any xeR 3 we have 

E P'(x)(x)a = a, but E p'(x) - (x)a = O. (31) 

This means, however 

dE P'IxI(x)a = a 

and so 

dE p'a = n dE P'(X)(x)a = a. 
XER \ 

(32) 

So we get ae t'P', for p/eO. Because p' #q, Lemma 3b yields 
the assertion .• 

Theorem 3 (Maximality of Lorentz spaces): There exists 
no Hilbert space u C Y M with the properties 

(a) u contains one f"i(f"iCu), 
(b) every element aeu satisfies: qa = qa(k) 

: = (aiL (k)a)eO. Among all Hilbert spaces of Y M with 
property (b) the Lorentz spaces f"i are consequently 
maximal. 

Proof If in contradiction to Theorem 3 any Hilbert 
space with the properties (a) and (b) exists, then choose any 
elementaeu withaE f"1 and construct the subspace sp{ f"i,a I 
of u, Lemma 3c shows that u cannot be a Hilbert space .• 

In Sec. 2 we used the algebra n q of operators n such 
that n 2'qk 2'q and n is self-adjo~t on 2'Q (see Lemma 
2a). Now we need also the algebra 

qEO 
(33) 

Every operator from f!.. maps any Lorentz space into itself 
and is self-adjoint on any Lorentz space. Examples in this 
section will show that n is not empty. 

Lemma 3d: 
(a) f!.. is irreducible (see Lemma 2a) on any quotient 

space 2'q;ffq and so on any f"i, 
(b) Let f'P and f"1 be two different Lorentz spaces and 
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choose O#aE fP,O#/3Ee". Then there exists an operator 
ilEf!.. so that the transition element (alil/3) admits no statis
tical interpretation (in the sense of Born). 

Proof 

(a) We choose two elements a#O and/3 from 2'qlffq 

and have to construct an operator PapEf!.. such that 
/3 = Papa. Because of Lemma 2a we have a projector "ap 
with /3 = "apa; but" ap is defined only on 2'q and not on 
any 2'P withp#q. To construct our PaP with the help of 
"ap we take q fixed and choose any pEU. There always exists 
a Weyl operator W {gJ (Appendix) such that 
2'q = W [gJ 2'P. The definition 

(34) 

gives a mapping of 2'P to any PEo. into itself which is self
adjoint on 2'P and goes over to "ap ifp is replaced by q. 

(b) For the element aEtP we can find (Lemma 3a) an 
element a'Ee" such that the Cauchy-Schwarz inequality 
doesn't hold with respect to the transition element (ala'). 
Because of (a) we have an operator ilEil such that a' = il/3. 
In this way, (ala') = (a I il/3 ) admits no statistical interpre
tation .• 

So far the Lorentz spaces have two characteristics, 
which will become decisive for the following considerations: 
They are maximal Hilbert spaces in.Y M' in which L (x) is 
self-adjoint, and their family is complete in so far as each 
square-integrable charge density of total charge 0 is repre
sented by precisely one of them. These two properties are 
considered sufficient for the following considerations, which 
will attempt to found the theory, as far as it concerns .Y M' 

only on these t q (respectively, yq). The limitation Q = 0 
should not become too important, for if in a physical process 
Q #0, then this process should not be influenced when in 
astronomical distances the charge - Q is fixed so that the 
whole charge vanishes. 

If one accepts the exclusive use (an additional cause for 
this is given by Theorem 4 later on) of the t q

, then one should 
preferably also use such operators on .Y M as are suitable for 
this subspace structure of .Y M' First of all the operators of 
our algebra f!.. (which map any Lorentz space into itself and 
are self-adjoint on it) should playa special role. But Lemma 
3d shows that (a lil/3 ) with a suitable ilEil admits no statis
tical interpretation, if a,/3 are taken from different Lorentz 
spaces. So we have to be careful that only elements a,f3 from 
one and the same space e" are used to compute scalar pro
ducts (alil/3). On the other hand, if an operator il had the 
property that aE t q but ilai e", then the transition element 
(alila) would be computed in the space sp[ tq,a), i.e., in a 
space in which the Cauchy-Schwarz inequality does not 
generally hold, which is necessary for a statistical interpreta
tion. Therefore we define for the time observables on .Y M 

alone according to the requirements of the Lorentz spaces in 
Y M' This definition should not refer to the e", however, but 
to the spaces 2'Q, because e" is not physically determined in 
a unique way. When a quantized four-current is introduced 
later on we will have to modify this temporary concept of 
observables. 

Definition 2: An operator il is called observable, ifthere 
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exists any nonempty subset o.n ~ U such that to every qEo.!J 
we have 

(i) il 2'Q ~ 2'q. 

(ii) il is self-adjoint on yq. (35) 

A trivial example of such an observable is the operator 
L (x) of charge density with o.L (x) = o.. 

Observables il with o.n = 0. (our algebra il 1) could be 
given a special name, e.g., global observables, but we will not 
do so because of the temporary definition of the set 0. (cf. Sec. 
5). Lemma 2a can now be extended to 

Lemma 3e: 
(a) Any observable il can be defined on all quotient 

spaces 2'QlffQ and so on all embedding spaces e", if qE o.n. 
(b) Any observable has gauge-invariant matrix elements 

on every 2'q with qEo.n . 

(c) Letqbe any fixed function from o.. Then the set of all 
observables il with qE o.n is an irreducible Lie algebra on 
2'Q I.yq and so on any embedding space e". 

It follows from the definition of Lorentz spaces that 
each observable il commutes on 2'Q(qEo.n) with L (k), re
spectively, L (x). Thus one gets a practical criterion to test in 
concrete cases whether a given operator is an observable ac
cording to definition 2 and how the funtion set o.n has to be 
selected. 

Examples: 
(a) We define the electromagnetic field tensor Fp,,(x) in 

the Schrodinger picture by 

F"" (x): = i(21T) - If d 3 k e'kx [a" (k)kv - av(k)k" j + cc. 
r (2I k l)112 r r 

Because of [Fpv(x),L (k)] = 0 the field tensor Fpv(x) is (glo
bal) observable without limitation of its domain, so that 
o.F =0.. 

,,,. (b) The canonical variables 

-'f d
3

k A" (x) = (217') 2 eikxa" (k) + cc, 
(2Ikl)112 r 

"pIx) = - i·(21T) - J d 3k (lkI/2)1/2e'kXap(k) + cc (36) 

are, in contrast, not observables as they don't commute with 
L (k). The fact that they are not observables is connected with 
the gauge problem (Sec. 2). 

(c) Usually (cf., however, Sec 6) the operator n(k) ofpho
ton number is defined as 

n(k): = ap+ (k)aP(k). (37) 

Because of [L (k), n(k')] = L (k)c5(k - k') this commutator is 
zero only on L 0 so that o.nlk) = [0 j. Accordingly, the free 
Hamiltonian 

(38) 

is an observable only ifits domain is restricted toL 0, which is 
the Lorentz space of the interaction-free theory. 

(d) In order to test our concept of observables in a more 
rigorous way we introduce the often mentioned pseudointer
action between M and any prescribed, classical, explicitly 
time-dependent four-current}!' (x,t). With the Fourier 
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components 

j,,,(x,t) = (21T) - ~f d 3k ~2IkleikXj,,(k,t), 

the Hamiltonian 

H(t):=Ho+ fd3Xj,,(x,t)A"(X) 

takes the form 

(39) 

(40) 

H (t) = Ho + f d 3k U!(k,t )a"(k) + j(k,t )a,,+ (k) J. (41) 

Because of 

[L (k),H(t)] = IklL (k) + k"j,,(k,t) 

= IkIIL(k) -jo(k,t)J, (42) 

where in the last step the charge conservation has been used, 
the Hamiltonian H (t ) is an observable only if its domain is 
restricted to the Lorentz space 2'q with q = jo. So we get 
0H!l) = Uo(k,t) J. If the time t is fixed, then the momentary 
value of the charge density selects "its" Lorentz space 2'q 
with q = jo as the correct state space of the pseudo-interac
tion (cf. Theorem Id). With the time running, the state space 
2'q(t) (where q[t] = q[t ](k) = jo(k,t) denotes the "curve" of 
functions in the set of 0 wanders, however, in Y M' Contra
dictions with respect to Lemma 3d can never occur in the 
calculation of transition probabilities because, according to 
Definition 2, any observable [J maps 2'q( t) into 2'Q( t ), so 
that the theory at each moment t remains limited to the mo
mentary 2'Q(t). The wandering ofthe state space 2'Q(t I can 
also l be written in the form 

(43) 

where U (t ) is the time evolution operator determined by the 
Hamiltonian ofEq. (41). 
Now we prescribe in any Lorentz space 2'Q precisely one 
embedding f'l in any way. By this, the family of Hilbert 
spaces f'l(t) is defined, but U (t )f'l(OI will in general not be 
identical with the chosen embedding f'l(t). According to 
Theorem 2 there must, however, exist a scalar function 
g[t] = g[t ](k) in such a way that 

C'q(l) = Wlkg[t]jU(t)f'l(OI. (44) 

In this way the definite selection of embedding spaces f'l in 
2'Q has necessarily the consequences that gauge operators 
W I kg[t ] J will appear. 

Up to now we confined our discussion to Lorentz 
spaces. Could it not be that there are other Hilbert spaces u 

in Y M which are important for physics also? But what does 
"important for physics" mean? Certainly, such a space u 

should allow us to describe at least the pseudo-interaction 
between M and any suitably chosen, classical, stationary 
four-currentj" (x). Therefore, u should contain an element 
a#O and with it the whole Schr6dinger curve U(t)a drawn 
through a, where U (t ) is the time evolution operator deter
mined by the Hamiltonian of Eq. (41) to the four-current 
j" (x). On the other hand, all (global) observables [J with 
On = 0, especially the operator L (x) of charge density, 
should also playa role on u, i.e., they should map u into itself 
and should be self-adjoint on u. So the physical theory on u is 
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not essentially poorer than the theory on any f'l. Finally, 
these observables [J together with the Hamiltonian H above, 
should admit a quantum theory (in the Schr6dinger picture), 
at least on the states U (t )a. This requires, thatto any [JEfJ the 
operator Ii: = i[[J,H] also is defined on these states and has 
the meaning of a time derivative of [J. These seem the mini
mal demands for a physically important state space in our 
case. 

Theorem 4 (Uniqueness of Lorentz spaces): Any Hilbert 
space u C Y M which is "important for physics" in the above 
sense is necessarily one of the Lorentz spaces f'l. 

Proof We commute the time derivation [Eqs. (42) and 
(6)] 

L (x) = ilL (x),H] = i(21T) -!f d 3k (2Ikl)1I2I k le'kX 

X IL (k) -jo(k)J. (45) 

Because of the stationary charge distribution, L (x) is the zero 
operator on the element a. This means that L (k)a = jo(k)a 
for almost any k so that aE2'Q(q = jo). Then there exists 
precisely one embedding f'l which contains a. Because of the 
inseparability of the algebra f!.. (Lemma 3d) u then contains 
with a every element of f'l, so that f'lku. At last, u = f'l 
follows from the maximality of f'l .• 

4. CLASSICAL ELECTRODYNAMICS FROM THE POINT 
OF VIEW OF THE LORENTZ SUBSPACE STRUCTURE 
OFYM 

As is well known, classical electrodynamics (CED) have 
a formal deficiency: the Hamilton equations of motion of the 
classical potential A" (x) and its canonical momentum lly(x) 
will not generally lead to Maxwell's equations. The Hamil
ton functional reads 

H(xo) =!f d 3x IllY(x)lly(x) + [VA Y(x)] [VAy(x)] J 

+ f d 3x r(x)Ay(x). (46) 

r(x) = r(xo,x) denotes the components of any given, con
served, four-current. Ay(x) is the four-potential, llY(x) its 
canonical momentum. The Hamilton equations of motion 
are 

a 
-Ay(x) = oH(xo)/ollY = lly(x), (47) 
axo 

~ lly(x) = - oH(xo)/oA y = - jv(x) + V2Av(X). 
axo 

They yield by iteration 

DAv(x) =jv(x). (48) 

But, the electromagnetic field tensor 

F"v(x): = a"Av(x) - avAIl (x) (49) 

doesn't immediately satisfy Maxwell's equations 

Jl'F"y(x) = jy(x). (50) 

Instead, we arrive only at 

Jl'F"v(x) = Jl'a"Av(x) - Jl'avA,,(x) 

= DAv(x) - avJl'A" (x) = jy(x) - av [JI'A" (x)]. (51) 
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Only those solutions, which at the same time satisfy the clas
sical Lorentz condition (CLC) 

(52) 

which demands a special gauge (Lorentz gauge), also satisfy 
Maxwell's equations and are, therefore, called "physical" 
solutions. 

Thus, CLC is added from outside to the Hamilton equa
tions of motion and is motivated only by the result which it 
effects. A deeper understanding, and with this a derivation 
of CLC, has not yet been achieved. 

Now the first step from CED to QED is the theory of 
pseudointeraction between the quantized Maxwell field M 
and any prescribed, classical, four-current, which is used in 
this paper as a heuristic tool. This theory can and must be 
described on the family of Lorentz spaces, as we have seen. 
In order to get these Lorentz spaces, the historical way via 
generalizations of CLC is no longer necessary. On the con
trary, the Lorentz spaces can now be characterized on their 
own through their outstanding mathematical and physical 
properties (Sec. 3). In reversal of the historical way these 
characteristics of the Lorentz spaces should now permit a 
derivation and with this a deeper understanding of CLC. In 
order to achieve this we only have to take a "step back" from 
the theory of pseudo interaction to CEO. 

Let A 1'- (x) be the part of the operator of Eq. (36) which 
consists only of photon annihilators and define (Schrodinger 
picturejif' A 0- (x): = i[H(xol,A 0- (xl], whereH(xol = H(t lis 
to be taken from Eq. (41). 

Theorem 5: The operator identity aVA v- (x) = 0 holds 
on the family I 2"Qlq = jo(x) 1 of Lorentz spaces. If the theory 
of pseudointeraction is restricted to these spaces, the Lo
rentz condition in this theory is automatically satisfied. Re
turning from this theory to CED we get automatically CLC. 
Conversely, CLC is necessary in CEO in order to permit a 
transition from CED to the theory of pseudo-interaction and 
further on to QED. 

Proof H (xo) is, according to Sec. 3, example d, an ob
servable only if its domain is limited to the Lorentz space 
2"<1(x. 1 belonging to q[xQ] = jo(k,xo). The time evolution op
erator U (xol which belongs to H (xo) has the property (Eq. 
(43)] 2"q{x.1 = U (xo)2"Q[OI. The Schrodinger curve a(xo) 

through any element aE2"<JIO] is consequently given by 
a(xol = U (xo)aE2"q/x.J so that L (k)a(xo) = q[xoJ(k)a(xoJ for 
almost any k. 

A simple calculation yields 

if'A 0- (x) = i(21T) -if d ]k e'K"{k °ao(k) - q[xo)(k)). 
(2Jkj)1/2 

Consequently, we arrive at 

aVA;:(X)=i(21T)-if d
3

k e'KxIL(k)-q[xoHk)J. (53) 
(2!k!)1I2 

Because of L (k)a(xo) = q[xoJ(k)a(xol we get the assertion .• 
As a consequence, an additional Lorentz condition be

comes superfluous in quasiclassical electrodynamics on the 
family of Lorentz spaces. Thus, CED finds its formal com
pletion in these quasic1assical electrodynamics, which are 
based essentially on the concept of photons. 
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In this way, the described lack of CEO is repaired by the 
canonical quantization of M in a surprising manner. Con
versely CLC anticipates, in some sense, the concept of 
photons! 

With these considerations we can, by the way, also un
derstand why the generalization of a seemingly unimportant 
additional condition to CED could result in a criterion for 
the selection of Hilbert spaces in Y M, i.e., for the solution of 
a purely mathematical problem. 

5. THE IMPORTANCE OF LORENTZ SPACES FOR THE 
STATE SPACE OF QED 

Weare looking for a state space of the theory of interac
tion between the quantized Maxwell field M and the quanta 
of a four-current JI' (x), given as an operator in the Schro
dinger picture, e.g., the electrons and positrons 
b r+ (k)v,d r+ (k)v (v = vacuum, r = 1,2) of the Dirac four-cur
rent J/-L (x) = e~(x)rl' ¢(x). The creation operators b r+ ,d / 
span the Fock space Y J in the usual way, and this space 
must be a partner of Y M in some way. 

The first choice for the state space of the interacting 
systemJ + Mis the tensorproduct9 Y J ® Y M of the part
ner spaces. However, two elements a ® a, b ® fJ (a, b, E 

Y J ,a,{JEy M ) of this tensor product is ordered to the scalar 
product 

(a®alb®/3): = (alb )(al/3)· (54) 

Because of the special properties of the Lorentz spaces, the 
scalar product (a,/3 ) which appears here is responsible for 
the fact that in general the Cauchy-Schwarz inequality can
not hold in Y J ® or M' so that a statistical interpretation in 
the sense of Born is impossible. Therefore, the state space 
must be constructed in such a way that only the Hilbert 
spaces t'q (definitely selected in some way) or, more general
ly, the spaces 2"Q of Y M are used, and that "mixtures" of 
elements from different Lorentz spaces can never appear 
when scalar products are computed. Consequently the state 
space to be constructed must consist of "sectors" 

(55) 

in which t'q is a definitely selected Hilbert space in Y M' The 
closest possibility to define the partner space h q consists in 
introducing it as the eigenspace of the operator Jo(x) of 
charge density to the eigenvalue function q = q(x) according 
to Eq. (3). As an alternative to this definition we could also 
use the Fourier component Jo(k), which is given through the 
more general definition 

J/-L (x) = (27TJ -If d 3k (2Ik) l12elkxJp (k). 

Let J,.. (x) be self-adjoint on .Y' J so that 

J ,..+(k) =Jp ( - k). 

(56) 

(57) 

The Hamiltonian H which describe the interaction be
tween J and M will then take the form 

H = Ho + f d 3k IJ 1'+ {k)a/-L(k) + JI'(k)a/-L+ (k)l, (58) 

in which Ho is the free part. We are going to introduce the 
term Q (x): = Jo(x), respectively Q (k): = Jo{k}, for the fre-
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quently occurring operator of the charge density. To any 
qED the space Aq is then defined by 

Aq: = I aEY J IQ (k)a = q(k)a for almost any kER 3 J. (59) 

We must further on take care that all parameter functions 
qED in the state space to be constructed really playa role, but 
on the other hand, that products between elements from dif
ferent spectors J q will never appear. Thus we are almost 
forced to define the positive-definite state space of the inter
action theory of the system J + M as the direct sum of the J q 

(60) 

The introduction of the direct sum means the introduction of 
a new scalar product, which, however, is reduced to the al
ready-defined scalar product when we limit ourselves to a 
single sector Jq. Each tensor product Aq ® t"l expresses from 
the beginning the inseparability of a possible charge density 
from its photon robe. Furtheron, J q seems to demonstrate a 
close connection between the quantization of M and charge 
quantization. 

Of course, the direct sum Y is mathematically not de
fined as such, because of the continuous set D. In order to 
express this it would be advisable to use the sign Y = S J q 

instead of Ell • An element AEY is generally given by a con
tinuous set of components A qEJ

q and could be written as 
A = SA q. But we will neither discuss here what such a con
tinous representation of any element AEY means physical
ly, nor whether a theory of the continuous direct sums with 
reference to the Lorentz spaces can be established in a satis
factory manner. We regard Y here only as a formal con
glomerate of the sectors J q

• 

Our definition of the family of the J q and so the state 
space Y depends decisively on our choice of the function set 
D. 0. has been introduced according to the requirements of 
the theory of pseudo-interaction between M and any given, 
square-integrable four-current. Therefore, 0. will not even 
describe the soft-photon effects 10-13 connected with a classi
cal four-current. Kibble i3 gives some remarks (p. 321 of his 
work) which would lead us possibly to a certain extension of 
the space Y M and of the set 0. so that the infrared problems 
could be handled on the basis of the supplementarily-intro
duced sectors J q. But in this paper we will not do so; we 
intend here only to discuss the benefit which the Lorentz 
spaces t"l and the sectors J q bring to the (temporarily restrict
ed) QED. By the way, Kibble i3 does use only the Lorentz 
space ,Yo, especially the coherent states from ,Yo. This is in 
accordance with his intentions to give a (soft-photon pro
cesses including) S-Matrix theory of four-currents. Because 
the in- and out-vectors of any scattering theory are free 
states, Kibbles's states belong to ,Yo because they are taken 
as coherent. 

However, our set 0. is too small not only with respect to 
soft-photon effects. We introduce here also the eigenspace Aq 
of the charge operator Q (k) in its Fock space Y J' In general, 
Q (k) will admit eigenfunctions which do not belong to D. 
Also from this fact the necessity arises to extend 0. to some 
set 0.* ::J 0. so that the enlarged state space 
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(61) 
qeD.· 

possibly becomes the state space of the full QED. Obviously, 
this enlargement causes a lot of trouble, which we are not 
willing to discuss here. 
. Summarizing, our space Y defined by the index set 0. 

will represent not the full QED (provided that QED can be 
regarded as a self-consistent, full theory at all) but, in some 
sense, a "hard core" of it. Ifin this restricted QED the con
cept of the sectors J q proves true, the same concept with 
additionally-introduced sectors Jq(qED*) in possibly en
larged spaces Y1,Y~ instead of our Y J'Y M will also be 
important with respect to full QED. 

We will now discuss some advantages of our state 
space Y and have especially to show that our definition of 
Y does not contradict the time evolution operator U (t ) 
which is given through the Hamiltonian ofEq. (58). 

Before we turn to this question we give the new concept 
of observables as it follows necessarily from our construction 
of Y. If there is given any operator fl:Jq-+J q, i.e., fl (a ® a) 
= a' ® a'(a,a'EIf \a,a'Et"l), then we define the operators 
fl k :Aq-+Aq, respectively fl 1 :t"l-+t'q, by the equations 
flka: = a',respectively fl1a: = a', and write fl = flk ®fl l • 

We write the identical mappings in any A q, respectively t"l, 
in the form 1 k , respectively 1/. In this way we can write, e.g., 

L (k) = lk ®L (k) and Q(k) = Q(k) ® I,. (62) 

Definition 3: An operator fl = fl k ® fl, is called observ
able if there exists any nonempty subset Dn ~ 0. such that to 
every qEDn we have 

(i) fl, is observable in the sense of Definition 2 (Dn, 

: = Dn)· 
(ii) flkAq~Aq. 
(iii) flk is self-adjoint on Aq. 
From this definition follows immediately: If 

fl = fl k ® fl / is any observable and qEDn , we have 

[flk,Q(k)]Aq = 0 and [fl"L (k)]t"l = O. (63) 

In particular, any observable fl commutes on any sec

tor Jq(qEDn ) with the operator of charge density. Thus one 
theorem of Strocchi and Wightman 7 follows here directly 
from the construction of the state space Y, the definition of 
which is basically a consequence of the canonical quantiza
tion of the Maxwell field. 

It should be noted, by the way, that the Hamiltonian H 
ofEq. (58) will not be an observable in our sense, otherwise 
the time-evolution operator U (t ) determined by H would 
have to map every sector J q with qEDH into itself, so that the 
expectation value of the charge density would be constant in 
time. 

Before we come to the question of whether the time
evolution operator U (t ) doesn't contradict our concept of Y 
we will show that the Lorentz condition, as it is otherwise 
necessary in QED, and in connection with it the charge con
servation, are automatically valid in any QED on the basis of 
our state space Y. Thus any QED on Y is a constraint-Jree 
theory, because selection rules, as they are otherwise repre
sented by the Lorentz condition or the charge conservation, 
are superfluous. Both conditions will not appear here even in 
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a hidden form, for the construction of Y and the definition 
of observables which is closely connected with it are based 
only on the outstanding properties of the Lorentz spaces; i.e., 
it goes in principal back to the canonical quantization of the 
Maxwell field. In this connection it is not important that the 
way to these Lorentz spaces has been shown heuristically by 
the classical Lorentz condition. 

LetA 1-'- (x) be the part of the operator ofEq. (36) which 
consists of only photon annihilators and define (Schr6dinger 
picture) if A 0 (x): = ilH, Ao (x)] , where H is to be taken 
from Eq. (58). Similarly define if Jo(x): = i[H,Jo(x)]. 

Theorem 6: The Lorentz condition 

aVA v-Ix) = 0 

and the charge conservation 

aVJv(x) = 0 

hold automatically as operator identities on Y. 

(64) 

(65) 

Proof With the use of only the commutation relations 
of the photon creation and annihilation operators one 
calculates 

a °A 0- (x) = i(21T) - ~f d 3k eikXI k °ao(k) - Q (k) J. 
(2I k l)l12 

Together with the formal derivation arA r- (x) for r = 1,2,3 
we get 

aVA v- (x) = i(21T) - ~f d 3k e'kx{ L (k) - Q (k)J. (66) 
(2Ik l) 112 

Now,L (k) - Q (k) is the zero operator on any J q and soon Y. 
The commutation relations of the photon creation and 

annihilation also yield 

[L (k),H] = koL (k) + k vJv(k), (67) 

from which follows (for r = 1,2,3) 

ifJo(x) = - i(21T)-~f d 3k (2Ikl)1I2e,kX lko[L (k) - Q(k)] 

+ krJr(k)J. (68) 

Because of L (k) - Q (k) = 0 on Y and the formal derivation 

arJr(x) = i(21T) - ~f d 3k (2Ikl) 112e'kxk rJr{k) (r = 1,2,3) 

one gets immediately av J" (x) = 0 on Y .• 
Now we have to discuss whether the time evolution op

erator U (t ) doesn't contradict our definition of Y. We will 
show that this concept is consistent with time evolution if the 
function set 0 is enlarged to some set 0'" :::l 0 as discussed 
above. 

Let 0* be a set off unctions q = q(k) such that 0'" con
tains our set 0 and all eigenfunctions of the operator Q (k) on 
Y J' Generalize also the definition on J q in such a way that 
any function qEO'" may also appear as index. Then we prove: 

Theorem 7: Start at t = 0 from any element 
a ® aE.-tq ® t q = J

q
, where q = :q[O] is chosen from 0*. Then 

to any t> 0 there exists a function q[t ] from 0* such that 

U (t )(a ® a)EJq[t I. (69) 

Proof First we prove for any t> 0 the equation 

L (k)U(t )Jq[OI = Q (k)U(t )Jq[OJ. (70) 
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We use charge conservation (Theorem 6) aVJv(x) = 0 on Y. 
Because we work in the Schr6dinger picture, this means 
(r = 1,2,3): 

[Q (k),H] = k rJr(k) = k rJr(k) ® 1/. (71) 

This reads for (v = 0,1,2,3; r = 1,2,3) 

k VJ v (k)®l, = -koQ(k)®11 + [Q(k),H]. (72) 

From the HamiltonianH ofEq. (58) we get by the cummuta
tion relations of the photon creation, respectively annihila
tion, operators the equation 

[L (k),H] = koL (k) + k "J,,(k) 

= lk ® kc,L (k) + k vJ,,(k) ® II 

= ko {L (k) - Q (k)J + [Q (k),H ] . (73) 

On any sector J q
, L (k) - Q (k) is the zero operator according 

to the definition ofJ q, so that we have [L(k),H] = [Q (k),H] on 
any J q

. Iteration of this equation yields 
[[L(k),H],H] = [[Q(k),H],H] on Y and soon. Be
cause of U (t ) = exp( - iHt) and the formal series exp(iHt ) 
XL (k)exp( - iHt) = L (k) + it [L (k),H] + ... [similarly with 
respect to Q (k)] we get on Y, 
L (k,t): = U+(t)L (k)U(t) = U+(t)Q(k)U(t) = :Q(k,t)P4) 

Multiplying this by U (t ) from the left we get Eq. (70). 
Thus we can be sure that from the equation L (k)(a ® a) 

= q(k)(a ® a) = Q (k)(a ® a) the equation L (k)[a(t) ® a(t)] 
= Q (k)[a(t ) ® a(t )] follows at least once for each element 
a(t) ® a(t): = U (t)(a ® a) of the Schr6dinger curve drawn 
through the element a ® a. The question remains whether 
a(t) ® a(t) lies in a sector Jq[t J every time. We take a(t) ® a
(t) = U(t)(a ® a) and use the operatorsL (k) = lk ®L (k)and 
Q (k) = Q (k) ® I,. It follows that 

[lk ®L(k)][a(t)®a(t)] = [Q(k)® Id[a(t)®a(t)],i.e., 

a(t) ® [L (k)a(t)] = [Q (k)a(t)] ® a(t). (75) 

Such an equation can only be true if we have, with a 

function q[t] (k), 

L (k)a(t) = q[t ](k)a(t ) and Q (k)a(t ) = q[t ](k)a(t). (76) 

Because 0'" has so been chosen that it contains q[t] and be
cause the definition of any sector J

q accordingly has been 
generalized, these equations indeed define the sector Jq[t J •• 

We finish this section with some remarks about ap
proximation theories for QED on the basis of our state space 
Y'" = SJq (qEO*). Any approximation might consist in a 
suitably chosen subset ored C 0* (in this sense, our index set 
o also defines such an approximation theory). Instead of the 
full state space Y'" we start with a reduced state space at 
t=O 

yred(t = 0): = Ell J q
• 

qeDn"<t 

The consequence is that with time running the state space 
yred(t): = U (t )yred(t = 0) ofthe approximation theory will 
move through Y"'. In this way one gets a wandering state 
space, similar to the theory of pseudointeraction between M 
and any prescribed, classical, four-current (Sec. 3, example 
d). There cannot be any contradictions with respect to Sec. 3, 
however, because according to Definition 3 any observable 
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will always map this state space yred(t ) into itself at any 

momentt;;;>O. 

6. THE NUMBER OPERATOR OF PHOTONS AS AN 
OBSERVABLE 

To apply our discussions we are looking for the number 
operator of photons. In the literature it is usually given as 

(77) 

In Sec. 3, example c, however, we have already seen that n(k) 
is an observable only if the set On(k) consists of only the zero 
function; this means n(k) is restricted to the space !,I'0. One 
may look upon this fact as a formalism, but the following 
lemma will show that n(k) on Lorentz spaces !,I'q with q=/=O 
cannot have the physical meaning of a photon number. 

Lemma 6a: 
(a) In any Lorentz space !,I'q with qj=O there are ele

ments a such that (a I n(k)a) < O. This contradicts the as
sumption that the term d 3k (aln(k)a) could be a photon 
number. 

(b) Furthermore, the expectation values of n(k) on any 
space !,I'q with qj=O are not generally gauge invariant, i.e., 
the value (a In(k)a) of any element O#aE !,I'q changes when 
a is replaced by another element a' E !,I'q which is equivalent 
to a modulo ffq

• 

Proof 
(a) The function q = q(k)j=O from 0 may be given. We 

define the four-vector function tp/l- (k) by tp°(k): = q(k)lko and 
tpr(k): = 0 for r = 1,2,3. Then we have a: = W {tp jwo is an 
element from!,l'q (Appendix). With respect to this element a 
we compute the expectation value 

(aln(k)a) 

= (woIW{ -tp )a,,+(k)W{tp )W{ -tp JaV(k)Wltp lwo) 

= (wol [a,,+ (k) + tp ~(k)] [aV(k) + tp V(k)]wo) 

= tp ~(k)tp "(k) = - q*(k)q(k)lk 6 < 0 for some kER 3. 

(b) We now choose any element aE!,I'q with (ala) j=0. 
According to Sec. 2 we apply the gauge operator W { kg I to 
any scalar function g = g(k). The element 
a': = W { kg 1 aE!,I'q is then equivalent to a modulo ffq. A 
straightforward calculation gives 

(a'ln(k)a') = (al [a,,+ (k) + k"g*(k)][a"(k) + k "g(k}]a) 

= (aln(k}a) + [g*(k)q(k) +g(k)q*(k)](ala). 

Therefore, we can arrange by a proper selection of k and g 
that in all cases qj=O we have (a'ln(k)a') j= (aln(k)a) .• 

Thus we have shown that at least in the case q j= 0 the 
correct operator N (k) of the number of photons remains to be 
looked for. As N(k) is to be defined on Y M' i.e., 
N(k) = lk ®N(k}, we introduce as an heuristic means the 
pseudointeraction between M and any prescribed, classical, 
four-currentj" (x) with the following intention: The pre
scribed classical four-currentj" (x) defines the time evolution 
operator U (xol by the Hamiltonian H (xo) = H (t ) ofEq. (41). 
Then we have .,2"q[x,,] = U(xo).,2"q(OJ, where 
q[xo](k) = jo(k,xo), so that the elementa(xo): = U(xo)a of the 
Schrodinger curve drawn through a is always in the correct 
Lorentz space .,2"q[x.J if the initial element a was selected in 
!,I'q[oJ. The expectation values of the field tensor F/l-"(x) of 
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Eq. (12) with respect to a(xo) will then give the expectation 
values E(x) and B(x) of the electric and magnetic field 
strengths. The classical field energy must be connected wi~h 
the expectation value of the operator N (k) to be looked for In 

the following way: 

fd 3k Ikl(a(xo}N(k)a(xo) =~fd3X [E2
(x)+B

2
(x)]. (78) 

A tightening of this postulate (78) will automatically lead us 
to the operator N(k) we have been looking for. 

Lemma 6 b: We take the Schrodinger curve 
a(xo) = U (xo)aE!,I'q(x"J as it has just been introduced. With 
the help of the expectation value 

g,,(k,xo): = (a(xo)a/l-(k)a(xo»/(a!a) (79) 

we can then write the classical field energy, which is connect
ed with the prescribedj/l- (x), where q[xo](k) = jo(k,xo}' as 
follows: 

~ f d 3X [E2(X) + B2(X)] 

= fd 3
k ko{g;!gI' - :0 [qg~ +q*go]}. (80) 

Proof: From F"" (x) and the definition of g" one gets first 
the Fourier components in the form 

E(k,xo) = i (2ko) - I 12{ k [go(k,xo) + gt( - k,xo) ] 

- ko[g(k,xol - g*( - k,xo)]), (81) 

B(k,xo) = i(2ko) - 112{kXg(k,xo} + kxg*( - k,xo)}, (82) 

where we have combined the componentsg),g2,g3 with the 
"vector" g. From this we get the assertion by the equation 

~f d 3X [E2(XJ + B2(X)] = ! f d 3k [E(k,xo)E*(k,xol 

+ B(k,xo)B*(k,xo)]' (83) 

if one also considers the premise with reference to the Lo
rentz spaces in the form 

(84) 

Because of Lemma 6b we demand for the expectation 
value of N (k) the equation 

(a(xoJN(k)a(xoJ>: = g~(k,xo)g"(k,xo) - (lIko) 

X {g~(k,xo)q(k,xo) + go(k,xo)q*(k,xo)}. 
(85) 

AsN (k) is here applied on a(xoJE.,2"qjxnl and as N (k) should go 
over to the operator n(k) in the case q = 0, this leads us neces
sarily to the definition 

Definition 4: We introduce as the number operator of 
photons: 

N(k): = n(k) - (lIko){ao+(k)L (k) + L +(k)ao(k)}. (86) 

We get some other forms of the operator N (k) when we intro
duce the usual transversal photons (Appendix) with the 
number operator 

nlr(k}: = a+(J)(k)a{l)(k) + a+(2J(k)a(2)(k) (87) 

and "bad ghosts" in the sense of Ref. 14 with the destruction 
operators 
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and the number operator 

Then we get N(k) = ntT(k) + 2nb(k) 
and 

N(k) = ntr(k) + _l_.L +(k)L (k). 
k 2 

° 

(S9) 

(90) 

All these equations show that N (k) will coincide with n(k) 
only on the space 2"0, i.e., in the absence of any electrical
charge distribution. Equation (90) shows especially that 
ntr(k) gives the density of the "radiating" photons, whereas 
the term L + (k)L (k)/k 6 gives the density of the photons 
bounded by the given charge distribution. Only the sum of 
both parts is an observable in our sense! 

The new operator N (k) now possesses all properties 
which were missing in Lemma 6a with n(k). 

Theorem 8: The operator N(k) is an observable with 
:O.Nlk) =:0. (especially gauge-invariant according to Lemma 
3e) and non-negative. 

Proof By straightforward computation one finds 
[L (k),N (k')] = O. Thus N (k) maps every Lorentz space into 
itself. The property of N(k) of being non-negative follows 
immediately from Eq. (90), for the number operator of the 
transversal photons is non-negative .• 

We return to the interacting system J + M (Sec. 5) with 
the state space Y = ffi J? According to Eq. (5S) the Hamil
tonian is given by 

H =H~ + Id 3kkon(k) 

+ I d 3k {r(k)a,; (k) + J,,+ (k)a"(k)}, (91) 

where H ~ is the Hamiltonian of the free electrons and posi
trons (more generally, the free quanta of J). Now we rewrite 
Hin the form 

+ I d 3X Jr(x)A '(x), (r = 1,2,3). (92) 

The expectation values of Q (k) and L (k), and Q + (k) and 
L +(k), respectively, coincide on Y, so that we can write for 
H in a short form: 

H= Id 3kkaN (k) + Id3XJr(X)Ar(X)+H~. (93) 

The Gupta-Bleuler-metrics have been eliminated formally 
from this remarkable form of H, for r = 1,2,3. The operator 
Jo = Qwill no longer appear explicitly. Instead, the operator 
N (k) takes the role of Jo, as N (k) introduces the eigenvalue 
function q of Jo = Q on any sector J q into the calculation. 

APPENDIX 
The following section summarizes physical and math

ematical prerequisites of this paper. It will also serve to give 
our terminology. 
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A. The space .Y M 

The physical principle for the definition of the state 
space Y M of the quantized Maxwell field M is provided by 
the canonical commutation relations 

[A,,(x),l/"(x')] = iO;'O(x - x') (AI) 

of the dynamical variables of M which are to be represented 

on Y'M' If one introduces first the operators aI' (k),av+ (k) in a 
formal way by the definitions 

and 

II "(x') = - i(21T) - 3 I d 3 I ~ I~I {e'lx'a"(l) - e - .h'a + V(l)}, 

then Eq. (A 1) is satisfied if one postulates (A2) 

[ai' (k),a,,+ (1)] = g""O(k - I) 

and 

[a,,(k),av(I)] = 0 = [a,,+ (k),av+ (I)], (A3) 

where the Minkowski metric g"" = ( - 1, + 1, + 1, + 1) 
and natural units have been used. To represent now these 
formal operators on a space .Y M we denote by KOthe empty 

set and by K" the set (k.,fl.; ... ;k",fl,,) ofn = 1,2, ... pairs of 
real variables k",flv where any kv varies continuously over 
the lR3 and any flv assumes the values 0,1,2,3. Define further 
the symbol SdK" by 

(A4) 

where Sd 3k denotes the elementary Lebesgue integral over 
the lR3

. Consider also the Fock space Y of all sequences 

a: = [ao(KO),a.(K\a 2(K
2

),. .. J, (AS) 

with the following properties: The nth component 
a" = an (K") of a is a complex number for n = 0, and for 
n = 1,2, ... it is a complex-valued function, symmetric in the 
pairs (k",flv) and defined in such a way that SdKnla,,(KnW 
exists. The Hilbert scalar product of S~- is given by 

(A6) 

and exists for any a,p,EY if aEY means 
Iiall: = yI[ala] < 00, as usual. We assume that Y has been 
completed already. The norm 11 .. ·11 on Y defines in particu
lar a complete Banach space !!lJ. On this Banach space we 
introduce the scalar product (Gupta-Bleuler form) 

(alP>: = a1fPo + nt.! dK n a~(K n)g".". ·"g",J,./3n (Kn), 

(A7) 

which is used exclusively in this paper. Y M is then defined 
as the pair 

YM:=(.%',(aIP»). (AS) 

In all subspaces of Y M which are discussed here this scalar 
product ( I ) is always used automatically. In close analogy 
to Fock spaces· 5 we define destruction and creation opera-

W. Gessner 702 



                                                                                                                                    

tors al-' (k),al-'+ (k) by 

(al' (k)a)n (K n): = (n + 1) l/Zan + 1 (k,fL;K n), n = 0,1, ... and 

(al-'+{(ci~)n~K~~ 

: = ~! gl-'l-'vD(k - kv)an_ dKn\(kv,fLv)), n = 1,2, ... 
~nV~1 

(A9) 

with 

and 

Kn\(kv,fLv) 
: = (kl'fLl···;kv _ 1 ,fLy - 1 ;kv + 1 ,fLv + 1 ; ••• ;kn ,fLn)' 

These operators satisfy Eq. (71) and are formal adjoints of 
each other relative to ( I ). 

As the "bare vacuum" liJo we introduce the element 
liJo: = (I,O,O"")E Y M' With its help we can also write the 
components an (K N) of any element aEY M in the important 
form 

an(Kn) = (n!) -lIZ(liJo lal-'.(k 1)···a/iJkn )a), n = 1,2 ... , 

(AlO) 

For many purposes it is useful to introduce modified opera
tors alA I(k),a + IA I(k) instead of the operators al-' (k),a/i+ (k) by 
the definitions 

3 3 

a/irk) = I e~l(k)aIAI(k), al-'+(k) = I e~l(k)a+IAI(k),(Al1) 
A=O A~O 

where the e~ l(k),A = 0,1,2,3, are real "polarization" four
vectors with the properties (for r = 1,2,3) 

e~l(k) = 1; e~ol(k) = 0; e~ll(k)elll'(k) = 1 = e~l(k)eIZlr(k); 

e&ll(k) = 0 = e~l(k); k re~ll(k) = 0 = k re~21(k); (AI2) 

e~l(k) = 0; e~31(k) = k,/lkl; e~ll(k)eIZI'(k) = 0; 

repeated indices r indicate the sum over r = 1,2,3. These vec
tors satisfy the relations 

e~ l(k)eWI/i(k) = gAA' (A 13) 

and induce the concept of destruction operators for scalar 
(;1 = 0), transversal (;1 = 1,2) and longitudinal (;1 = 3) pho
tons with reference to the new operators alA I(k). The commu
tation relations are now 

(At4) 

The Lorentz operator L (k) = k "ay(k) takes the special form 

L (k) = kolaI31(k) - a(O)(k)J, ko: = Ikl. (At5) 

B. Weyl operators on J'M 

Let!,i (k) be any square-integrable four-vector function. 
Then we expect that the Weyloperator 

WIll: = exp I d 3k {f'"(k)a/; (k) - I: (k)all(k) I (A16) 

can be defined on LY M by its power series. We bypass the 
question of the exact domain of W III in Y M (cf. however 
the appendix of Ref. 1). The following relations are the main 
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tools of our conclusions: 

W+{/I = W! -II, 

W!/+g} = W!/}W!gl exp! -ilmJd 3kl l-'(k)g!(k)}. 

(AI7) 

W!/1 = exp { - !Jd 3k l !(k)JI-l(k)} 

. exp {I d 3kll-'(k)a/i+ (k)} 

. exp { - I d 3k l !(k)al-'(k)}" 

Their consequence is, in particular 

(W{fjaIWf/ja) = (ala). (AI8) 

Coherent states l6
,17 of Y M are elements ofthe form 

W !/lliJo = exp { -!f d 3kl!(k)I/i(k)} 

. exp {I d 3kJl-l(k)al-'+ (k) }liJo, (A19) 

They satisfy 

al-'(k)W !/lliJo =1/i(k)W I/lliJo, (A20) 

so that any coherent state is an element of the Lorentz space 
yq where q is given by the equation 

q = q(k) = k /ill' (k). (A21) 

The Weyl operators define isometric mappings 1 between the 
Lorentz spaces. Such a mapping YP-.yq is given in the 
following way: Let P/i (k),q/i (k) be functions such that 
k /'pl-' (k) = p(k) and k /iq/l (k) = q(k). Then the Weyl operator 
WI q - p I gives such a mapping. 

If one takes gl-' (k) = kl-'g(k) for any scalar function g(k) 
there arises the Weyl operator W {kg I which maps any Lo
rentz space yq into itself because k 2 = k Yk v = O. The Weyl 
operators occur, by the way, in a quite natural way as time
evolution operators U (t ), if one introduces I on Y M the 
pseudointeraction between M and any prescribed classical 
four-current. 
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Phase-space approach to relativistic quantum mechanics. III. Quantization, 
relativity, localization and gauge freedom 
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We examine the relationship between the mathematical structures of classical mechanics, 
quantum mechanics, and special relativity, with a view toward building a consistent framework 
for all three. The usual idea of "canonical quantization," with its emphasis on the transition from 
functions over classical phase space to operators, appears to be inconsistent with relativistic 
covariance. On the other hand, the spectral condition of relativistic quantum mechanics, which is 
merely a covariant statement that the energy is nonnegative, naturally leads to the construction of 
a covariant extension of classical phase space. By giving up the idea of sharp "localizability" in 
space-known to be at odds with covariance- and adopting instead a notion of "soft" 
localizability in phase space, a consistent theory of relativistic quantum mechanics is seen to 
emerge whose structure naturally incorporates the classical sympletic geometry as well. 
Furthermore, the new theory deals directly and covariantly with extended particles rather than 
point particles and is free of the various inconsistencies known to plague the usual theory. The 
new notion of "microlocality" in phase space leads to a new form of gauge freedom which is 
similar to the usual one but simpler and more powerful, using methods of complex analysis. The 
phase-space version of Yang-Mills theory is worked out. 

PACS numbers: 03.65.Ca, 11.1O.Np 

1. INTRODUCTION 

In recent years, the relationship between classical and 
quantum mechanics has received much renewed attention. 
Most efforts have centered around the problem of "quanti
zation" (for a sample of the literature see Refs. 1-3 and the 
references therein) and its dual, the "classical limit" problem 
(see Refs. 3,4 and the references therein). One major point of 
view which has emerged in connection with the quantization 
problem is that there is no entirely satisfactory, exact solu
tion (see, for example, Ref. 4, p. 249), although its study has 
led to some deep and interesting results such as the orbit 
method in Lie group representation theory and a better un
derstanding of the semiclassical approximation. In the study 
of the classical limit problem, considerable progress has been 
made-generally by using phase-space formulations of 
quantum mechanics such as the various "coherent-state" re
presentations. Thus it appears that while the classical limit 
problem lends itself to rigorous mathematical analysis, 
"quantization" remains an art, relying on one set or another 
of mysterious but sometimes useful "prescriptions." This 
should not be so surprising, since quantum mechanics is the 
more fundamental description of Nature; hence the quanti
zation problem appears analogous to guessing a relativistic 
theory from its nonrelativistic limit. 

Yet, the dream of a perfect "quantization scheme" dies 
hard. The reasons for this are not difficult to discover: 

In recent years, classical mechanics has been general-
ized and reduced, in principle, to a branch of global symple
tic geometry.5-7 By contrast, the accepted, standard formal
ism of quantum mechanics is far from being definitive; it 
depends on the existence of Cartesian "canonical coordi
nates" which are to be suddenly and mysteriously trans-

formed into operators on a Hilbert Space, with Poisson 
brackets going to commutators. Aside from its conceptual 
deficiency, this process is both mathematically and physical
ly unsatisfactory. It is not "intrinsic" (and hence fails, for 
example, when the classical phase space is curved or multi
ply connected), and even in the standard theory it is riddled 
with ambiguities (the operator-ordering problem). Anyone 
who believes in the fundamental unity of Nature will be led 
to search for a quantum-theoretic counterpart of global, 
symplectic classical mechanics. This is the basic motivation 
behind the "geometric quantization" program. 1-3 

My aim in this paper is as follows. 

(1) I will show (in Sec. 2) that the "canonical" structure 
of the position and momentum operators in nonrelativistic 
quantum mechanics is afluke; it is a degenerate form of 
relativistic invariance which, strictly speaking, breaks down 
in the relativistic theory. This insight into the canonical 
commutation relations (CCR) both explains their mystery 
and casts into doubt their value as a cornerstone of quantum 
theory. (These remarks are restricted to ordinary quantum 
mechanics; we make no claims in this paper concerning the 
canonical commutation and anticommutation relations of 
quantum field theory.) 

(2) Since one of the great attractions of the CCR has 
been their formal relation to the classical symplectic struc
ture, their critique cannot be considered entirely satisfactory 
until a substitute for this relation is found. This will be done 
in Sec. 3, where, summarizing Parts I and II of this series, a 
natural formulation of relativistic quantum theory in terms 
of functions over a covariant extension of classical phase 
space is given. As a by-product, two related, long-standing 
inconsistencies of relativistic quantum mechanics (in its 
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standard, space-time formulation) are resolved, namely the 
problems of localization and covariant probabilistic interpre
tation. Rather than being sharply localizable in space, parti
cles in the new formulation are at best permitted to be softly 
localizable inphase space. This concept, which we call micro
locality, turns out to give a consistent and satisfactory 
theory. 

(3) Since strict localizability is untenable, the idea of 
local gauge invariance must be reexamined. In Sec. 4 we 
develop a "microlocal"gauge theory in phase space. The re
sulting gauge fields are shown to be formally similar to, but 
conceptually simpler than, the usual fields of Yang-Mills 
type. 

2. QUANTIZATION AND RELATIVITY 

To see how the CCR originate in Relativity, consider 
the invariance group g; '+ (restricted Poincare group) of 
Minkowskian space-time, whose Lie algebrafi is spanned by 
the generators Tk (k = 1,2, 3) of spatial translations, To of 
time translations, J k of rotations, and K k of pure Lorentz 
transformations. The Lie brackets ofjl are given by 

[To.K,] = T" [J i ,1j] = Tk , (1) 

[Ki,Kj] = -C-
2J k , [Tr,K,]=c-28rsTo, 

where c is the speed oflight, (i,j,k ) is a cyclic permutation of 
(1,2,3), r,s = 1,2,3, and all unspecified brackets vanish. ~he 
physical dimensions of the generators are as fo.l1o~s: To.1S a 
recriprocaI time, Tk is a recriprocallength, J k 1S d1mens1on
less (recriprocal angle), and Kk is a recriprocal velocity. 

Note that so far, nothing has been said about quantum 
mechanics. 9 '+ merely describes the geometry of classical, 
relativistic space-time. We now make our first assumption 
of quantal nature: . 

(Q): The formalism of a relativistic quantum theory ~s 
based on a unitary (though possibly reducible) representatIOn 
of g; '+ (or its universal covering group). . . 

Hardly anyone will dispute this statement, Wh1Ch 1S 
standard material in relativistic quantum theory. Unlike 
what is ordinarily called "quantization", it is physically 
clear and mathematically unambiguous. Yet, (Q ) implies 
and, at the same time, supersedes the mysterious CCR ! ~ 0 see 
this consider the nonrelativistic limit C-->oo ofjl. Lettmg 
C- 2TO = Min Eq. (1), the Lie algebrajl "contracts" to 

[JJj ] = Jk , (Ji,KJ = K" 

[M,Kr] =0, [Ji'~] = T" (2) 

(Ki,Kj] = 0, [T"K,] = o"M, 
with all other brackets vanishing. Let us call this Lie algebra 
'71' and the corresponding (simply connected) Lie group ~ !. 

Note that (a) M is a central element of '71 and (b) M, T k , and 
Kk generate an invariant subgroup 'Jr (with Lie a~gebra ,,<) 
of!:1 . The remaining generators J k give the rotaHon group 
or itsldouble cover SU(2), so ::1, is the semidirect product of 
SU(2) with 'lr: 

::11 = SU(2J@Jr, 

'Jr = ::1 JSV(2). (3) 
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Now suppose that the unitary representation of f!J' t+ in as
sumption (Q) is irreducible. [Assumption (Q) means we are 
dealing with a quantum system, possibly a quantum field 
theory; it is the additional assumption of irreducibility which 
makes this system "elementary" -roughly, a particle. 
Hence, the concept of position, discussed below, is only now 
admissable.] Assuming that the formal limit c-- co of Lie 
algebras induces a rigorous limit on the representation level 
(and this is indeed the case, as proved in Refs. 8,9), the central 
element M of 9'1 will be represented by a purely imaginary 
constant in that limit: M = - (i/~)m, where m is real. 
(Planck's constant ~ has been inserted for dimensional rea
sons, so that m can be interpreted as a mass.) Assume m > 0, 
and Jet 

(4) 

Then Pk and Qk are represented by Hermitian operators 
which satisfy the CCR. In fact, 'lr ofEq. (3) is isomorphic to 
the Weyl-Heisenberg group, 10 which is usually regarded to 
be at the heart of quantization theory! 

How does it happen that classical relativistic geometry, 
represented by 9 1+ , when combined with a simple assump
tion (Q), yields the mysterious CCR? To understand this, we 
first note that although (2) was obtained from (1) by taking 
c--> 00 , we cannot obtain the CCR so simply without invoking 
Relativity. For had we begun with Newtonian spacetime, we 
would have the Galilean group :§ instead of 9 '+ . Since 
Galilean boosts commute with spatial translations (time be
ing absolute), the brackets between the corresponding gener
ators vanish, hence no CCR! In the case of ::1 1, the CCR are a 
remnant o/relativistic invariance where, due to the nonabso
lute nature o/simultaneity, spatial translations do not com
mute with pure Lorentz transformations. Thus, the uncer
tainty principle originates, in some sense, in "classical" 
Relativity theory! The groups f1 and f11 are related through 
a process called "central extension" 11.12 which is mathemat
ically complicated and physically every bit as obscure as the 
(closely related) process of canonical quantization. Thus we 
see that our conceptually simple derivation of the CCR real
ly does depend on Relativity. 

How does all this affect our ideas about quantization? 
The group 'Jr, whose representation theory serves as a para
digm for the nonrelativistic quantization schemes, appears 
at first sight to have no counterpart in the relativistic theory. 
To get some insight, let us reflect for a moment on the phys
ical significance of 'Jr. In its usual form (where the gener-. 
ators are Qk ,Pk, and the identity operator), the group-mani
fold of 1rhas local coordinates ofmomentumpk (generated 
by Qk)' position q k (generated by Pk ~, and phase angle ¢ 
(generated by the identity). Thus'll/' IS usually thought of as 
the product of momentum phase space wit~phase ~ngle. 
However, our discussion above suggests a d1fferent mterpre
tation: Kk generates velocity coordinates vk,Tk generates 
position coordinates q k as before, and M produces a deg~ner
ate form of relativistic "time." Thus for a proper tranSItIOn 
to Relativity, '/1" ought to be reinterpreted as the produ~t of 
velocity phase space with "time." Such an object is somettmes 
called a state space. 
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We are now in a position to go to Relativity. The coun
terpart of 'Jr must clearly be the product C(J of space-time 
with the velocity hyperboloid. Although this seven-dimen
sional manifold is no longer a group, it is directly related to 
9 '+ as a homogenous space: 

C(J = 9 '+ /SU(2), 

which is what survives ofEq. (3). (We are not distinguishing 
here between 91+ and its twofold cover.) Incidentally, note 
that unlike phase space, the relativistic state space C(J is a 
perfectly covariant object. In fact, we will see in Sec. 3 that C(J 

carries a geometric structure which combines the space
time geometry with the phase space (symplectic) geometry in 
a natural way. 

Our approach, which seeks to combine the basic struc
tures of Relativity, quantum mechanics, and classical me
chanics, will therefore be to construct unitary representa
tions of 91+ on spaces off unctions over C(J. (Actually, we 
will see that due to the positivity of the energy, C(J can be 
imbedded in a four-dimensional complex manifold Y; this 
turns out to be extremely useful, bringing in the methods of 
complex geometry and analysis.) 

Thus 'Jr should also be viewed, not as a subgroup of 
[§ I' but as its homogeneous space. In retrospect, the group 
property of 'Jr appears to be physically irrelevant. What is 
important is that the invariance group [§ I of the nonrelati
vistic theory act upon the state space 'Jr and that this action 
be transitive (otherwise we may as well look at orbits of [§ I in 
'Jr). Viewed in this way, the relativistic and nonrelativistic 
theories link up smoothly (see Refs. 8,9). 

Incidentally, the fact that 'Jr is a group means that the 
formalism of nonrelativistic quantum mechanics could be 
based entirely on 'Jr rather than [§ I (this is, in fact, the usual 
practice). When that is done, the discovery of spin is a sur
prising empirical fact. Indeed, this was the historical path, 
for only later was it realized that the theory could be based 
on [§ I (or, rather, on the extension of [§ I by "dynamics"; see 
Ref. 11). By contrast, the relativistic theory necessarily im
plies the possibility of spin since C(J is not a group, and we are 
forced to use 91+ . 

3. LOCALIZATION AND THE PHASE-SPACE 
APPROACH 

The insight gained in the last section suggests a new 
point of departure for the study of the relation between clas
sical and quantum mechanics: Rather than lift the position 
coordinates to the status of observables (namely, the gener
~tors Qk of the group 'Jr) in order to form a "quantized 
symplectic structure" such as the CCR, it appears far more 
natural to lower the momentum observables to the status of 
parameters (roughly, the velocity coordinates on C(J) which 
then join the space-time variables xl-' to form a covariant 
version of classical state space. Indeed, while position opera
tors can be defined for relativistic "elementary systems," 
their introduction is known to be fundamentally at odds with 
covariance. We shall now briefly review this situation, as
suming for simplicity that we are dealing with a massive 
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scalar particle. 
The first systematic, group-theoretical account was giv

en by Newton and Wigner, 13 who defined localized states as 
quantum states which, when arbitrarily displaced in space, 
become orthogonal to themselves and which have some ad
ditional, rather obvious, properties. They then showed that 
these properties uniquely determine localized states, there 
being one such state tPx for each space point x at time t = O. 
These states, in tum, uniquely determine a set of commuting 
Hermitian operators Qk (the Newton-Wigner position oper
ators) of which they are simultaneous (nonnormalizable) ei
genvectors with eigenvalues Xk' 

And here begin the difficulties. First of all, the tPx are 
not covariant; viewed from a moving frame, a localized state 
is anything but "localized." In fact, the time-translation gen
erator is Po = (m 2 + P2)1/2 = (m 2 - it )1/2 (it is the spatial 
Laplacian), which is a nonlocal operator. It follows that an 
arbitrarily small time after being "localized," tPx is spread all 
over the Universe! Thus, assuming that states can be local
ized would seem to conjiict with causality. (In this connec
tion, see also Ref. 14.) This puts into question the very con
cept of position as an observable. Since the Lorentz boosts 
involve Po as well, a similar catastrophe happens when, in
stead of geting evolved in time, tPx is boosted to a moving 
frame. 

Various modifications of the Newton-Wigner idea have 
been attempted. By dropping the requirement that tPx + a be 
orthogonal to tPx for a#O and requiring covariance under 
9 '+ instead, a much more reasonable set of states is ob
tained which, however, cannot be used to define position 
operators. 15 In spite of the vast industry devoted to the local
ization problem (see Refs. 16,20 for comprehensive reviews), 
no fully satisfactory solution has been found. 

These considerations further support our idea of aban-
doning position operators, and with them the CCR, as fun
damental concepts in quantum mechanics. To see what is 
gained by doing so, let us first take stock of what is lost. In 
nonrelativistic quantum mechanics, the "canonical" sym
metry between the Q 's and P's gives rise to a great deal of 
freedom of choice between different but equivalent "repre
sentations" of the theory (that is, of 'Jr). There is the Q
representation, in which the Qk are diagonal and states are 
expressed as functions over configuration space. In the P
representation, the P k are diagonal and states are expressed 
as functions over momentum space. The Plancherel theo
rem, equating the L 2-norm of a function with that of its 
Fourier transform, tells us that the two representations are 
not only mathematically equivalent (i.e., related by a unitary 
transformation), but also physically equivalent: each has a 
standard probabilistic interpretation, and Nature has no 
preference between them. In addition to the Q- and P-repre
sentations, there is an infinite variety of (again, completely 
equivalent)phase-space representations where neither the Q 's 
nor the P's are diagonal and states are represented by func
tionsj(q,p) over classical phase space (see, e.g., Ref. 17 and 
the references therein). Again, the norms in these representa
tions are L 2-norms (giving once more a probabilistic inter
pretation) and are related to the norms in the Q- and P-repre
sentation by generalized "Plancherel" theorems. 
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We have seen that the transition to relativistic theory 
"breaks" the symmetry between Q 's and P's. The P 's still 
exist as natural quantum observables while the Q 's become 
burdensome objects of questionable value. Let us see how 
this "symmetry-breaking" is reflected in the existence and 
nature of different "representations" of the theory, i.e., of 
9 1+ . The easiest to construct is the P-representation, where 
the energy-momentum Pil is diagonal and states are func
tions over the momentum space, which is the upper mass 
hyperboloid Po = (m 2 + p2)1/2. The Hilbert-space norm is 
still an L 2-norm, but not with respect to Lebesgue measure as 
in the nonrelativistic theory. Instead, the proper (i.e., 9 1+ -

invariant) measure is d 3p / PO' There is also a Q-representa
tion, in which the Newton-Wigner operators Qk are diag
onal, states are functions over configuration space, and the 
norm is the L 2-norm with respect to Lebesgue measure on 
R 3. However, this representation is not natural from a rela
tivistic point of view, a direct consequence of the noncovar
iance of the localized states tPx which in theP-representation 
have the form tPx (P) = V poexp( - ix·p). For although the Q
representation has a non-negative candidate for a probabil
ity density [namely, the integrand p(x,t )== I (tPx I!' W in the 
expression for (!, I!,), where!, is the state at time t], there 
exists no conserved current whose time component is p(x,t ). 
See Ref. 13. Hence, from a physical point of view, the Q
representation is highly unsatisfactory. Finally, there is what 
I will call the space-time representation, in which neither the 
P's nor the Q 's are diagonal but states are functions over 
space-time, given by solutions of the Klein-Gordon 
equation: 

f(x) = Le~ixpj(P)d3p/po, (5) 

wherexp =xoPo - x'p,flisthemasshyperboloid,andj(p) 
is square-integrable with respect to d 3p / PO' The inner prod
uct in the space-time representation is given as follows 18: 
Choose a three-dimensional spacelike submanifold S of 
space-time (S is a generalized configuration space). Then the 
inner product of two solutions (which a priori depends on S) 
is given by 

(flg)s = i1 [f(X) ag(x) _ a f(x) g(X)]£:Il, (6) 
s axil axil 

where dX!' is the Hodge dual5
-

7 of dx!, (roughly, the 3-form 
dxo /\ dx I /\ dx2 /\ dX3 with dx!, missing) and summation 
over f-l is implied. Two facts concerning (6) are worth noting. 

(a)(flg)s is actually independent of the choice of S. 

This is due to the fact that 

Jt(X)_i[ f(x) af(x) _ af(x)f(X)] , (7) 
I ax!' ax!' 

is a "conserved current," i.e., 

aJ!, = 0, (8) 
ax!, 

becausef(x) satisfies the Klein-Gordon equation. [There is 
no loss of generality in settingg(x) = f(x) in (6), i.e., in consid-
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ering II fl12 (fl f) s instead of (fig) s' since we can al-
s 

ways recover the latter by the "polarization identity. "] Thus 
the space-time representation, like the P-representation (but 
not the Q-representation) is manifestly covariant. 

(b) II f 112 is not an L 2-norm. In fact, it even turns out 
s 

that the integrand Jil (x)dx!' need not be nonnegative, al
though the total integral is positive-definite! (This fact, 
which was only discovered around 1967, is discussed in Refs. 
19 and 20.) This makes it impossible to give a probabilistic 
interpretation to the space-time representation. 

We have described three relativistic representations: 
the P, Q, and space-time representations. Although these 
are all mathematically equivalent in the sense of being relat
ed by unitary transformations, they are certainly not phys
ically equivalent. Thus, the space-time representation has a 
conserved current which cannot be interpreted as carrying 
probability, while the Q-representation has a probability 
density but no conserved current. The only satisfactory re
presentation seems to be the P-representation which, howev
er, makes no reference at all to space-time; hence all sense of 
"locality" appears to be lost! 

What about the many "phase-space" representations of 
the nonrelativistic theory? Do they survive the transition to 
relativity? It turns out that the usual methods l7

•
21 of con

structing such representations do not work: they would de
fine the norm by integrating over the time variable Xo as well 
as other variables, resulting in divergent norms. (The reason 
is that the time-translation generator To is not in the center 
O(/l.) However, there is a simple, new construction that does 
work, both in the nonrelativistic and relativistic theories. It 
gives a "phase-space" representation of 9 1+ which, in the 
limit C-+ 00, goes over smoothly to a phase-space representa
tion of the central extension of the Galilean group. 9 This 
method is based on the very condition which makes the 
problem oflocalization so difficult: the positivity of the ener
gy, or, in covariant terms, the spectral condition. 22 

(S): Only those unitary representations of 9 1+ are phys
ically relevant for which thejoint spectrum of the energy-mo
mentum operators P!, is contained in the closure V+ of the 
forward light come V +. 

Like assumption (Q), of which it is a refinement, condi
tion (S) is meant to apply to any isolated relativistic quantum 
system, hence is quite general. In fact, (Q ) and (S) are two of 
the cornerstones of "axiomatic" quantum field theoryY 
Some general elements of our "phase-space approach" can 
be derived from (Q ) and (S) even before specializing to irredu
cible representations, i.e., "particles." Namely, it follows im
mediately that the space-time manifold of the theory (re
garded as a homogeneous space of 9 1+ ) has a canonical 
complexijication called the forward tube: 

!T _{z=x-iYEC 4 IYEV+}. (9) 

For if yE V +, then (S) implies that the operator yP yI' P!, is 
nonnegative. Hence the operator exp( - yP) is bounded, and 
we can extend the unitary group of spacetime translations 
U (x )=exp( - ixP ) to a (bounded, weakly holomorphic) 
semigroup 
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U(z) U(x - iy)=exp[ - i(x - iy)P 1 

= exp( - ixP )exp( - yP). (10) 

Thus any objects in the theory which are functions over 
space-time (such as quantum fields or particle wave func
tions) can be extended to Y. 

We now return to the simple case of a single, free mas
sive scalar particle. (Some of the conclusions we shall reach 
apply also to much more general situations, such as interact
ing quantum fields; see Ref. 23.) Using (10), a solution/Ix) of 
the Klein-Gordon equation [given by (5)] can be extended to 
Yas 

(11 ) 

which is holomorphic (complex-analytic) in Y. For each 
zEY define 

ez(p) = e lzP, (12) 

where z = x + iy is the complex conjugate of z. If w is an
other point in y, the inner product of e z and e w (regarded as 
states in the P-representation) is 

(ezle w ) = Le-iIZ-Wld3p/po, 

= - 2i.:1 +(z - W), (13) 

where.:1 + is the (analytic continuation to Y of the) Wight
man two-po'int function for the free massive scalar field. 22 

Since.:1 +(z - z) is finite, it follows that each of the ez 's is 
normalizable,andobviously/(z) = (ez I J), the inner product 
being that in the P-representation. 

The states ez turn out to have some very important 
properties, namely 

(1) For any z = x - iy in Y, ez is an optimal wave
packet "focused" about the event x and traveling with ex
pected energy-momentum (P,,) proportional to y" (see 
Refs. 8,9). The width of this wave packet in its rest frame at 
time Xo (i.e., at the instant of maximal focus) is a monotone 
increasing function F of the parameter 

A -(Y'l y)li2, (14) 

(see Fig. 1). This suggests that.'T may be regarded as an 
extended classical phase space/or the particle (extended, be
cause it contains the time and "energy" dimensions as well as 
the position and momentum dimensions). 

(2)Theez 'sarecovariantunder 9 1+ • Thatis,ifU(a,A lis 
the unitary operator representing a Lorentz transformation 
A followed by a space-time translation a, then 

U(a,A )ez = eAz + u' (15) 

Thus the ez's are covariant "localized states." Of course, 
they are not sharply localized in space but only softly local
ized in phase space, as mentioned in Sec. 1. (In technical 
terms, they do not give rise to a projection-valued measure 
bur merely to a positive-operator valued measure. 24 In fact, 
in the limity_O, ez goes to ex = exp(ixp), which coincides 
with the "Lorentz invariant localized states" obtained by 
Phillips. 15 However, the ez's have numerous advantages 
over the ex's, such as normalizability and the possibility of 
defining a conserved probability current (see below). We 
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shall refer to objects which depend on z through ez as 
microlocal. 

(3) Let S be a three-dimensional submanifold of space
time R 4 (a prospective configuration space as in Eq. (6), ex
cept note that we are not assuming it to be spacelike!). For 
fixed A > 0, let n,t be the hyperboloid y2 Y"y = A 2 in V + 

(n,t is something like a momentum or velocity space). Let (T 

be the six-dimensional submanifold of.'T given by 

(T = {x - iYErlxES,yEl1,t}. (16) 

If S were spacelike, (T would be a kind of classical phase space. 
We wish to define a phase-space representation correspond
ing to (T. Thus we need a 6-dimensional measure dJ.L(T (z) on (T 
such that 

(17) 

defines a 9 1+ -invariant norm on the space of all holomor
phic solutions given by Eq. (11). A natural way to obtain dJ.L(T 
is as follows9: Since we wish to think of (T as a classical phase 
space, we need a symplectic form5

-
7 aCT on (T. To make every

thing covariant, we define aCT by starting with an invariant 2-
form a on .'T and restricting it to (T. Without essential loss of 
generality,8.9 we may take 

a = dY"Adx". (18) 

Then it turns out thata(T isa symplectic/orm on (T ifand only 
ifS is space-or-lightlike, i.e., its normal nIx) satisfies n2 ;;;.0. 
That is, (T is a phase space if and only if S is a (generalized) 
configuration space! This result is interesting in itself, since 
usually the geometry of space-time is considered not to be 
naturally compatible with the geometry of phase space. 
(Note that (T is essentially a "slice" of the relativistic state 
space '?5 introduced in Sec. 2.) Assuming S to be space-or
lightlike, we now have a full-fledged phase space ((T,a(T)' Fur
thermore, ever:¥thing i~ covariant: Poincare transformations 

-x 

FIG. 1. Schematic diagram of ez. 
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tranlormations.8
,9 We now define dJio as the Liouville mea

sure of (7, i.e., dJio is the measure defined by the volume form 
ao 1\ ao 1\ a(T on (7. Equivalently, dJi(T is the restriction to (7 

of the 6-form a I\a I\a on:T. But (18) implies that 

a I\a I\a = 3!ay!, I\I;!', (19) 

where, as in Eq. (6), ifY!' and dX!' are Hodge duals (with re
spect tog!'v) of dy"and dxl" respectively. Thus (17) becomes 
(modulo a constant factor) 

(20) 

automatically giving II I 112 as the total flux through S of a 

space-time current 1!, (x). This current is actually conserved, 

so that !! 1112 is independent of the choice ofS as desired. To 
a 

see this, let BA = {yEV + !YIIY" >A 2}, so that the oriented 
boundary of B). is aB). = - fl).. Then, by Stokes' theorem, 

~,(X) = - ( I/(x - iyW~, JaB, 
= - i alf(x - iyW d 4y 

B, ay" 

= ( i!'(x - iy)d 4y. JB, 
Thus 

al!'(x) f aj!'(x - iy) 4 
--= d y. 

ax
" 

B~ aXil 

Using the notation 

a l(a ,a) 
ap = azl' = 2 ax!' + lay" 

- a l(a .a) 

h
all - aZ" = 2 ax" - I ay" 

we ave 

a' 2 2 

~ = -~ = i(a
l1 

+ al' )(a' - [J")(jJ) 
aXil aX/lay' 

= itO - O)(jJ) 

=110/- i( 0/)1 

= -llm 21 + im2jJ= O. 

(21) 

(22) 

(23) 

Here o_a"a/l is the complex d'Alambertian, and we have 
used the facts that (all satisfies the Klein-Gordon equation 
and (b)/is holomorphic in .'T. As we have seen, the second 
condition comes from (S), i.e., the positivity of the energy. 

Note also thatj/l(z) is a microlocal current which, by 
(23), is conserved with respect to space-time variations. By 
the holomorphy off, 
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a - -
i!' (z) = - ayJ' 1/12 = ita!' - a!, )(ff) 

= if. al _ i al 1 
azl' ail" 

= i[1 al _ all]; 
ax!' ax!' 

hence Eq. (21) shows that our current lp (x) is a "regular
ized" version 01 the usual current Jp (x) [Eq. (7)]. 

Thus we have arrived at a large family of equivalent 
phase-space representations of 9 1+ ' one for each (7. More
over, these representations have a certain advantage over the 
P-, Q-, and space-time representations discussed earlier. 
Namely, they are manifestly covariant (unlike the Q-repre
sentation), admit a probability interpretation (unlike the 
space-time representation), and retain some notion oflocal
ity (unlike the P-representation). Although these representa
tions describe scalar particles, they easily generalize to parti
cles with spin: simply interpret 1/12 as including a 
summation over spin indices. 

We summarize the phase-space approach by noting8,9 

that the covariant wavepackets ez provide a conceptual 
bridge between classical and quantum mechanics and give 
rise to a "continuous resolution of the identity" 

{Iez ) (ez IdJi(T(z) = 1, (24) 

for each classical phase space (7. 

4. HOLOMORPHIC GAUGE THEORY 

We have seen that strict localizability of relativistic 
quantum particles is untenable, and that microlocality 
promises to be an adequate substitute. In this section we 
explore one consequence of this hypothesis, namely the 
modifications it suggests in the notion of local gauge invari
ance. 

Considet', once again, a massive scalar particle in a state 
I(z) [Eq. (11)]. Since the probability density [with respect to 
the Liouville measure dJi(T (z)] of finding it "at" ZE(7 is 

p(z) = I/(zW, (25) 

it follows that/(z) and exp(i/fo l/lz) define the same physical 
state, for any real constant /fo. Let us now imitate the idea of 
local gauge invariance25 by allowing /fo to be a function of z. 
We immediately run into trouble. If /fo (z) is real (but not con
stant), it cannot be holomorphic; hence the holomorphy of 
I(z) is destroyed. On the other hand, if /fo (z) is holomorphic, it 
cannot be everywhere real (unless it is constant); thus I/(zW 
is not preserved. The solution to this dilemma is to modify 
p(z) by introducing a positive weight function h (z) which 
transforms so as to compensate for the change in I I(z) I 2. 

Define 

p(z) = I(z) h (z)/(z), 

which is invariant under the transformation 

f'(z) = ei~lz~f(z), 

h '(z) = e2Im~lz)h Iz), 
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with ¢J (z) holomorphic. 
More generally, letfY ~cn be a vector-valued holo

morphic function (representing the state of a particle with 
internal symmetry) and h (z) be a C 00 function on Y whose 
values are n X n positive-definite matrices. (f is a section of 
Y X en and h is a fiber metric.zt» Define the scalar function 

p(z) = f(z)*h (z)f(z), (28) 

which is supposed to represent the probability density, rela
tive to dpu(z), of finding the particle "at" ZEU. We define a 
holomorphic gauge transformation as a holomorphic change 
of frame, i.e., 

I'(z) = x(z)-1(z), 

h '(z) = X(z)*h (z)X(z), (29) 

where X(z) is a holomorphic function on Y whose values are 
invertible n X n matrices. Sincep(z) is invariant under (29), so 
is the norm 

(30) 

for any fixed phase space u. To obtain dynamics, we now 

require that II f 112 be independent of the configuration space 
u 

S. Equations (17)-(21), followed in reverse order, show that 
this will be the case, provided that 

a2p 
--=0. (31) 
aXl-'ayf' 

By (22) and (23), this means that 

(Ei - D)(f*hf) = Ei(f*h )1- f*D(hf) = O. (32) 
Thus Ilfllu will be independent of Sifwe assume thatf 

satisfies the "Klein-Gordon" equation 

D(hf)=Gf (33) 

for some Hermitian matrix-valued function G (z). We will 
determine G (z) by requiring agreement with the usual, 
space-time theory. Equation (33) can be rewritten as 

(al-' + 0l-')(al-' + Ol-')f= h -IGJ, (34) 

where al-'=a lazl-' and 

o =h-1a h=lh-I(~+i~). 
I-' I-' 2 ax!-' ayf' 

(35) 

We will now show that with a proper choice of G (z), Eq. 
(34) corresponds closely to the standard Klein-Gordon 
equation for a particle in space-time coupled to a Yang
Mills field. To begin with, since no fiber metric appears in the 
standard formalism, we "hide" h by choosing a nonsingular 
matrix k (z) such that 

h (z) = k (z)*k (z), (36) 

and writing 

j(z) = k (z)f(z), (37) 

so that p = j*J (This can be done since h is positive-definite.) 
Using the notation 
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al-' = ~ = !(dl-' + id/l)' 
azl-' 

al-' = a~ = ~(dl-' - id/l)' (38) 

we have, for any differentiable function F(z), 

h (dl-' + 0l-')F = hdl-'F+ (al-'h)F 

so that 

= dl-'(hF) - (dl-'h)F+ (al-'h)F 

= dl-'(hF) - (al-'h)F 

= k *dl-'(kF) + (dl-'k *)kF - (al-'k *)kF 

- (k*aJ.tk)F 

= k *dJ.t(kF) + (al-'k *)kF - (k *al-'k)F, 

(dl-' + 0J.t)F= k -1[dJ.t + (k *)-Ial-'k * - aJ.tkok -1](kF), 
(39) 

or 

~I-'F=k-IDJ.t(kF), 

where 

with 

a 
~1-'=-+0J.t' 

ax!-' 

DI-' = ~ + iAJ.t(z), 
ax!-' 

AJ.t(z) = iaJ.tkok -I - ilk *)-laJ.tk * 

Hermitian. Thus, using aJ = 0 and (40), 

(al-' + 0J.t) (c1' + Ol-')f 
= (~J.t - aJ.t) (~I-' -1I")f 

=~J.t~l-'f-al-'(~l-'f) 

= k -IDI-'DI-'j - (aJ.tOI-')f 

(40) 

(41) 

(42) 

(43) 

Since we wishj(z) to correspond to the usual space-time 
wavefunction, assume 

DI-'DI-'j= - m2J (44) 

Then (34) determines that 

G(z) = - h (m 2 + al-'0l-') 

= - m2h - h [(al-'h -1)c1'h + h -lal-'c1'h ] 

= - m2h + (aJ.th)h -1(c1'h) - al-'c1'h, (45) 

which is clearly Hermitian as required. Hence by (40) and 
(44), our "Klein-Gordon" equation (34) finally becomes 

~ I-' ~I-'f = - m2J, (46) 

with ~ I-' given by (41). 

We can now give the exact correspondence of our the
ory with the usual one: Holomorphic solutionsf(z) of (46) [if 
such exist; see Remark (3) in Sec. 5] correspond to space
time solutionsj(x) for a Klein-Gordon particle coupled to a 
space-time Yang-Mills field with potentialsAI-'(x), where 
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j(x) = limj(z) = k (x)f(x), 
y--o 

(47) 

A,,(x) = limA,,(z), 
y~O 

A,,(z) being given by (42). The norm (30) can be rewritten as 

llfll: = Lp(Z)d,uu(Z) 

= - i [ lB!*)df" ]ai" 
= _ r [ r !E-{j4y]dx" 

Js JB A ay" 

= r J" (z)d 4yJ'l", 
)SXB, 

(48) 

where J" (z) is a microlocal, space-time-conserved current, 
i.e., 

aJ,,(z) 
--=0, 
ax" 

(49) 

by (31). Now sincefis hoI om orphic we have aJ = dJ; thus 
(40) gives 

Jji(Z) = - a~U*hf) 

hence 

where 

= i(a" - aji)U*hf) 

= i/*a" (hf) - iajiU*h)f 

= if*hiiJ,J - i(iiJ,J)*.hf 

= ij*DJ - i(D,j)*j 

=if-*EJ;-: 
- j' 

which is a "regularized" version of the usual current 

J;,(x) = ij(x)*Ej(x). 

(50) 

(51) 

(52) 

(53) 

Let us briefly summarize what we have done in vector 
bundle terms.26

,28 (See also Ref. 27,) f(z) is a holomorphic 
section of the trivial vector bundle Y XC" ,h (z) is a fiber 
metric, and the fiberwise inner product off(z) with itself is 
the probability density: 

p(Z) = f*hf -(f,f)(z). (54) 

The exterior derivative splits into two parts of type (1,0) and 
(0,1): 

a a 
d = dx"- + dy"-

ax" ay' 

= dzl'~ + dZ'i~ 
az'i az" 
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a+a, 

with a2 = a2 = aa + aa = 0. Thus 

d (f,f) = (a + a)(f*hf) 

= aU*h )f + f*a(hf) 

= (iiJf)*hf + f*hiiJf 

= (iiJf,f) + (f,iiJf), 

where, since af = 0, 

) 
iiJf-(d + O)f= (a + O)f= h -Ia(hf), 

with 

(55) 

(56) 

(57) 

(58) 

o is called the canonical connection determined by h, and iiJ 
is the covariant derivative with respect to O. Equation (56) 
shows that 0 is metric-compatible with h. The curvature of 0 
is 

8=dO+0/\0 

= ao + ao + 0/\ 0 

=ao, 

since the last two terms cancel due to the "integrability 
condition" 

ao = a(h -Iah) = a(h -I) I\ah 

= - (h -Iah·h -1)l\ah 

= - 0/\0. 

(59) 

(60) 

Since 8 and 0 are our versions of the Yang-Mills field and 
potential respectively (see below), Eq. (59) shows that in the 
microlocal theory, the field is linear in the potential, even for 
nonabelian gauge groups (n > I)! This is a remarkable fact 
which may prove useful, since the usual nonlinearity (whose 
source we will see below) makes solutions very difficult to 
find. Under the holomorphic gauge transformation (29), we 
have 

0' = (h '}-lah' = X-'h -'(X*)-IX*J(hX) 

= X-'h -'(ah·X + h.aX) 

= X-lOX + x- laX, (61) 

hence 8 = ao is invariant, by the holomorphy of X. The 
Bianchi identity reads 

d8 = d (dO + 01\ 0 ) = dO /\ 0 - 0/\ dO 

= (8 - 01\0)/\0 - 01\(8 - 01\0) 

=8/\0-0/\8 

[8,0], 

and a8 = a 20 = ° implies a8 = [8,0). 

(62) 

In vector bundle terms, the correspondence with the 
usual theory is obtained as follows: Since X (z) in Eq. (29) is 
holomorphic, it cannot be everywhere unitary unless it is 
constant. Hence the structure group corresponding to holo
morphic gauge transformations i~ GL(n,C). As k (z) is non
singular, the transformationf~f = kfmay be regarded as a 
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nonholomorphic gauge transformation which amounts to a 
reduction 28 of the structure group to the usual one, U(n), 
since p = j*j is merely invariant under 

liz) = U(z)j(z). (63) 

with U(z) unitary (k' = Uk). Underf-l. the connection () 
reduces to 

iA (z) = k *-IBk * - ak.k -I, 

=~-~ ~~ 
where r = ak·k -I. The curvature of A corresponds to the 
extension to !T of the usual, space-time Yang-Mills field, 
and is given by 

iF (z) = d (iA ) + (iA ) 1\ (iA ) 

= i(dA + iA I\A ) 

= (dy* + y*1\ y*) 

- (dr - y 1\ r) - y* 1\ r - r 1\ y*, (65) 

But rand y* satisfy integrability conditions similar to that 
satisfied by () [Eq. (60)]: 

ar- rl\r= 0, 

Br* + r* 1\ r* = O. (66) 

Hence 

iF = ar* - Br - r* 1\ r - r 1\ r*· (67) 

Note that the usual nonlinearity between the Yang-Mills con
nection and field is a direct result of the reduction from holo
morphic to unitary gauge freedom. That is, F is no longer 
linear in A or r [Eqs. (65) and (67)]. 

The relation between 8 and F is 

iF= k8k -I, (68) 

so that 

(f,8f) =f*h8f= if*FJ 

Now in components, 

8(z) = a(h -IBh) = ah -II\Bh + h -laBh 

= (a/Lh -'Jyh + h -IJ/LJyh )dz/L I\dzv 

= 8jivdz/L Adzv 

= 8jiv(dx/L I\dxv + dyIL Adyv + idylL Adxv 

+ idyv I\dx/L) 

= !(8jiv - 8 v/L)(dx/L Adxv + dyIL AdyV) 

(69) 

+ !i(8jiv + 8 v," )(dy'" 1\ dxv + dyV 1\ dx/L), (70) 

which is seen to have a symmetric part as well as an antisym
metric part. 

The usual (space-time) Yang-Mills field F(x) is the re
striction (pull-back) of F(z) to R 4 (lety-o and dY/L -0). 
Hence 

F (x) = - ik (x)8 (x)k (x) - I 

= - !ik (x) [8jiv(x) - 8 v/L (x)]k (x)-Idx/L A dxv
, 

(71) 

so that only the antisymmetric part shows up in pure space
time. It would obviously be of interest to explore what phys-
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ical significance the symmetric part might have. If one can 
be found, it may represent a concrete dividend of the ap

proach advocated here. 

5. CONCLUDING REMARKS 

(1) The view held by many physicists, that in quantum 
mechanics "everything" becomes an operator, does not ap
pear to be consistent with relativity theory. The alternative 
proposed here is to introduce the quantum formalism for a 
free system through the theory of unitary representations of 
fJi 1+ or related groups, then add interactions through mi-
crolocal gauge freedom, which necessitates the introduction 
of a fiber metric. In this way, the energy and momentum 
have a natural place as operators in the theory, and poten
tials are represented geometrically as the components of a 
connection determined by the fiber metric, to be regarded as 
functions of the underlying phase space variables rather than 
the position operators. The desired "canonical" symmetry 
between positions and momenta survives in its "classical" 
form: together with the Lorentz metric, it defines the geo
metric structure of the extended phase space on which the 
theory is based [see also Ref. 27, Sec. 4(c)]. The "quantized" 
version of the canonical structure, in the form of the canoni
cal commutation relations, is seen to be both unnecessary 
and in conflict with relativistic covariance. 

(2) In addition to resolving the inconsistencies of the 
usual theory, the new theory deals directly and covariantly 
with extended particles rather than point particles. Since mi
crolocality implies nonlocality in space, it may be hoped that 
the microlocal theory provides a natural framework for the 
description ofhadrons and other extended particles without 
the necessity to resort to such difficult (and perhaps at times 
ad hoc) methods as integro-differential equations. 

(3). Note that the requirement that Eq. (46) possess ho
lomorphic solutionsf(z) puts considerable restrictions on the 
choice of h (z). In fact, (46) should perhaps be regarded, to
gether with the Cauchy-Riemann equations forf, as a coup
led system of equations for f and h. These equations may 
have to be supplemented with some counterpart of the 
Yang-Mills equations, to determine the reaction of h (z) to 
the presence ofmatter[represented byf(z)]. For this, it might 
be helpful to develop a Lagrangian approach to the microlo
cal theory, which is still missing. 
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The Aharonov-Bohm effect is formulated in terms of a constrained path integral. The path 
integral is explicitly evaluated in the covering space of the physical background to express the 
propagator as a sum of partial propagators corresponding to homotopically different paths. The 
interference terms are also calculated for an infinitely thin solenoid, which are found to contain 
the usual flux dependent shift as the dominant observable effect and an additional topological 
shift unnoticeable in the two slit interference experiment. 

PACS numbers: 03.65Db, 03.70. + k 

I. INTRODUCTION 

The nonintegrable phase factor of a wavefunction ap
pears to assume a new role in quantum physics. In analyzing 
the Aharonov-Bohm effect, Wu and Yang l have pointed out 
that electromagnetism is underscribed by the field strength 
but overdescribed by the loop integral of the vector poten
tial, and concluded that electromagnetism is the gauge-in
variant manifestation of nonintegrable phase factor. 

The Aharonov-Bohm effecf (or the AB effect) is an 
observable quantum phenomenon3 in which the role of the 
vector potential is conspicuous. The effect has been well 
studied and well confirmed, but not necessarily well under
stood.4 One interpretation is that the vector potential re
members what is going on elsewhere, while the other claims 
that the physical consequences of this effect can be otained 
without the use of any potential inasmuch as the space is 
multiply connected. In fact, the topological nature of the AB 
effect has been long recognized, but no quantitative prescrip
tion has been given for linking the nointegrable phase factor 
and the topological feature of the background space. A 
qualitative framework has been suggested by Schulman5 to 
deal with the effect in a multiply connected space. The math
ematical object to be computed in this framework is a propa
gator expressed as a path integral in the covering space ofthe 
background physical space. In a recent paper,6 we have de
veloped a method to evaluate path integrals under a periodic 
constraint and indicated its possible application to the AB 
effect. 

The purpose of the present paper is to provide an explic
it formulation of the propagator for the AB effect in a multi
ply connected space. First we analyze in Sec. II an idealized 
AB experiment in connection with propagators. In Sec. III, 
we formulate the AB effect in terms of a constrained path 
integral and calculate the corresponding propagator in the 
covering space. The propagator turns out to be a sum of 
partial propagators belonging to homotopically inequivalent 
paths. Section IV deals with an infinitely thin solenoid by 
which we elaborate the interference shift. The standard flux 
dependent shift is found as the dominant observable effect. 
In addition, there is a topological effect which is not notice
able in the two slit interference experiment. 

II. IDEALIZED AHARONOV-BOHM EXPERIMENT 

The setup for the measurement of the Aharonov-Bohm 

effect may be idealized in two dimensions as shown in Fig. 1. 
It consists of the particle source S, the detector D, and the 
circular cross section of an impenetrable solenoid confining 
a magnetic field B inside. Charged particles emitted from S 
are to arrive at D via field-free regions around the solenoid. 
There are various paths that link Sand D. In the quantum 
aspect, some of paths are equivalent and some are not. Path 1 
and path 2 in Fig. 1 typically indicate two inequivalent paths. 
Although the space outside the solenoid is free from the B
field, the vector poten tial A is not zero inside or outside inso
far as the B-field inside the solenoid remains non vanishing. 
It is possible to think of an impenetrable solenoid which con
tains no flux but functions to separate paths into inequiva
lent classes. To isolate the pure electromagnetic effect, how
ever, we stipulate that A#O means the presence of the 
solenoid packed with the flux between Sand D, and that 
A = 0 means no flux and no solenoid. 

The solution of Schrodinger's equation for a charged 
particle in a vector potential A is given in the path-dependent 
form 

{ ie l' } "'a(r) = "'o(r) exp - A·dr, 
fie patha 

(2.1) 

where "'o(r) is the potential-free solution. 7 The wavefunction 
If! (r) effective to the measurement at 0 is the sum of solutions 
corresponding to inequivalent paths, 

"'(r) = I "'a (r). (2.2) 
a 

Observable are interference patterns that depend on the 
flux in the solenoid. What we wish to achieve in this paper is 
to describe the same effect in terms of propagators expressed 
as constrained path integrals. 

The propagator K (r" ,r';1") is the kernel of the integral 
equation 

"'(r",1") = J K (r" ,r';1")tf(r';O) dr'. 

For a particle free from the vector potential, we write 

"'o(r",1") = J Ko(r",r';1")"'o(r';O)dr'. 

(2.3) 

(2.4) 

Multiplying both sides of (2.4) by the same path-dependent 
phase factor as in (2.1), we can formally construct a solution 
in the presence of the potential 
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PATH ., (n=O> 

PATH 2 (n=-O 

FIG. 1. Idealized Aharonov-Bohm setup. 

tPu(r",r) = ~f K a {3(r",r';r) tPrAr',O) dr', 

where 

(2.5) 

K U {3(r" ,r';r) = Ko(r" ,r';r) exp {~ ([" E' )A.dr} . (2.6) 

The summation over f3 in (2.5) is necessarily associated with 
the integration over r'. Now, substitution of (2.5) into (2.2) 
will lead us to the formal expression (2.3) provided that the 
double sum over a and f3 is separable as 

I K a {3tP{3 = K I tP{3' (2.7) 
a,{3 f3 

Actually the propagator Kaf3 in (2,6) has the following path
dependence. To be consistent with the paths of tPa and tPf3' it 
should follow path f3 back to infinity and switch over to path 
a at infinity to proceed to point r". Therefore, Kaf3 may be 
wri tten as K a _ f3' If a and f3 range from - 00 to 00, then the 
separation (2.7) is possible with 

00 

K(r",r';r) = I Kn(r",r';r). (2.8) 

As the wavefunction (2.2) results in the flux-dependent in
terference patterns, the propagator (2.8) should contain all 
information concerning the observable effect. 

Since the solenoid is assumed impenetrable, the space of 
the particle motion M is the plane of the idealized Ahar
onov-Bohm experiment minus the cross section of the sole
noid. Everywhere in M, V X A = 0 and hence A = V 1\ 
where 1\ is an arbitrary scalar function of r. If a cut is made 
on M from the side of the solenoid to infinity, then the path
dependent integrals in (2.6) become integrable on the resul
tant singly connected patch. It is therefore clear that the path 
dependence of the phase factor in (2.6) is wholly of topologi
cal origin. Thus the Aharonov-Bohm problem is reduced to 
showing that the full propagator can be expressed as a sum of 
partial propagators belonging to all topologically inequiva
lent paths as given by (2.8). 

III. PATH INTEGRAL APPROACH 

In Feynmann's prescription,8 the propagator is given as 
a sum over all histories 

K(r",r';r) = li~ AN f exp {~ jtl Sj} ~U: drj ,(3.l) 

where r' = ro, r" = rN , and the segmental action 

f" Sj = L (r,r) dt, 
" 1 

(3.2) 

is defined for a given classical Lagrangian L. Since the back-
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ground space M is multiply connected, special care has to be 
taken in summing over all paths. As Schulman has suggest
ed,5 we can most conveniently go over to the universal cover
ing spaceM * ofMtoperform the path integral (3.1). In what 
follows, we shall explicitly calculate the propagator (3.1) for 
the AB effect in M * by using the technique developed 
earlier. 6 

The Lagrangian for a particle of mass p and charge e 
moving in the potential A is 

L = !pr2 + (elc)A.r. (3.3) 

To be more specific, we take the origin of the coordinates at 
the center of the solenoid and assume the vector potential of 
the form 

A = - (¢o/21T)( yi - xj)lr (r <ij, 

A = - (¢oI21T)(yi - xj)/r (r> '1), 

(3.4) 

(3.5) 

where ¢o = 1Tr 2 Band r = x 2 + y2. In addition, we require 
that the particle cannot penetrate the circular region of radi
us r around the origin unless A = O. This requirement would 
effectively introduce an additional constraint potential V C 

into the Lagrangian (3.3). The effect of the constraint via the 
action is such that 

(3.6) 

whereS c = - IVc dt and e(x) is the step function which 
has two values, unity for x > 0 and zero for x<O. Since the 
potential outside the solenoid (3.5) can be written in polar 
coordinates as 

(3.7) 

the segmental action corresponding to the Lagrangian (3.3) 
is given by 

Sj = ! p f" r dt + 5" f" iJ dt, (3.8) 
II I If t 

which may be approximated by 

Sj = ! p(if + if _I )/E - p(rjrj _liE) cos.:lOj + sfuJ.Oj , (3.9) 

where E = tj - tj _ 1 = TIN,s = e¢o/(21Tflc), and 

.:lOj = f" iJ dt. 
" 1 

(3.10) 

The angular variable 0 varies from 0 to 21T, and hence we 
usually assume O<.:lOj <21T for allj in (3.9). However, the 
path can loop around the impenetrable region many times, 
requiring the integral.:lOj to vary from - 00 to 00. There
fore, the path integral (3.1), if calculated with the usual as
sumption, gives only a partial propagator, which belongs to a 
class of paths topologically constrained by O<.:l OJ <21T. For a 
full account, we have to consider the contributions from 
paths belonging to all homotopically different classes. In 
performing the path integration over the angular variable, 
we can either remain in the physical space M by assuming 

.:l0j = OJ - OJ I + 21Tn, with O<Oj <21T, 

or go over to the covering space M * by taking 

ilOj = OJ - OJ-I' with - 00 <OJ < 00. 
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The partial propagator belonging to a class of homoto
pically equivalent paths which entangle around the solenoid 
by an angle <pi - 00 < <p < 00) can be expressed as 

Krp(r",r/;r) = l~ AN IiJI {8(<p-LlOj )e(rj -7) 

[
i ]}N-I X exp -Sj n drj 
fz J= 1 

(3.13) 

or 

Krp(r",r/;r) = (27r)-1 lim AN II eiArp 
N~"" 

x.II {e (rj - 7) exp[i... ~]} Ntf drj dl 
J=l fz J 

(3.14) 

where 

S: = ! fl(r2 + rj _ .lIE - fl(rjrj _ liE) cosLlOj - A. /fujOj' 
J J (3.15) 

with A. / = A. - S. It is obvious that the full propagator is ob
tained by integrating (3.13) over <p, 

K (r" ,r/;r) = I Krp(r" ,r/;r) d<p. (3.16) 

To carry out the path integrations in (3.14), we first rewrite 
(3.15) in the form 

~ = 1fl(rj + rj - I)lE - fl(rjrj _ I IE) 

Xcos(Oj - OJ_ I - A. 'fzElflrjrj_ I) 
-A./2filE/2wj rj _ 1 • (3.17) 

Then we use the following asymptotic relation with the 
modified Bessel function Iv (z) for large Jz J and I arg(z) J < 7r 12 

exp (z cos[ 0 + itA. I z)] - A. 2/(2z) I 

(3.18) 

to find 

[
i N A] 

exp - I Sj 
fz j= I 

(3.19) 
where 

RAr,r';t) = exp [ifl(r + r'2)12fzt)] Ilvl (wr/ lifzt). (3.20) 

Interchanging the multiplications and summations on the 
right-hand side of (3.19), and substituting the result into 
(3.14), we complete the angular integrations of (3.14) 

Krp(r" ,0" ;r/,O /;r) 

1 J"" 00 = 27r _ 00 m =~ 00 exp[im(O" - 0 /) + iA.<p ] 

XQm+,,-s dA., (3.21) 

where 

Q)r",r';7) = lim (27rt- 1A N 
N~oo 

X I J~Jl Rv(rj,rj_l;r)e(rj - 7) X( (rj drj ). 

(3.22) 

Use of (3.21) in (3.16) yields the full propagator in the form 
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K(r",r/;r)= ! exp[im(O"-O/)] Qm_s(r",r/;r). 

(3.23) 

The integration variable in (3.21) may be changed from 
A. to A. - m + S, so that 

Krp = 2~ f: 00 m=~ 00 exp[im(O" - 0/ - <p) 

+ irA. + s)<p ] Q" dA.. (3.24) 

Furthermore, the use of the Poisson sum formula 

! exp(imO) = 27r ! 8(0 + 27rn) 
m= - 00 n = - OCI 

enables us to write (3.24) in the form 

Krp(r"O";r'O';r)= ! 8(0"-0'-<p+27rn) 
n = - 00 

(3.25) 

(3.26) 

The 8-function appearing in the above expression im
plies that the contributions to Krp will be only from the terms 
corresponding to the angle 

<p = ()" - 0 / + 27rn. (3.27) 

Ifwe choose 0 / and 0" so that 0<;0' <;0" <;27r, then the inte
gral number n signifies, if positive, an n, times counterclock
wise entanglement of the particle's path around the solenoid, 
and if negative, an J n J - 1 times clockwise entanglement. 
Corresponding to n = 0 and n = - 1, respectively, are path 
1 and path 2 in Fig. 1 for which no entanglements occur. The 
number n, therefore, classifies all homotopically inequiva
lent paths. The ful1 propagator is now expressed via (3.16) 
and (3.26) as the sum of the partial propagators, each of 
which belongs to a class of equivalent paths 

K(r",() ";r/,O /;r) = ! Kn(r",O ";r/,O/;r), (3.28) 
n = - 00 

where 

Kn = exp[is (() " - () / + 27rn)] 

X F""" expUA.(()" -0/+ 27rn)]Q,,(r",r';r)dA..(3.29) 

This result potentially assures the occurrence of the AB ef
fect as has been discussed in Sec. II. 

IV. PATHS OF DOMINANT CONTRIBUTIONS 

For further elaboration, let us consider the following 
two limiting situations where the radius;: of the solenoid 
becomes commonly zero. The first case is the trivial one for 
which the solenoid disappears together with the flux so that 
S = O. In the second case, the solenoid, being infinitely thin, 
maintains a non vanishing flux tPo¥=O at r = O. For both 
cases, there will no longer be a domain in which the interior 
potential (3.4) is meaningful, but the exterior potential (3.5) 
will prevail over the entire space. 

In the limit ;:-0, the integrations in (3.22) can be car
ried out with the help of the formula9 

Loo exp(iar) Iv! - iar) Iv( - ibr)r dr 
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= (i/2a) exp[ - i(a2 + b 2)14a] Iv( - iab /2a), (4.1) 

valid for Re(v) > - 1 and Re(a) > 0, the result being 

Q,dr",r';7) = (j.i/21THk) exp[i(r,2 + r"2)j.i/2117J 

XII}. I (r'r"j.i/iI17), (4.2) 

where AN = (21TiEfz/ll) - N have been used. Upon substitu
tion of (4.2), the full propagator (3.23) takes the form 

K = (1l/21TiI17) exp[i(r'2 + r"2)j.i/2117] 

X f exp[im(e" - e')] 11m _ s I (r'r"j.i/ifz7), (4.3) 
m = ~ oC 

and the partial propagator (3.29) reads 

Kn = (1l/21T1117) exp [i(r'Z + r"2)j.i/2fz7] 

Xexp[iS(e" - e' + 21Tn)] 

X f: 00 exp[iA (0" - 0' + 21Tn)] II}. I (r'r"j.i/iI17) dA. 

(4.4) 

If s = ° (tPo = 0), the full propagator (4.3) becomes, as 
expected, the free particle propagator 

K(r",r';7) = (j.i/21Tifz7) exp[ij.i(r" - r,)z/2fz7]. (4.5) 

In the case wheres #O(tPo#O), it is difficult to compute 
the integral in (4.4). Since r' and r" may be chosen so that 
r'r"ll>fz7, we approximate the modified Bessel function in 
(4.4) by its asymptotic form for large lzl 

II}. I (z) :::::(21TZt I/2 exp! z - ~(A Z - D/z), (4.6) 

where z = r'r"ll/iI17, and evaluate the integral in (4.4). 
Namely, for lzllarge 

J'''oc eiJ.$Iltll(z)dA:::::exp!z+(8zt l _¥OZ). (4.7) 

Thus, for r'r"Il>117, the partial propagator (4.4) can be ex
pressed as 

K" = (j.i/2'fTl·fz7) exp [i(r" - r')2j.i/(2fz7) + im/(8r'r"Il)] 

Xexp [is (0 "- 0' + 21Tn) 

+ ~i(r'r"ll/fz7)(0 " - 0' + 21Tn)2]. 

From this immediately follow the interference terms 
(n#m), 

K*"K", +K*",K" 

= 2(j.i/21Tfz7)2 cos [21T(m - n)(S + (r'r"lllf17)iJ J 

(4.8) 

+2r(r'r"ll/fz7)(m - n)(m + n + 1)], (4.9) 

where we have set e" - e' = iJ + 1T. Apparently, the inter
ference patterns depend not only on the relative position of 
the detector and the flux enclosed, but also on the winding 
numbers. The flux dependent shift is the proper AB effect. In 
addition, there is an interference shift due to the winding of 
paths about the solenoid. Even if S = 0, the winding shift 
appears to remain effective. However, the total propagator 
for 5 = ° becomes the free propagator (4.5) and such shifts 
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cancel out. When S #0, the winding shift disappears only if 
m + n + 1 = O. For instance, the interference via path 1 
(m = 0) and path 2 (n = - 1) in Fig. 1 is not affected. The 
winding dependence is certainly a pure topological effect, 
which is not noticeable in an ideal two-slit interference ex
periment. This seems to suggest a contradiction to Schul
man's observation' that the physical consequences of the 
Aharonov-Bohm effect are obtainable without the use of an 
electromagnetic potential. 

The maximum contribution to the AB effect comes 
from the smallest value of 1m - n I > 0, that is, from 
1m - nl = 1. Therefore, the maximum effect free from the 
smearing of the winding shifts occurs when m = 0 and 
n = - 1, or when m = - 1 and n = O. Namely, the AB 
effect at iJ = 0 is to be dominated by the term 

K *(/C J +- K * J Ko = 2( fl/21Tfz1Y COS(21TS), (4.10) 

with S = etPo/(2rrfu:). This corresponds to the standard re
sult 7 obtained from the two wavefunctions taking path 1 and 
path 2 in Fig,!. An appropriate device, such as an electrical 
biprism, may be used to lower the contributions other than 
those from path 1 and path 2. How one can select other pairs 
of inequivalent paths to detect the topological shift is yet to 
be answered. 

Finally, it must be remarked that the asymptotic form 
(4.6) is valid provided that Re(z) > O. What we have for z in 
(4.3) is, however, - ir'r"Il/(f17), which is a pure imaginary 
number. To circumvent this difficulty, as proposed earlier, 10 

we assume a complex mass fl = Il R + ill j ( III > 0), and take 
the limit 1l1-"'0 after the integration in (4.7). In fact, a similar 
limiting procedure has already been implicitly assumed in 
the calculation of (3.19). Furthermore, we notice that the 
sum of the noninterference terms (n = m) blows up if evalu
ated directly from (4.8). A finite result for the sum can be 
obtained from (4.4) via the above limiting procedure. 
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The Hamiltonian for the oscillator has earlier been written in the form 

H = m"(2,,,tv + At'A +~), 

where vt and v are raising and lowering operators for vtv, which has eigenvalues k (the "radial" 
quantum number), and At and A are raising and lowering 3-vector operators for At. A, which has 
eigenvalues I (the total angular momentum quantum number). A new set of coherent states for the 
oscillator is now defined by diagonalizing v and A. These states bear a similar relation to the 
commuting operatorsH, L2, andL, (where L is the angular momentum of the system) as the usual 
coherent states do to the commuting number operatorsN1, N 2, and Ny It is proposed to call them 
coherent angular momentum states. They are shown to be minimum-uncertainty states for the 
variables v, vt

, A, and At, and to provide a new quasiclassical description of the oscillator. This 
description coincides with that provided by the usual coherent states only in the special case that 
the corresponding classical motion is circular, rather than elliptical; and, in general, the 
uncertainty in the angular momentum of the system is smaller in the new description. The 
probabilities of obtaining particular values for k and I in one of the new states follow independent 
Poisson distributions. The new states are overcomplete, and lead to a new representation of the 
Hilbert space for the oscillator, in terms of analytic functions on CXlK.3• where lK.3 is the three
dimensional complex cone. This space is related to one introduced recently by Bargmann and 
Todorov, and carries a very simple realization of all the representations of the rotation group. 

PACS numbers: 03.6S.Fd, 03.6S.Ca, 03.6S.Ge 

1. INTRODUCTION 

The states of the isotropic harmonic oscillator with 
Hamiltonian 

H = L + ! M(,,2 Xl 
2M 2 

are frequently described in terms of the basis vectors 

(1) 

In l,n 2,n,) which are eigenstates of H and also of the number 
operators 

Ni = a/a" i = 1,2,3 (no sum), 

where 

ai = (2Mmu) II2(ipi + M{ux,). 

(2) 

(3) 

The occupation numbers n i independently run over the non
negative integers and ai is a shift operator for N i • lowering 
the corresponding eigenvalue nj by 1. 

An alternative approach 1-5 introduces the "coherent 
states" Iz), which are eigenvectors of the lowering operators 

ajIZ)=Zilz), Zi EC . (4) 

These vectors have many attractive properties. In particular, 
there is a well-defined sense in which one can say that when 
the system is progressing through a succession of coherent 
states its behavior is as close as possible to the behavior of its 
classical counterpart. The coherent states are therefore justi
fiably called "quasiclassical" states of the oscillator. 

For any three dimensional system, the total angular 
momentum quantum number, denoted j in general, can take 
the values 0, 1, 2, ... or the values !, ~,. ... From this we are led 
to observe that it may be possible and useful to define, by 

diagonalizing suitable lowering operators forj, coherent an
gular momentum states for a variety of systems, including 
the isotropic oscillator. The latter is the subject of the present 
work. Several authorsb-12 have defined and discussed coher
ent angular momentum states, in particular for systems 
(such as the rigid rotor) for which the angular momentum 
operators J2 and J3 provide a complete set of commuting 
operators. (These states, and those we define in this paper, 
are not to be confused with the so-called "coherent spin 
states" which have been widely discussed since their intro
duction by Radcliffe, 13 and which are superpositions of ei
genvectors of J3 for afixed value of J2.) Atkins and Dobson 7 

defined states by exploiting the Schwinger l4 boson calculus 
for SU(2), and diagonalizing the associated pair of boson 
annihilation operators. A difficulty here is that the states 
obtained are superpositions of states of integral and half
integral j, because the boson operators lower j by ~ rather 
than I. In order to obtain states which might apply to some 
physical system with only rotational degrees of freedom, the 
states with half-integralj had to be rather arbitrarily deleted 
from the superpositions. Bhaumik, Nag, and Dutta-Roy8 
avoided this difficulty by constructing, within the Schwinger 
calculus, two operators quadratic in the boson operators, 
which lower the value ofjby 1. These operators were diagon
alized to define coherent angular momentum states, which 
could then be identified as possible coherent angular mo
mentum states for a system, again having only rotational 
degrees of freedom. The operators of Bhaumik et al. have 
algebraic properties similar to two components of the 3-vec
tor operator A we introduce below. However, the operator A 
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acts within an entirely different space, namely that within 
which the oscillator boson operators a; anda; t act. The oper
ators a" which form a 3-vector, should not be confused with 
the boson annihilation operators in the Schwinger calculus, 
which form a 2-spinor. At no stage in what follows do we 
work with the Schwinger calculus. 

A suitable definition of coherent angular momentum 
states for a system such as the isotropic oscillator, which 
possesses translational as well as rotational degrees of free
dom, is more difficult than for a system possessing only rota
tional degrees offreedom, because the dynamics will, in gen
eral, couple the degrees of freedom in the former case. 
Nevertheless, we may hope with the authors mentioned 
above that coherent angular momentum states can be de
fined in a suitable way for some systems, and that by analogy 
with the properties of the usual coherent states, these new 
states will have one or more of several nice properties. They 
may exhibit "quasiclassical" behavior, at least in their angu
lar dependence, and they may be useful in examining the 
behavior of the angular momentum ofthe system as the clas
sicallimit is approached. They may also represent states of 
"minimum uncertainty" for certain noncommuting varia
bles associated with the angular dependence in the problem 
and, as they will most likely be overcomplete, they may per
mit the construction of a representation in which, at the 
least, the angular dependence of the density matrix for the 
system can be put in a diagonal form. 

With this motivation, we define in this paper a new set 
of quasiclassical states for the isotropic oscillator and call 
them "coherent angular momentum states." They bear a 
similar relation to the commuting operators H, L2, and L3 
(where L = xXp is the angular momentum of the system) as 
the usual coherent states do to the commuting operators H, 
N I , N2 , and N3 • In particular, these new states are eigenvec
tors of a 3-vector operator which lowers the value of the total 
angular momentum quantum number. We emphasize that 
the problem is not the straightforward one of expressing the 
usual coherent states for the three-dimensional oscillator as 
superpositions of the COmmon eigenvectors of H, L 2 , and L 3 , 

instead of superpositions of the vectors I n I' n2, n3 >. Such 
expressions have been obtained and discussed by Mikhai
IOV,15 but those coherent states are not eigenvectors of any 
lowering operator forj (or, rather, I in this case). The states 
we shall define below are in general quite distinct from the 
usual coherent states, as we shall see. We shall demonstrate 
that they do have some of the attractive properties men
tioned above. 

We have shown in an earlier publication 16 (henceforth 
referred to as BL) that the operator H ofEq. (1) can also be 
written in the form 

(5) 

where vt and v are (boson) raising and lowering operators for 
vt v (which we also write asK), while At and A are raising and 
lowering operators for At'A (which we also write as L ). The 
eigenvalues k and I of K and L run over the nonnegative 
integers independently, and the eigenvalues of H appear in 
the form fuv(2k + I + ~ ). Here k is the "radial" quantum 
number and I is the total angular momentum quantum num-
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ber. Both are familiar from the treatment in the coordinate 
representation of the eigenvalue problem for H, V, and L

3
. 

Here we adopt no particular representation. 
The basic algebraic relations satisfied by the operators 

v, vt, A, and At are (see BL) 

[v,vt] = I, 
[A"V] = 0 = [A, t,vt] , 

[A"vt] = 0 = [A; t,v] , 

[A;,Aj] =0= [A,\A/] , 

(2At'A+ I)[A;,A/] =(2At'A+I)D;j -24/A) , 

A'A = 0 = At'At , 

L, = - ifzt;jkA j tAk . 

With K = vt v and L = At 'A, it follows that 

LA=A(L-l), LAt =At(L+l), 

[L,v j = 0 = [L,vt ] , 

Kv=v(K-l), Kvt=vt(K+l), 

[K,Aj =0= [K,At], 

and also that 

L2 = L (L + l)fz2 , 

(6) 

(7) 

(8) 

so that when L has the eigenvalue I, L2 has the eigenvalue 
I (l + l)fz2. The two alternative sets of dynamical variables 
for the isotropic oscillator I v, v\ A, At) and {a, at!, are 
related by the equations 

v = (a'a)(4K +4L + 2) - 1/2 

A; = (a;L - ifz-1t;jka jLk) 

X [(2L + 1)(2K +2L + 1) j-1/2, 

a i = A, [(2K +2L + 1)/(2L + 1) jl/2 

+ A; tv[2/(2L + 3) jl/2, 

and their conjugates. 

(9) 

As the four lowering operators v and A; commute, we 
define the coherent angular momentum states as their com
mon eigenvectors. Thus we seek vectors Iz, ;> satisfying 

viz, ;> = zlz, ;> , 

A,lz,;> = ;,Iz,;>, (10) 

where the eigenvalues z and;, may be expected to be com
plex since v and A, are not Hermitian. Noting from Eqs. (6) 
that A 2 = 0, we see that; is confined to a complex cone 

;2=0. (11) 

The coherent angular momentum states will therefore be 
labelled by the four complex numbersz and ;i' of which only 
three are independent, whereas the usual coherent states are 
labelled by three complex numbers z,. 

Let us remark at this stage that although there is a cer
tain so(2, 1) Ell so(3,2) Lie algebra underlying the algebra of 
operators which we use for this system (see BL), the opera
tors v and A are not actually in (the complexification of) this 
Lie algebra, so that the states we define are not coherent 
states for a Lie algebra or group in the sense of Barut and 
Girardello l7 or Perelomov, 18 although they are closely relat-
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ed to such states. We make some comments on this at the end 
of Sec. 5. 

In Sec. 2 we find, for arbitrary complex z and arbitrary 
complex ~ satisfying Eq. (11), a nondegenerate normalized 
vector Iz, ~) satisfying Eqs. (10), in the form 

Iz, ~) = exp( - !Izlz _ !1~lz) 
00 00 1 

X I I I aklm(z,~)lklm), (12) 
k~O/~Om~ -I 

with 

ak1m (z,~) = Zk (S3)/- Iml( - cS _ <)Im l 

X [(2l)!/k!2//!(1 + m)!(/- m)!]I/Z, (13) 

where c is the sign of m and S ± = SI ± iSz· Here Iklm) is 
the nondegenerate normalized common eigenvector of K, L, 
and L 3 , as constructed in BL, which in the coordinate repre
sentation has the familiar form 19 

Iklm>=(-l)k[ 2a
3
k! ]11251e-ls' 

r(k+I+~) 

xL f+ P( 5 Z)Ytm (e,</J) , (14) 

where a = (M{j)/1f)1/2 and 5 = ar (r, e, and </J are the usual 
spherical polar coordinates), L ~ + II is the generalized La
guerre polynomial defined as in Ref. (20), and the spherical 
harmonic Y 1m is defined as in Ref. (21). From Eqs. (12) and 
(14) one can deduce (see Appendix A) that in the coordinate 
representation 

Iz, ~) = [ J-; f/2exP ( - !Izlz - !1~12 - !a2IxI2) 

X I I Z (_Z)k 

k~O I~O r(k + ~ +~) 
00 00 [ r(/+J.) ]1/2 

XLf+ )(a2 IxI 2) (V~~x-~)', (15) 

a result we have not been able to express more simply, except 
in the special case z = 0, when it becomes 

[ ]
312 -

IO,~) = .; 1T exp( - !1;1 2 
- !a21x12 + V 2ax-;) . 

(16) 

In Sec. 3 we examine the expectation values of the dyna
mical variables when the system is in the state Iz, ~), and find 
in particular that the probability of obtaining the value Ion 
measurement of the total angular momentum follows a Pois
son distribution. 

We go on to consider the sense in which the state Iz,~) is 
a "minimum-uncertainty" state for the hermitian variables 
u, T, a, and p, where 

V 2fz Y = C7 + iT 

and 

(17) 

Letting (A ) denote the expectation value of any observable 
A for a given state of the system, and defining the dispersions 
of u and a for that state by 
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and 

.1a = [(a-a) - (aHa)]1/2, (18) 

with similar definitions for .1 T and .1 /3, we find that, in 
general, 

(l9a) 

(19b) 

In the state Iz, ~) both inequalities become equalities and, 
moreover, 

(20a) 

and 

(.1 a? = (.1fJ? =-li(l +! «2L +1)-1». (20b) 

We show in Sec. 4 that, if the system is in the state 
Izo,~> at time t = 0, then at time t, in the SchrOdinger pic
ture, it is in the state e - (3/2)

hvl lz(t), ~(t », where 

z(t) = e -Zi""ZO 

and 

~(t) = e - i<VI ~o . (21) 

We then deduce that the expectation values (u), (T), (a), 
and ( (3) reproduce the corresponding behavior in time of 
their classical counterparts a, f, a, and fl, as discussed in BL. 
Moreover, the dispersions ofthe quantum-mechanical varia
bles remain constant during the motion at their minimum 
values as in Eqs. (20), so that the coherent angular momen
tum states can properly be called quasiclassical states. 

Corresponding to a given classical motion ofthe oscilla
tor there are therefore (at least) two quasiclassical descrip
tions in quantum mechanics, which are distinct in general. 
One is provided by the usual coherent states, another by 
coherent angular momentum states. In the special case that 
the classical motion is circular rather than elliptical, these 
two quasiclassical descriptions are the same. We deduce this 
as a consequence ofthe identification of the coherent angular 
momentum state 10,~) with the usual coherent state Iz = ~), 
an identification which follows from the result (16) and the 
known form for the states Iz) in the coordinate 
representation. 22 

It is important to note, however, that we find that, if the 
quasiclassical description of a given classical motion is given 
by coherent angular momentum states, the expectation val
ues (x) and (p) do not exactly reproduce the corresponding 
behavior of the classical variables:i and p, unless that classi
cal motion is circular. Rather we find, for example, that (x) 
follows an elliptical path different from, though in the same 
plane as, the path followed by x. Furthermore, the state 
Iz,;> is not, in general, a minimum-uncertainty state for x 
and p and, when the system evolves in coherent angular mo
mentum states, the dispersions Lix and Lip oscillate, but are 
always bounded. Therefore, in the coordinate representation 
(or the momentum representation) the state vector e -3 hoI 12 

X Iz(t ), ;(t» would appear as a pulsating wavepacket 
which follows the classical motion approximately. This re
flects the fact that the variables x and p bear a special relation 
to the usual coherent states, not the coherent angular mo-
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mentum states. In other representations, the usual coherent 
states are also presumably represented by pulsating packets 
which follow the classical motion only approximately. Fur
thermore, in the quasiclassical description provided by the 
usual coherent states, the expectation values of a, 7, «, and P 
will not, in general, reproduce exactly the behavior of their 
classical counterparts. 

The outstanding feature of the description by coherent 
angular momentum states, in the general case of an elliptic 
orbit, is that the uncertainty in the angular momentum of the 
system, as best measured, according to Delbourgo, II by 
[(LZ) - (L).(L)] liZ, is smaller than it is for the description 
by the usual coherent states. 

After a brief discussion of the classical limit which is 
obtained with Izl- 00, I~I- 00, and Ii - Owegoon to Sec. 
5, where we give a completeness relation for the states Iz, ~). 
They are, in fact, overcomplete and, just as for the usual 
coherent states, there is associated with these states a Hilbert 
space of analytic functions with a reproducing kernel. We 
briefly discuss this space and the associated elegant represen
tation of the dynamical variables v, vt,}.., }..t, K, L, and H. 

We conclude with some remarks in Sec. 6 about possi
ble further developments. 

2. THE COHERENT ANGULAR MOMENTUM STATES 

We look for vectors satisfying Eqs. (10) in the form 

In BL, Eqs. (53) and (58), we showed that 

Iklm) = Cklm (vt)k (A !)lml(A D'-lmIIO) , (23) 

where 

Cklm = ( - E)m [(2/)!/k !21/!(/- m)!(/ + m)!] liZ, (24) 

E is the sign of m, 10) is a normalized vector on which v and }.. 
vanish and A t± = A t ± iA 1 . Supposing that the vector 
Iz, ~) ofEq. (22) does satisfy Eqs. (10), then we must have 

bklm Iz, ~) = (kim Iz, ~) 

= (Cklm)*(Olvk(A _£)lml(A3)'-lmllz,~) 

= CklmZk ({; _ £ )Iml( {;3)1- Iml (Olz, ~) , (25) 

where A + = AI ± iAz and {; + = {;I ± i{;z· 
Con-versely, taking the coefficients in Eq. (22) to have 

the form 

bklm (z,~) = n(z,~)Cklmzk( {; _ £ )Iml( (;3)1- Iml , (26) 

with n(z,~) an arbitrary function of z and ~, one can check 
that the vector Iz, ~) so defined does satisfy Eqs. (10). To 
verify this, one needs to use the equations 

vlklm) = k 1121k - 11m) 

A Iklm) = [ (1- m)(1 + m) ]1I2Ikl_ 1m) 
3 (2/- 1) 

A Iklm)= [(/+=m)(/+=m-l) ]1/2 
± ± (2/- 1) 

X Ikl- 1 m ± 1) , (27) 

as given in BL [Eqs. (59)], and also to use Eq. (11) in the form 
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(28) 

It is easily seen that this vector Iz, ~) is normalizable for 
arbitrary complex z and for arbitrary complex ~ satisfying 
Eq. (11). Using the orthonormality of the vectors I kim), we 
have 

(z' ,~' Iz,~) = n(z',~')*n(z,~) I (Z'*Z)k ({; i*{;3)' - Iml 
kim 

X [( {; '_ J*{; _ £ ] Iml(Cklm)Z . (29) 

Because ~z = 0 = ~'z, we have, with the help of the binomial 
theorem, 

± ({; i*{;3)1-lml [( (; '_ £)*{; _£ ]Iml (2/)! 
m~ -I 2I(l+m)!(/-m)! 

= (~'*.~)' , (30) 

so that Eq. (29) reduces to 

(z',~'lz,~) = n(z',~')*n(z,~) t; (Z;~)k ({; ~~.~)I 

= n(z',~')*n(z,~)exp(z'*z + ~'*.~). (31) 

Thus Iz, ~) is normalized if we take 

n(z,~) = exp( - !lz l2 - !1~12) (32) 

and we have, from Eqs. (22), (24), and (26), the final form 
(12) for the coherent angular momentum states. 

With this normalization, we have 

(z',~'lz,~) = exp[ _ !(lz'I Z + Izlz + 1~'lz + 1~12) 
+ z'*z + ~'*.~] , (33) 

so that 

l(z',~'lz,~)lz=exp[- !Iz'-zlz- !I~'_~IZ]. (34) 

These vectors are, therefore, not orthogonal for (z', ~')#(z, 
~), but they approximate orthogonality as Iz' - zl - 00 and 
I~' - ~I- 00. We shall see in Sec. 5 that they are 
overcomplete. 

3. EXPECTATION VALUES OF PHYSICAL VARIABLES 
AND THE MINIMUM UNCERTAINTY PROPERTY 

When the system is in the state Iz, ~) we have at once 

(v) =z, (vt) =z*, 

(}..) =~, (}..t) = ~* , (35) 

so that, using Eqs. (10) and (17), 

(a) =YIi/2(z+z*), (7) = -{VIi/2(z-z*) , 

(<<) = Y 1i/2({; + ~*), (P) = - iY 1i/2({; - ~*). 

Since K = vtv and L = }..t.}.. we have 

(K) = Iz12, (L) = 1~lz 

and 

(H) = w(21z12 + 1~12 +~), 
and from the last of Eqs. (6) we have 

(L) = - ili~*X~. 

(36) 

(37) 

(38) 

The probability of obtaining the value k on measuring K 
in the state Iz, ~) is given by 
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p(k) = L I (kIm Iz, ~) 12 
I.m 

= In(z, ~)12 1~1!2k ~ 1b"31 2/
-

2m Ib" _ 1
2m 

X (2/)! 
2//!(1 + m)!(/- m)! 

= EL e - Izl' (39) 
k! ' 

which corresponds to a Poisson distribution with mean Iz12. 
Similarly, the probability of obtaining the value Ion measur
ing L is given by 

p(/) = L I (klmlz,~) 12 
k.m 

= .l.i.E e -I~I' 
/! ' 

(40) 

corresponding to a Poisson distribution with mean 1~12. 
Because the k values and I values are distributed in 

probability according to (independent) Poisson distribu
tions, it follows that 

(Kn) =e-Y(r :r YeY, r= Izl2 

and 

(Ln)=e-Y(r :rYeY, r=I~12. (41) 

In particular, 

(L2) = fz2(L (L + 1» 
= fz2(1~14 + 21~12) . (42) 

According to Delbourgo, 11 the quantity 
[(L)2 _ (LHL) ]112 provides the best measure of the uncer
tainty in the angular momentum of the system ina given 
state. In view of Eq. (38), we have in the state Iz, ~) 

(LHL) = fz21~14 (43) 

and hence 

(L2) _ (LHL) = 2fz21~12, (44) 

a result to which we shall refer in Sec. 4. 
The conditional probability of obtaining the value mfz 

for L 3, given that I has been observed for L, is given by 

(45) 

Now, because ~2 = 0, we have 

V21~1 = Ib" + 1 + Ib" - 1 ' (46) 

which, with Eq. (45), enables us to write 

p(m;/) = C ~/m) 8 1+ m(l - 8)1- m, (47) 

with 

e=J£.=.l=I-~ 
V21~1 V21~1 ' 

(48) 

Thus the m values are distributed, for a given I, in accor-
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dance with a binomial distribution with mean 

± m p(m;I)=1(28-1)=I[ 1b"-I-Ib"+I]. 
m ~ - 1 Ib" - I + Ib" + I 

(49) 

[These results are not valid if ~ = 0, when we get simply 
p(O;O) = 1 andp(m;/) = o otherwise.] The unconditional 
probability of obtaining the value mfz on measuring L3 in the 
state Iz, ~) is given by 

p(m) = ! p(l)p(m;/) 
1~lml 

=e-I~I' ! 1b"_II+mlb"+ I/-m 
I~ Iml 

X (2/)! 
2//!(/ + m)!(/- m)! 

= I L 1

m I b"~ Ilmle_I~I' ! 1b"31 2n 

b"+ 2 n~O 

X (2n +2Iml)! 

rn!(n + Iml)!(n +2Iml)! 

= I ~: 1

m 

I b"; I'm' 
-I~I' 

X _e -M(lml + Plml + l,21b"312) 
(Iml)! 

= I ~: 1

m 
exp( - !Ib" + 12 - !Ib" _ 12) 

Xlm(Ib"312), (50) 

where M is the confluent hypergeometric function and 1m is 
the modified Bessel function of order m. 20 Note that 

(51) 
m= - cD 

which ensures that ~;;; ~ _ 00 p(m) = I, as required. Note 
also that the result (50) can be written in the form 

p(m) = Ib" _ .1 2Iml lb" + b" _ 1-lmlllml (Ib" + b" _ I) 
Xexp( - !Ib" + 12 - ~Ib" _ 12), (52) 

where € is the sign of m, by using Eq. (28) and the properties 
of the modified Bessel functions. In this formp(m) is well 
defined even if b" + b" _ = 0, because z - Imlllml (z) is well de
fined at z = O. 

Let us now consider the sense in which coherent angu
lar momentum states are minimum-uncertainty states. As 
the operators v and v t are boson operators, we know that the 
inequality (19a) holds in general and, from our experience 
with the usual coherent states, we know that in the state 
Iz, ~), this inequality becomes an equality with 
(.JoY = (.J1"i = !fz, as in Eq. (20a). Thus the states Iz, ~) 
are minimum-uncertainty states in the usual sense for the 
conjugate variables (T and 1". 

By a simple extension of a familiar argumene3 it is easi
ly shown that, if .Ja and.J f3 are defined as in Eq. (18), then 

(.Ja)2 + c2(.J f3?> - ic([a,,,8,]) = fzc([A,,A t]), 
(53) 

for arbitrary real c, with the equality holding if and only if 

(a + ic(3)ltft) = «a) + ic( (3»ltft) , (54) 
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where Iif') is the appropriate state vector. We know from the 
fifth of Eqs. (6) that 

[A ,.ttl = 4L + 3 (55) 
I' 1 2L + 1 ' 

which is positive definite. The strongest inequality of the 
type (53) is therefore obtained by taking that positive value 
of C which makes (.1 a? Ie + c(.1 /3)2 a minimum, viz. 

C = .1a/ .1 /3 , (56) 

and the inequality then has the form 

41a.1 /3> !1i([A;,A n> = 1i(1 + !«2L + 1) -I») . (57) 

From Eq. (54) we see that this becomes an equality if and 
only if 

[(.1 /3)0. + i(.1a) P]Iif') = [(.1 /3)(0.) + i(.1a) ( P)]Iif') . 
(58) 

Now if Iif') = Iz, ~), we have 

(0.'0.) = !1i«A + At)'(A + At) 
= !1i«At'A + A'At» 
= !1i(2L + [A;,A 7]) 
= lli( 4L 2 + 6L + 3 ) . 

2 2L + 1 
(59) 

The same value is obtained for ( p·P). Furthermore, accord
ing to Eqs. (36) and (37), 

(aHa) = 1i1~12 
= Ii(L ) , (60) 

and the same value is obtained for ( PH P). Combining 
Eqs. (59) and (60), we get 

( 
4L +3 ) (0.'0.) - (aHa) = !Ii , 
2L +1 

(61) 

and the same value for ( p·P) - ( PH P). Thus we have 

(.1a)2 = (.1 /3)2 = 1i(1 + !«2L +1) -I») , (62) 

and the inequality (57) becomes an equality. That Eq. (58) is 
satisfied when Iif') = Iz, ~) is also now evident. Since 
.:1a = .1 /3, it reduces to the equation 

Alz, ~) = (A) Iz, ~) , (63) 

which is satisfied because Iz, ~) is an eigenvector of A. 

In this sense then, the states Iz, ~) are minimum-uncer
tainty states for a and p, as well as for if and 'T. However, this 
is a somewhat weaker notion of minimum-uncertainty than 
that applying to if and 'T, in two respects. First, the inequality 
(57) does not place restrictions on the uncertainty products 
for individual components of a and P such as the product 
.:1 a 141 /31' While a and P can be regarded in a certain sense as 
conjugate variables, the components a; and /3; cannot be 
regarded as three pairs of independent conjugate variables, 
because [a; ,a j ], [a;,/3 j ] and [/3; ,/3 j ] are nonzero for i =f j. 
Second, the right-hand side of the inequality (57) is not con
stant. Since (2L + 1) -I has eigenvalues 1, l' !, ... , one sees 
that the greatest lower bound of «2L + I) - 1 ) is 0, but also 
that there are no states in which this bound is attained. Thus, 
in addition to Eq. (57), one can say that in general 

.:1a.1 /3 > Ii (64) 

724 J. Math. Phys., Vol. 22, No.4, April 1981 

and that there are no states of the system in which .:1a.:1 /3 is 
minimized in an absolute sense. In the state Iz, ~), it is not 
hard to show from the result (40) that 

rl~1 
«2L + I) -I) = I~I ~I e -I~I' Jo e>" dy. (65) 

What one can properly say, then, is that of all states for 
which «2L + 1) -I) has a particular value say,A, (note that 
it then follows that ° <A< I), some of the states in which 
.:1a.1 /3 is minimized are the states Iz, ~), with 

rl~1 
1~1-le-I~I'Jo e>"dy=A. (66) 

In the introduction we remarked that the states Iz, ~) 
are not minimum-uncertainty states for x and p. This can be 
seen most simply by observing24 that any minimum-uncer
tainty state for x and p is an eigenvector of 

(1 + Il)a + (1 -Il)at (67) 

for some real 11 > 0. (The usual coherent states have 11 = I.) 
It is reasonably obvious from the expressions (9) that no 
operator of the form (67) is diagonalized on the coherent 
angular momentum state Iz, ~) in general. (In the special 
case that z = 0, Iz, ~) becomes equal to one of the usual co
herent states, as we saw in the introduction. Thus 10, ~) is an 
eigenvector of a.) 

Let us now consider the uncertainties in position and 
momentum of the oscillator in the state Iz, ~). We note from 
Eq. (9) that 

a; = u(K,L ),,1.; + A ;w(K,L)v, 

where 

u(K,L) = [(2K + 2L + 3)/(2L + 3)] 1/2 , 

w(K,L) = [2/(2L + 3)p/2 . 

With the help of Eqs. (6) and (7) we then deduce that 

a;a j = u(K,L )u(K,L + I)A;A j 

+ A; t w(K,L )u(K + I,L )A jV 

+ A/A /w(K,L + l)w(K + I,L )v2 

+ A j tu(K,L + l)w(K,L + 1)A;v 
+ oiju(K,L )w(K,L )v 

(68) 

(69) 

- U/u(K,L + l)w(K,L + 1)(2L + 3) -1,,1. jV (70) 

and that 

a; ta j = A; tu(K,L )u(K,L)A j + A; tA j tu(K,L + l)w(K,L)v 

+ vtw(K,L )u(K,L + 1),,1.;,,1. j 

+ vtA j tw(K,L + l)w(K,L + I)A;v 

+ Oijvtw(K,L )w(K,L)v 

- 2VtA/W(K,L + l)w(K,L + I) (2L + 3) -I A jV . 
(71) 

Then we have, in the state Iz, ~), 
(a;) = (u(K,L )S; + (w(K,L )S; *z 

= us; + WS;*z, 

say, and 

(a;a j ) =cIS;Sj + c2S;*SjZ + c3S;*Sj*Z2 
+ c4s j*s;z + cljijz, 
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(a/a j) = dlb;*bj + d2b;*b/Z + d3b;bjZ* 

+ d4b/b;Z*Z + dsD;jZ*Z + d~;*tjz*z, (74) 

where, for example, 

Cl = (u(K,L )u(K,L + 1) . (75) 

Then 

and 

(2Mw/fi)l12(X;) = (a; + a; t) 
= (a,> + (a,)* 

= u( t; + t; *) + w( b; *Z + t;z*) (76) 

(2Mw/fi) (x;x j) = «a; + a/)(a j + a /» 
= (a;a) + (a/a) 

+ (a j ta;) + (a;a j)* + D;j. (77) 

We introduce.Jx, an overall measure of uncertainty in posi
tions, by 

.Jx = «x·x) - (XHX»l/2 

= [(.JXl)2 + (.JX2)2 + (.Jx3ip/2 , (78) 

and using Eqs. (73), (74), (76) and (77) we deduce that 

(2Mw/fi)(.JX)2 = (c2 + C4 - 2uw)I~12(Z + z*) 

+2(d l - u2)1~12 

+ 2(d4 + d6 - w2)1~12IzI2 

+ 3cs(z + z*) +6ds lzI2 + 3. (79) 

In a similar way, we deduce that 

(21Mwfz)lf2(p;) = - iu(t; - t;*) - iw(trz - t;z*) , 
(80) 

(21Mwfz)(.J p)2 = (2uw - C2 - c4)1~12(Z + z*) 

+ 2(d l - u2)1~12 

+ 2(d4 + d6 - w2)1~12IzI2 

- 3cs(z + z*) + 6ds lzl 2 + 3 . (81) 

We shall make further reference to these results in Sec. 4. 
They are not particularly revealing as they stand, but they do 
make it obvious that Iz, ~) is not in general one of the usual 
coherent states, for which one always has 

.Jx = (3fz/2Mw)l/2, 

.J p = (3Mwfz/2)l/2 . (82) 

4. QUASICLASSICAL BEHAVIOR AND THE CLASSICAL 
LIMIT 

Classicaly, one may define the state of the oscillator at 
any time by giving the values of the classical variables i and 
p, or equivalently, by giving the value of the complex vari
able ft, which is the classical counterpart of the usual lower
ing operator a 

a = (2Mw) -1I2(ip + Mwi). (83) 

Alternatively, as shown in BL, one may give the values of the 
complex variables v and i (with i·i = 0), which are the 
classical counterparts of v and A. For if one knows the values 
of v and i, one can calculate that of a, the vice versa [cf Eqs. 
(9)]. One can think of vas the coordinate of a point in the 
complex plane e, and of i as the coordinates of a point on the 
complex cone ][(3' whose equation is J...·i = o. Then the space 
eX][(3 can be regarded as a sort of complex phase space for 
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the oscillator, with (v, J..) being the coordinates of the repre
sentative point for the state of the system. As time t varies, 
this point moves in accordance with the classical equations 
of motion, with 

v(t ) = ;(O)e - U,O( , 

i(t) = i(O)e - iWI . (84) 

In the quantum mechanics problem, we have 

[H,A] = - fzwA , 

[H, v] = - 2fzwv . (85) 

If Izo,;o) is the state vector of the system at t = 0, then in the 
Schrodinger picture the state vector at time t is 

I ¢(t» = e - iHI Hilzo,bo) , (86) 

and from Eqs. (85) we deduce that 

vl¢(t» =zoe- 2iwl l¢(t» , 

AI¢(t» = ~e-iWII¢(t». (87) 

From the fact that H has the value fuv(2k + I + ~) on I kim), 
we readily deduce from Eqs. (86) and (12) that, in fact, 

I ¢(t » = e - 3h')l 121z(t ),~(t » , (88) 

with 

z(t ) = zoe - 2i"", ~(t ) = ~e - ,"" . (89) 

We see that if the system is in a coherent angular momentum 
state at one time, it is so at all times. 

The expectation values of v and A as functions of time 
are now given, according to Eqs. (35) and (89), by 

(v)(t) = z(t), 

(A)(t) = ~(t) , (90) 

and we see by comparing Eqs. (84) and (89) that these expec
tation values are solutions of the classical equation of mo
tion. Classical and quantum-mechanical descriptions which 
correspond are obtained by taking 

vet ) = v~ z(t ) , 

i(t ) = v~ ~(t ) . (91) 

The factors of V fz appear here because of a difference of a 
factor of Vfz in the definitions of classical and quantum
mechanical variables like a in Eq. (83) and a in Eq. (3). (The 
quantum-mechanical variables are dimensionless; the classi
cal ones are not.) 

We see also from Eqs. (20) that the values of.JC1,.Jr,.Ja, 
and.J /3 remain constant during the motion, with the pro
ducts .JC1..::1r and .Ja..::1 /3 at their minimum values. (In the 
case of ..::1a..::1 /3, this minimum value is 
fz( I + ! «(2L + I) - l»), which remains constant because 
(2L + 1) - 1 is a constant of the motion.) 

We may say that if the system is evolving through a 
succession of coherent states, as in Eq. (88), its state at time t 
may be defined approximately by specifying a point 
(Vfz z(t ), Vfz ~(t )) in the classical phase space ex ][(3. How
ever, there is a "volume of uncertainty" of size 
;:::.JC1.J r = !fz associated with the position of V fz z in e, and 
a volume of uncertainty defined by 
..::1a.J /3 = fz(1 + !«(2L + 1) - l») associated with the posi-
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tion of V Ii ~ in K;. This representative point follows a classi
cal trajectory, and these volumes of uncertainty do not 
change with time. In this sense the coherent angular momen
tum states are justifiably called quasiclassical states of the 
oscillator. Consider a typical classical trajectory, with 

i = (A cOSnJt,B sinwt,O), A>B>O 

p = Mw( - A sinwt,B cOSnJt,O), 

a = <! Mw) 1t2e - ;wt (A,iB,O) , 

or equivalently, (see BL, Sec. 4) 

v = ! (MW)1/2(A - B)e -2iwt , 

i = (~MwAB )1/2e - iwt (1,i,O) . 

(92) 

(93) 

The descripti.:m in terms of the coherent angular momentum 
states corresponding to this classical trajectory is provided 
by taking the state vector at time t to be as in Eqs. (88) and 
(89), with 

Zo = ! (MwlIi)I/2(A - B) , 

~ = (MwAB /21i)1/2(I,i,0). (94) 

According to Eq. (76), in this state the expectation value ofx 
in particular is given by 

(x)(t) = uJAB (coSnJt,sinwt,O) 

+ !w(A - B )(MwAB lli)1I2(COSnJt, - sinwt,O) 

= (A 'coSnJt,B 'sinwt,O) . (95) 

Therefore (x) follows an elliptical path which is in the same 
plane, with the same center and the same orientation as the 
elliptical path followed by i, but which has different sized 
axes. The ratios A '1 A and B '1 B involve the expectation val
ues u and w, which are constants of the motion, but which 
are not simply functions of A and B. One can show from Eqs. 
(69) and (37) that as IZol and I~I are increased, u tends to
wards !(A + B )1 V (AB ) and W tends towards (iii MwAB ) 1/2, 

sothatA ' andB' tend toA andB,respectively, as the classical 
limit is approached (see below). 

From the expression (79) we see that, because C2, c4, u 
etc. are constants of the motion, as are 1~12 and Iz12, and 
because 

Z + z* = (zo + Zo *)cos2wt - i(zo - Zo *)sin2wt, 

the value of (L1xf makes bounded oscillations with angular 
frequency 2w about a fixed mean value. A similar remark 
applies to (..1 p)2. In the coordinate representation (or the 
momentum representation), the wavefunction must there
fore pulsate while it only approximately follows the classical 
motion, but it does not disperse.25 

The reader should not hasten to conclude that the de
scription corresponding to the classical motion, as provided 
by the coherent angular momentum states, is in any sense 
"less quasi-classical" than the description provided by the 
usual coherent states. In the latter case one would take the 
state vector to be (up to a phase factor) Iz(t» [cf. Eq. (4)], 
where 

z(t) = (Mw/21i) 1/2e - iwt (A,iB,O) (96) 

for the particular motion described above. Then, as is well
known, (x) and (p) reproduce the behavior oU and p and, 
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moreover, L1x; and ..1 Pi are constants, with L1xIL1 PI = ! Ii, 
etc. However, it is evident from the definition in Eqs. (9) that 
(v) and (A) will now not exactly reproducethebehaviorofv 
and i and ..1 a, L1r, L1a, and ..1 f3 will presumably now be 
oscillatory. 

(In the special case of a circular orbit, the two descrip
tions become the same. We have A = B above and thus 
Zo = 0 = z(t). Because vIO,~) = 0 implies K 10,~) = 0, we 
deduce that u = 1 in this situation and so Eq. (95) reduces to 
(x) = i. More generally, corresponding to any circular or
bit, we have z(t ) = 0, z(t )"z(t ) = 0, and z(t ) = ~(t ); and as 
explained in the Introduction, the coherent angular momen
tum state 10,~) is equal to the usual coherent state Iz = ~).) 

The most important distinction between the two corre
sponding quasi-classical descriptions is brought out by a 
consideration of the uncertainty in the angular momentum. 
If the system is in the state Iz), we readily deduce that 

(L)2 - (LHL) = 21i2z*"z, (97) 

after noting that 

Li = - ili£ijka j tak , 

(98) 

On the other hand, if the system is in the Iz,~) state, we have 
the result (44). Corresponding to the particular classical tra
jectory described above, at time t we have z and ~ as in Eqs. 
(89) and (94), and z as in Eq. (96). For the description pro
vided by the coherent angular momentum states, we then 
have 

(V) - (LHL) = 2liMwAB (99) 

at all times, while for the description using the usual coher
ent states we obtain 

(V) - (LHL) = IiMw(A 2 +B2). (100) 

The latter is greater, by an amount IiMw(A - B )2. 
In the case of a circular orbit (A = B), the results agree, 

as they must in view of our earlier remarks, but in the general 
case of an elliptical orbit we see that the uncertainty in the 
angular momentum is greater in the usual quasi-classical 
description. 

We conclude this section with some brief comments on 
the classical limit. In the usual treatment this is reached by 
considering the system in a succession of states Iz), with 
Izl ~ 00, Ii~ 0, and (VIi)z finite [and equal to V(Mw/2) 
X e - iwt (A ,iB,O) for the particular orbit described above. In a 
similar way, we can approach the limit very simply by con
sidering a succession of states Iz,~), with Izl ~ 00, I~I ~ 00, 

Ii - 0, and (VIi)z and (VIi)~ finite and equal to 
! y(Mw)(A - B)e- 2iwt and V(MwAB 12)e- iwt (l,i,O) in the 
particular orbit]. Note that the case of a circular orbit is 
special and corresponds always to z = O. It is evident from 
Eqs. (20) and (36) that as the limit is approached, 

L1a ~O L1r ~O 
(a) '(r) , 

L1a _0 
«a)"(a»1/2 ' 

(101) 

and also, from Eqs. (43) and (44), that 
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(L2) - (L)·(L) ~ 0 . 
(LHL) 

(102) 

Thus the relative widths of the probability distributions go to 
zero for all these variables, and one can easily see from Eqs. 
(37) that the same is true for K, L, and H. 

5. COMPLETENESS AND A HILBERT SPACE OF 
ANALYTIC FUNCTIONS 

In this section we find it more convenient to work with 
the unnormalized vectors 

Iz,~) = expl!lzl2 +! 1~12J Iz*,~*) 

= Laklm(z*,~*)lklm), 
kim 

(103) 

rather than with the Iz,~) themselves. According to Eq. (33) 
we then have 

(104) 

The coefficients aklm appearing in Eq. (103) were defined in 
Eq. (13). 

We first note that 

f dp, (z,~)aklm(Z*,~*)*ak'I'm'(Z*,~*) = 8kk ,811'8mm, . (lOS) 

(A derivation appears in Appendix B.) In this equation 

dp,(z,~) = ~ d2Zd6~(~·~)(21~12 _ l)exp( -lz l2 _ 1~12), 
(106) 

and the integration is over all possible complex z and ~. Of 
course, the coefficients aklm and vectors Iz,~) have only been 
defined for (z,~) on CXK3' but that is all that is needed in 
integrals like that in Eq. (lOS) and those below, because of the 
delta function in dp,. The meaning of the notation is as in Ref. 
26:Ifz = x + iy, ~ = u + iv, wherex,y, u and v are real, then 

d 2zd 6~(~.~) = dxdyd 3U d 3v8(u2 - v2)8 (2u·v). (107) 

It follows that 

dp,(z,~) = dp,(z*,~*). 

Now consider 

J dp, (z,~)lz,~)(z,~1 

(lOS) 

= L L J dp, aklm(Z*,~*)*ak'I'm,(Z*,~*)lk 'I'm') (klml 
kim k'l'm' 

= Llklm) (kim I , (109) 
kim 

using Eq. (105). As the vectors I kim) are complete and orth
onormal, we have the result 

(110) 

expressing the completeness of the vectors Iz,~) (and hence 
of the vectors Iz,~», 

They are, in fact, overcomplete. For example, we can 
deduce from Eq. (110) an expression oflinear dependence: 
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Iz',~') = f dp, (z,~)(z,~lz',~')lz,~) , 
with (z,~lz',~') as in Eq. (104). 

Now consider an arbitrary vector 1t;6 ) and write 

1t;6 ) = L t;6klm Iklm) , 
kim 

with 

t;6klm = (klmlt;6) . 

Using Eq. (103), we see that 

(z,~It;6) = L t;6k1maklm(Z*,~*)* 
kim 

[ 
(2/ )! ] 112 

= ,6;, t;6k1m k !21/ !(I - m)!(1 + m)! 
XZk( ;i- ,m,( - E;Jml 

(111) 

(112) 

(113) 

= t;6 (z,~), (114) 

say. Because (z,~It;6 ) is finite for all (z,~) on CXK3, it follows 
that the series in Eq. (114) converges for all (z,~) on eX K3 
and that t;6 (z,~) is analytic there. Noting from Eq. (104) that 

(z,~lz,~) = exp(lzl2 + 1~12), 

we have from Eq. (114) and Schwartz's inequality, that 

1t;6 (z,~)I.;;;A exp I !lzl2 + !1~12J ' (115) 

with A = (t;6It;6 )1/2. Thus the growth oft;6 with Izl and I~I is 
limited. We note also from Eq. (110) that 

(t;6 1t;6 ) = f dp, (z,~)(t;6 Iz,~)(z,~It;6 ) 

= f dp, (z,~)It;6 (z,~W, (116) 

so that, in addition to the inequality (115), t;6 satisfies 

f dp, (z,~)It;6 (Z,~)12 < 00 ' (117) 

We see in this way that any vector 1t;6 ) defines a function 
t;6 (z,~), analytic on eX K3, and satisfying there the conditions 
(115) and (117), From Eqs. (110) and (114) we have 

I t;6 ) = J dp, (z,~)t;6 (z,~) Iz,~) . (I1S) 

Conversely, suppose that a function t;6 (z,~) of this type is 
given. Then we can define a vector 1t;6 ) by Eq. (11S) and 
check that it is normalizable and that t;6 (z,~) = (z,~ 1t;6 ). To do 
this we first note, from Eqs. (103) and (110), that 

(z',~'lklm) = f dp, (z,~)(z',~'lz,~)(z,~lklm) , 
Le., 

aklm(Z'*,~'*)* = f dp, (z,~)exp(z'z* + ~'·~*)aklm(Z*,~*)*. 
(119) 

Since t;6 is by assumption analytic, it can be expanded as a 
convergent series on CXK3: 

t;6 (z,~) = ! ! dki.i,".i,Zk;i. ;i, ···;i, ' (120) 
k=O 1=0 

and one can use Eq. (2S) to bring this expansion to the form 
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ifJ (z,~) = L ifJ kim a kim (Z· ,~.). (121) 
kim 

for suitable coefficients ifJklm' Since ifJ satisfies conditions 
(115) and (117), one can employ term by term integration to 
deduce from Eqs. (119) and (121) that 

J d,u(z,~)exp(z'z· + ~/·~·)ifJ (z,~) = ifJ (Z',~/) . (122) 

Now we have from the definition (118) of lifJ ) that, using 
Eqs. (104) and (122), 

(ifJ lifJ) = J d,u (z,~) J d,u (Z',~/)ifJ (z,~)ifJ (ZI,~/)·(ZI,~/lz,~) 

= J d,u (Z',~/)lifJ (Z',~/W . (123) 

Therefore lifJ ) is normalizable. Furthermore, we can now 
deduce from Eq. (118), with the help ofEq. (122), that 

(Z',~/lifJ) = J d,u (z,~)ifJ (Z,~)(ZI,~/I(z,~) 
= ifJ (Zl ,~/), (124) 

as claimed above. 
We see that there is a 1-1 correspondence between vec

tors in our abstract Hilbert space and functions ifJ (z,~) of the 
type described, and that this correspondence is defined by 
Eqs. (118) and (124). Supposing lifJ ) and II/!) are any two 
vectors corresponding to functions ifJ (z,~) and I/!(z,~) in this 
way; then, using Eq. (122), we have from Eq.(118) and the 
corresponding equation for II/!) that, 

(1/!IifJ) = J d,u (z,~) J d,u (ZI,~/)I/!(Z',~/)·ifJ (Z,~)(ZI,~/lz,~) 

= J d,u (Z',~/)I/!(ZI,~/)·ifJ (Z',~/). (125) 

Weare now in a position to establish a realization of the 
abstract Hilbert space and algebra of operators (essentially, a 
(vt,A t)-representation) by taking ifJ (z,~) as the representative 
of lifJ ) in a Hilbert space JY of such functions with scalar 
product 

(ifJ,l/!) = J d,u (z,~)ifJ (z,~)·!/I(z,~) , 
so that 

(ifJ,l/!) = (ifJ,l/!) . 

(126) 

(127) 

We see from Eq. (110) that (for lifJ ) in the domain of vt) 

vtlifJ) = f d,u (z,~)(z,~lvtlifJ ) Iz,~) 

= f d,u (z,~)zifJ (z,~)lz,~) , (128) 

so that in JY, vt is represented by the operator which sends 
ifJ (z,~) intozifJ (z,~). Similarly, At is represented by the opera
tor which sends ifJ (z,~) into ~ifJ (z,~). From our experience 
with the usual coherent states we know that the representa
tive in JY of v is a I az, but the representative of A is more 
difficult to determine. We note first that, according to Eqs. 
(103) and (124), the representative in JY of Iklm) is the 
function aklm (z· ,~.)., which is homogeneous of degree k in z 
and homogeneous of degree I in the variables ~i' Equation 
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(105) expresses the orthonormality of these functions with 
respect to the scalar product (126) and of course, as the re
presentatives of the I kIm), they must be complete in JY. In 
particular, we note that the vacuum vector 10) ( = Ik = 0 
1= 0 m = 0» is represented by the function 1 and, accord
ingly, the vector 

(VttA ~A 1"'A ~ 10) , (129) 

where there are I subscripts a, /3, ... , 1', is represented by 

T~/{3"'T(Z,~) = zk~a~{3'''~T • (130) 

These functions also form a complete set in JY, when k and I 
run over the nonnegative integers independently and a, /3, ... , 
l' run over 1, 2, 3 independently, and they also represent 
eigenvectors of K and L corresponding to eigenvalues k and 
I. Note that T~/{3"'T is completely symmetric and traceless in 
the subscripts. Since it is evident that 

z.!!... T~/{3"'T = kT~/{3"'T , 
az 

r. ~ Tkl -IT kl 
'!) a~ a(30"T - a{3"'r' (131) 

we may conclude that, because of the completeness of these 
functions, K is represented by zal az (a result already evident 
since we know that K = vtv) and that L is represented by 
~·a I a ~. Furthermore, we know from Eq. (56) ofBL that the 
representative of Ai must send T~/{3Y'''UT into 

(8 T kl - \ + 8 T kl - \ + + 8 T kl- \ 
ia {3r··ur i {3 a')l*··U'T ••• iT a (jruu 

2 (8 T kl- \ + 8 T kl - \ + + 8 T kl - \ 
(21 _ 1) a {3 iY'''ur ay i {3"'UT '" aT i {3Y'''U 

+ ... 

+ 8UTT7;~: .. ) 

(132) 

which enables us to deduce that (2L + l)Ai is represented by 
the operator 

(133) 

One can check directly that this operator is hermitian conju
gate to ~i(2~·ala~ + 1) [the representative of A ;(2L + 1)] 
with respect to the scalar product (126), but it is not a 
straightforward matter because of the delta function in d,u. 
One needs to use some results on differentiation of the delta 
function of a complex variable, as described in Ref. (26). 
Formally, tQe operator conjugate to ~i is now seen to be 
ala~i - (2~·ala~ + 1) -\ tia2/a~·a~, which is not a differ
ential operatoronJy. However,L i ( = ifi£ijkA JAk) is seen to 
be represented by - ifi£ijk~j ala~k' 

Summarizing, the realization of our abstract algebra is 
provided in a Hilbert space JY of analytic functions ifJ (z,~) on 
eX K3, satisfying 

and 
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I dfl (z.~)I¢ (z,~W < 00 • 

The scalar product in K is 

(¢,t{!) = f dfl (z,;)¢ (z,;)*t{!(z,;) , 

(134) 

(135) 

and the relevant operators are represented as 

a a 
V= -, vt=z, K=z-, az az 

( a) a aZ 

(2L + I)A = 2;· ~ + 1 ~ - ; a~.a; , 
a 

At =~, L = ;·ar 
L, = - ifl£ijktj ~ • a;k 

(136) 

The common eigenvalues of K, L, and L3 are represented as 

Iklm) = [ (2/)! ] 112 
k !21/!(/ + m)!(/- m)! 

Xzkct3y-lml( - €t.)lm l . (137) 

This Hilbert space has a reproducing kernel given by 

K (z',;';z,;) = exp(z'*z + ;'*.;) , (138) 

since Eqs. (122) and (126) together give 

(K (z',;'; ),¢) = ¢ (z',;') . (139) 

The function K (z' ,;' ;z,;) can be seen to be the representative 
in K of Iz',;'). The space K is especially attractive as a 
carrier space for SO(3). If we restrict out attention to func
tions/(;) analytic on the cone lK3 (in effect, we consider 
those ¢ in K satisfying K¢ = 0), then we have a Hilbert 
subspace Ko with scalar product 

(fl,h) = :z f d 6;8(;·;)(21;I Z -1)exp( -I;I Z
) 

X/I (;)* h(;) , (140) 

carrying a reducible unitary representation ofSO(3), with 
hermitian generators 

(141) 

If we label as (I) the (21 + I)-dimensional irreducible repre
sentation of SO(3), we see that 

Ko = K ooffiKol ffi "', (142) 

where KOl is (21 + I)-dimensional and carries the represen
tation (/). A basis for KOl is provided by the orthonormal 
functions 

101m) = [. (2/)! ]112(t )I-Iml( _ €t )Iml 
il!(1 + m)!(l- m)! 3 • 

(143) 

ofEq. (137); or altenatively. by the (21 + I) linearly indepen
dent elements of the traceless, symmetric rank-I tensor 

T?}p."r(;) = tatp,,·tr . (144) 

The decomposition (142) merely symbolizes the expansion 
of any of the analytic functions/in Ko in series form: 
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/(~) = f dl;aP"·rtatp,,·tr . (145) 
I~O 

This space Ko, which can be compared with the Barg
mann space27 for SU(2), can be said to provide a realization 
of the "modified boson" structure set up by Lohe and 
Hurst. 28 They introduced operators satsifying the same alge
braic relations as our A and At, but nothing corresponding to 
our v and v t. Recently Bargmann and Todorov29 have de
scribed a very similar carrier space for SO(3). They also con
sider analytic functions/(;) on the cone lK3, but choose a 
more complicated scalar product, and consequently find a 
more complicated reproducing kernel. In their space, how
ever, the operator conjugate to ti is simply (;·ala; + !) 
a I at, - !t, a 21 a ;·a ;, and these two vector operators, to
gether with our Land fz -I L, generate a unitary representa
tion ofSO(3,2). Their space was not derived from a consider
ation of coherent states of any kind, but we have mentioned 
in BL that there is an so(3,2) algebra associated with the 
oscillator, spanned by our operators L, fz -I L, A, and At, 
where 

A = (2L +1)1/2 A, At = At(2L +1)1/2. (146) 

Had we chosen to define coherent angular momentum states 
by diagonalizing the operators A rather than A, we would 
have arrived at the Hilbert space of Bargmann and Todorov. 
The coherent states so obtained would evidently be general
ized coherent states for so(3,2) (in particular) in the sense of 
Barut and Girardello l7 and Perelomov. 18 We have already 
given in BL some reasons for our preference for the opera
tors A and At. The main point is that with our definitions, the 
expectation values of H, K, L, and L in the coherent angular 
momentum states have simple properties-more simple 
than if we were to follow the alternative path. In particular, 
the nice property that in a coherent angular momentum state 
the I values are distributed in probability according to a Pois
son distribution would be lost if we were to diagonalize the 
A,. 

6. CONCLUDING REMARKS 

The existence of a second set of coherent or quasiclassi
cal states for the oscillator places the usual ones in a new 
perspective. The two sets share several interesting proper
ties, as we have seen, and we therefore hope to find interest
ing applications of our new states. In particular, we hope to 
be able to construct a new diagonal representation of the 
density matrix for the oscillator. 

The usual coherent states are also quasiclassical states 
for the Hamiltonian 

H' =H+aL3 

corresponding to a charged oscillator in a uniform magnetic 
field. The same is true for coherent angular momentum 
states, since the diagonalized operators v, ..1.3 , and..1. ± ' like a3 

and a ± (= a I ± ia2), are all shift operators for H '. The new 
states are also quasi-classical states for a Hamiltonian of the 
form 

H' = H + aL3 + !3L, 

which is not an exact Hamiltonian for any physical system 
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but may be of interest in the approximate description of some 
molecular spectra. In that connection, we may also expect 
the coherent angular momentum states to be of value in the 
analysis of Hamiltonians of the form 

H' = H + aL3 + f3L + yL 2 , 

although they will not then define states which are quasiclas
sical in the same sense as above. 

The analysis we have developed above and in BL can no 
doubt be extended to n > 3 dimensions. The Hilbert space for 
the isotropic oscillator in n dimensions carries only symmet
ric representations of so(n), labelled by a single nonnegative 
integer I. Accordingly, the first step in the generalization 
would be the introduction of a scalar operator L which has 
nonnegative integer eigenvalues I. One would then proceed 
to resolve n-vector boson operators a, at into shift operators 
for L. There appear to be various interesting alternative 
paths to follow from that point, corresponding to various 
chains of orthogonal subgroups of so(n). 

In the case n = 2, the boson operators a ± are shift op
erators for the so(2) scalar L 3, and accordingly, the usual 
coherent states and the coherent angular momentum states 
may be identified. 

We recall that the eigenvalue problem for the three
dimensional isotropic oscillator can also be solved by separa
tion of variables in a cylindrical-polar coordinate system. 

APPENDIX A 

Are there then "cylindrical" coherent states, as well as "Car
tesian" and "spherical" ones? The answer is "yes," but they 
can be taken to be the usual (Cartesian) ones. (Diagonalize a3 

and a ± ' which are shift operators for N3 and L3") 
With regard to the definition of coherent angular mo

mentum states for other Hamiltonians of the form 

H = p2/2M + v(lxl) , 
it is clear that one cannot, in general, hope to obtain quasi
classical states in the sense described above. The existence of 
this property for the oscillator depends on the special feature 
that the total angular momentum quantum number I ap
pears linearly in the formula for the energy eigenvalue, when 
expressed in terms of I and the radial quantum number k: 

However, in the more general case one can still diagonalize 
vector lowering operators for L in order to define overcom
plete sets of states for the "angular part" of the Hilbert space, 
and one may be able to use these to construct representations 
in which the angular part of the density matrix is diagonal. 
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The combination of Eqs. (12) and (14) with the expanded form of Y1m(O,t/J) and property (28) gives 

_ _ 1 2 _ 1 2 00 00 I k 1_ m _ m [ (21 )! ] 1I2( _ 1) k 

Iz,~) - exp( 21z1 . 21~1) k~O I~O m ~_ / (S3) ( S - ) k !2//r(1 + m)!(/- m)! 

x[ 2a
3
k! ]

1I2
sle- \5'L(I+ 1)(52)(_l)m[ (2/+1)(/-m)! ]1I2P7'(COSO)eimq, (AI) 

r (k + 1 + ~) k 41T(l + m)! 

= exp( - !lzl2 - !1~12 - !S2)X [ ;:2 r2 

X ktO Ito [ r~: ~: ~) ] 112( - z)kL f+ ll( SZ) 

X ± 1 (Y2S)'(S3y-mg_)mP7'(cosO)eimq" (A2) 
m~ _I (I + m)! 

using the result that 

r(1 J.) = (21 + 1)!V-; . (A3) 
+ 2 22/ + 1 /! 

We are able to evaluate the sum over m by noting that for any vector v, with spherical polar coordinates v, 0, t/J, 

v.~ = VS3{![ L eiq, + S + e - iq, ]sino + COSO} = vS3{HA -l/A ] sinO + cosO} , (A4) 
S3 S3 

where A = S _ eiq, IS3 • We can further show, by induction, that 
I 

{HA-l/A]sinO +COSO}/=l! 2: A mp7'(cosO)/(/+m)! , (AS) 
rn = -I 

from which it follows that 

(A6) 

With the use of this result in the case v = (v'2)ax, Eq. (A2) becomes 

[
a] 3/2 00 ~ [ r (I + ~) ] 1!2( _ z)kL (kl + 112)( f:" 2) (V2ax'~)' , 

Iz,~) = exp( - !lzl2 - !1~12 - !S 2)X V 1T k~O (~O r(k + I + ~) ~ l! 

(A7) 
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as in Eq. (15). 
When z = 0 only the k = 0 term contributes, so that 

IO,~) = exp( _ !1~12 _ !a2IxI2) [y'a ]3/2 ~ (y'~~xo~)', 
1T 1-0 • 

(A8) 

which is equivalent to Eq. (16). 

APPENDIX B 

Using the definitions (13) and (106) of aklm and dp, respectively, and property (28), we can write 

f dp(z,~)aklm (z*,~*)*aKLM(z*,~*) 
2 [ (21 )!(2L )! ] 112 f d 2 (I 12) k ( *)K = - zexp - z z z r k !K!l!L !21+ L(l + m)!(L + M)!(l- m)!(L - M)! 

X f d6;(21~12 -l)exp( _1~12)8( ~o~)(;3)I-m(;t)L-M( _; + )m( _;",-)M. (B1) 

It is straightforward to show that 

f d 2Z exp( - Iz 1 2)Zk (Z*)K = 1Tk !8 k,K . (B2) 

However, the next integration is not so easy. Letting ~ = x + iy, where x and yare the real vectors, the delta function becomes 
[see Ref. (26)] 

8( ~o~) = 8(lx12 - lyI2)8(2xoy), (B3) 

and the integral becomes 

f d 6
; (21~12 - l)exp( - 1~12)8(~o~)( ;3)I-m(;r)L-M( ~; + n _;"'- )M 

= f d 3x d 3y exp( -lxl2 - lyI2)8(lxI 2 -IYI2)8(2xoy)(2IxI2 + 21Yl2 - 1) 

X( - It + M(X3 + iY3)1- m(X3 - iY3)L - M [x, - Y2 + i(X2 + ytlJm[x, - Y2 - i(X2 + YI)J M
• 

and 

We can introduce the new variables r, 0, ifJ, R, t/!, and u by the following: 

[x I' x2, x3] = [r sinO cosifJ, r sinO sinifJ, r cosO J 

~
I] [COSOcosifJ 

Y2 = cosO~inifJ 
3 - smO 

- sinifJ 

cosifJ 
o 

SinOCOsifJ][R cost/!] 
sinOsinifJ Rsint/! . 

cosO u 

The matrix is orthogonal, with· determinant equal to 1. It is easily inverted to give 

u = (xoy)/r. 

Now 

8(2xoy) = 8(2ru) = J... 8(u) , 
2r 

and the integral (B4) becomes, after the u integration 

~ f r dr sinO dO difJ R dR dt/!exp( - r - R 2)8(r - R 2)(2r + 2R 2 - 1) ( - 1) m + M (r cosO - iR sinO cost/!)' - m 

X (r cosO + iR sinO COSt/!)L - M [r sinO cosifJ - R cosO sinifJ cost/! - R cosifJ sint/! 

+ i(r sinO sinifJ + R cosO cosifJ cost/! - R sinifJ sint/!) J m [r sinO cosifJ - R cosO sinifJ cost/! - R cosifJ sint/J 

- i(r sinO sinifJ + R cosO cosifJ cost/! - R sinifJ sint/J) J M • 

Since 

8(r - R 2) = _1_ 8(r - R ) 
r+R 

here, we can perform the R integration and obtain 
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! f r dr sine de difJ dt/! exp( - 2r),-' + L(4r -1)( - l)m + M (cose - i sine COSt/!)/- m(cose + i sine COSt/!)L - M 

X [sine - sint/! + i cose cost/!] m [sine - sint/! - i cose cost/!] Mei(m - M)<I> (BlO) 

= !m5m ,M f r dr sine de dt/! exp( - 2r),-' +L(4r - l)(cose - i sine COSt/!)1 x (cose + i sine COSt/!)L 

X (1 + sine sint/!) - m(1 - sine sint/!)m . (B11) 

Here we make yet another change of variables from e, t/! to a, /3, where 

[sina cos /3, sina sin /3, cosa] = [cose, sine cost/!, sine sint/!] (B12) 

and the integral becomes 

! m5m,M frdrsina da d/3exp( -2r),-'+L(4r -1)(1 + cosa)-m(1- cosa)m(sina)l+Lei(L-/){3 (B13) 

= rtJm,MtJ1,L f r dr exp( - 2r)rl (4r - 1) f sina da (1 + cosay - m(1 - cosa)1 + m (B14) 

= r l!21 (1- m)!(1 + m)! tJ tJ 
2 (2/)! I,L m,M' (B15) 

using the properties of the Gamma and Beta functions. Substitution of(B15) and (B2) into (B1) gives the required result, Eq. 
(105). 
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Iteration of single- and two-channel SchrOdinger equations a) 

R. MUlier and H. J. W. MUlier-Kirsten 
Department of Physics, University of Kaiserslautern, 6750 Kaiserslautern, West Germany 

(Received 4 November 1980; accepted for publication 14 November 1980) 

A general perturbation technique is developed for the iteration of one- and two-channel 
Schr6dinger equations for potentials, which can be expanded around a minimum. The channel 
coupling is assumed to be weak. In order to facilitate the numerical or algebraic computer 
calculation of terms of higher order, a recurrence relation is derived for some particularly 
important coefficients. The eigenvalues and oscillatorlike solutions are then derived explicitly up 
to and including the third-order iteration. Furthermore, we demonstrate that certain parts of 
every nth order iteration can be lumped together in a manner which is independent of the specific 
form of the potential. Finally, these methods are applied to the calculation of the eigenvalues of 
the one-channel equation for linear and logarithmic potentials with or without a weak Coulomb 
contribution. 

PACS numbers: 03.65.Ge, 02.30.Hq 

1. INTRODUCTION 

Recently Dashen et al. 1 have given a detailed investiga
tion of multichannel potential scattering with at least one 
permanently confined channel. 

The success of nonrelativistic models in reproducing 
the observed mass spectrum of heavy quark-antiquark 
states led also to a revival of interestz-5 in the multichannel 
formalism. 6

•
7 The problem can be formulated in such a way 

that its extension of single-channel theory is particulary 
transparent. 1 Nevertheless, the single-channel potential the
ory normally leads to broad widths; however, narrow widths 
can be generated by the weak coupling to a second channel. 7 

It is therefore plausible to investigate the two-channel prob
lem defined by the transitions such as cc - DD * - DD *, 
where c is the charmed quark and D,D * are cii or cd bound 
states. For arbitrary potentials we have to use perturbation 
methods, which require in higher order the evaluation of a 
large number of expressions. The present investigation was 
also motivated by the desire to give the iteration in third
order explicitly, for a certain class of potentials. 

In the following we describe an iteration procedure, 
which has already been applied to a large number of other 
problems (see Ref. 8-13). With the help ofREDUCE14 it is 
now possible to do these algebraic computations on the com
puter, so that the necessary expressions are obtained within a 
reasonable time. 

In Sec. 2 we recapitulate the iteration procedure, to de
fine names and parameters. In subsequent sections we elabo
rate on details relevant to our application. In Sec. 3 we give a 
new recurrence relation for the coefficient functions, which 
is also useful for numerical computations, as well as for alge
braic summations. Further we demonstrate in Sec. 4 that 
some parts of the nth iteration can be written as terms of a 
geometric progression an thus can be combined. 

With the iteration procedure we obtain the wavefunc
tions and their eigenvalues in the range of a minimum of the 
potential. If we represent the wavefunction in some other 

alSupported in part by the Deutsche Forschungsgemein schaft. 

way, as in Sec. 5, we can show that the representation of the 
wavefunction is confined to the complete set of eigenfunc
tions of the harmonic oscillator, although the iteration pro
cedure seems to use a larger set. This implies that the iter
ation proceure is restricted to the same complete set of 
eigenfunctions as the usual perturbation ansatz. 

In Appendices A-F we give the general result for the 
iteration ofthe eigenvalues up to third-order for an arbitrary 
potential, which can be expanded in a Taylor series around a 
minimum. This general iteration procedure is then applied 
to the linear and logarithmic potentials and their combina
tion with a Coulomb potential. We calculate their s states 
and Regge trajectories. 

2. THE ITERATION PROCEDURE 

2.1. The one-dimensional Schrodinger equation 

In the following we recapitulate briefly the iteration 
procedure developed elsewhere,8-13 in order to introduce 
names and parameters, which are then used. 

We start with the s-wave equation 

( 
I d

2 
) 

- - -2 + V(x) 1/I(x) = E1/I(x), 
2# dx 

(I) 

where 

V(x) = Iaixi. 
;=0 

(2) 

First we expand the potential around one of its minima at 
x = Xo' Setting 

z =x -Xo, (3) 

we have 

VIz) = Ibizi. (4) 
;=0 

Next we rewrite the equation in the form 

( 2~ :z: + E - bo - b~2)1/I = C~3 biZi)1/1, (5) 

and make the following substitutions: 
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and 

or 

E-bo=E, 

b2 = g2, 

M2 = 2p, 

y2 = 2gMz2, 

EM /2g = ~ P + Ll /2g 

E=pg/M +MLl +bo, 

(6) 

(7) 

where pg/ M is the contribution to the eigenvalue coming 
from the left hand side ofEq. (5),p is exactly or approximate
ly an odd integer (depending on the boundary conditions), 
and Ll represents the contributions of higher order terms of 
the potential to the eigenvalues. 

Hence 

(- 2{ :y: + ~ - Y:}PlY) = Ctohi/)¢lY), (8) 

where 

ho =Ll /g, 

hI =h2 =0, 

hi = - bi(M /g)(l/2gM)i/" i>2. 

Our differential equation now has the form 

!iJ p ¢ = (~hi/)¢' 
where 

!iJ =(-2) -+ -- -. ( 
d2 P y2) 

P dy2 2 4 

(9) 

(10) 

( 11) 

Given any arbitrary potential, we rewrite the Schrodinger 
equation in the form (10) in order to fix the coefficients hi' 
Our results will be expressed in terms of h i and p. The overall 
solution of Eq. (10) can the be written 

¢ = ¢(O) + ¢(I) + ¢(2) + "', (12) 

where", (i) indicates the contribution of the ith iteration. 
The iteration procedure starts with 

¢(O) = ¢p' (13) 

where ¢p is the solution of 

!iJp¢p=O. (14) 

This solution is the well-known parabolic cylinder function 
i.e., 

(15) 

where a = - p/2. The square integrability over O<.v < 00 

implies 

a = - (2n + 1)/2, or p = 2n + 1, nEIN. (16) 

With the recurrence relation 

(17) 

we can express the right side of (10) as a sum over various 
¢p + w Our first step is to calculate the coefficients Si ofthe 
relation 

+i 
/¢p = I Si(p,2j)¢P+2j' (18) 

j= -; 
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For i = 1, ... ,8 the coefficients Si(p,2j) are given in Appendix 
A. 

For our subsequent iteration it is useful to rearrange the 
sums derived from the right-hand side of Eq. (8) in the fol
lowing form: 

(~hi/)¢P = ~h{XiSi(P'2j)¢P+2j) 
+00 I C (p,p + 2j)¢p + 2j' 

j = - 00 

The coefficients C (P,p + 2j) are the sums 

C (P,p + 2j) = ! h2i + [jl S2i + [jl (P,2j). 
;=0 

(19) 

(20) 

In Appendix B we give the explicit form of these coefficients 
for values ofj ranging from 0 to ± 7. With these definitions, 
we get the following rest term R (0) = ¢p on the right hand 
side of (10), 

R (0) = (Ihiyi)¢p = IC(p,p + 2j)¢p+w (21) 

Since 

!iJ p + i = !iJ p - i, 

we get 

!iJp¢p+Ji=¢P+i' 

j 

(22) 

(23) 

This expression implies, that we can compensate any term 
p¢p + i (i#O) on the right-hand side of(1O) by adding to ¢(O) 
appropriate higher order contributions 

p¢p+ Ji. 

The contribution of first order to ¢ is ¢m i.e., 

¢(I) = IC(p,p + 2j)(l/2Jl¢p+2j' (24) 
ii'O 

The part proportional to ¢p must be zero to this order of the 
iteration. In this way we can determine Ll. To first order we 
have 

¢pC(P,p) = O. 

Iterating we get from ¢<o the rest term 

R (I) = (Ih
i
/)¢(I) 

i 

= IC(p,p + 2j) ~IC(P + 2j,p + 2i + 2j)¢p+ 2i+2j' 
yo 2J i 

and then from ¢(2) a term R (2) and so on. 

The quantity Ll is determined by the equation 

0= C(P,p) + IC(p,p + 2i) ~C(p + 2i,p) + "', 
ii'O 2l 

(25) 

(26) 

(27) 

and the weight w2j of a certain ¢p + 2)n ¢ = ¢(O) + ¢<o + ... is 
given by 

= ~(c (p,p + 2j) + I C (p,p + 2i) ~C (p + 2i,p + 2j) + ... ). 
2J ii'O 2l 

(28) 
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The WZj's are functions of A and p. The interated wavefunc
tion is therefore 

'" = ",(0) + ",(I) + ",(2) + ... 

= LWZj"'p + Zj' 
j 

(29) 

where Wo = 1. Further statements regarding W Zj are given in 
Sec. 5. 

2.2. The two-channel equation 

If we write the two-channel equation IZ in the following 
form, we can reduce the iteration to a procedure similar to 
that for the one-dimensional case. We have a system of equa
tions with potentials which we choose as in Ref. 12, i.e., as 
harmonic terms tg2 + a\7))zz plus anharmonic contributions. 
Then 

[ 

1 d

Z 

] 
--z +E-g2zz- Vl1 (z) - Vdz) [ ] 
2/1- dz "'I 

1 d Z "'z = 0, 
- VZI(z) - - + E - g2z2 - Vzz(z) 

2/1- dr 
where 

Vii = f a\7)z", 
k=Z 

and fori=1=j 
oC 

Vij = L at)zk. 
k=O 

Next we make the substitutions 

M Z = 2ft, yZ = 2gMr 

h t) = - a\J)(M Ig)(2gM) ~ kl" k > 0, 

and we set again 

EM /2g = ~ p + A 12g. 

(30) 

(31) 

(32) 

(33) 

Below we distinguish between A I and Az which are the val
ues of A associated with the two channels; of course, the total 
E is the same for both channels. Defining the matrices 

(34) 

~pp = [~p ~J, (35) 

where 

( 
d2 P yZ) 

~ =(-2) -+ ---
p dyZ 2 4' 

we can write our two-channel equation in the form 

~ pp [~J = ~Hkyk [~;J. (36) 

and we can now iterate the equation in the same way as we 
treated the one-dimension case. 

We start with 

",W)=",pp [~:] (37) 

735 J. Math. Phys., Vol. 22, No.4, April 1981 

and 

"'p = D(p~ 1)/2' 

The iteration procedure now yields matrices and the coeffi
cients C (p,p + 2j) are determined by 

C (p,p + 2j) = f Hz; + lil Sz; + lil (p,2j). (38) 
;=0 

This is the generalization ofEq. (20). It should be noted, that 
the S; 's are the same in the one-dimensional case. 

For the calculation of the eigenvalues, we have to solve 
the matrix equation 

0= [C(P,P) + ~C(p,p + 2i) ~C(p + 2i,p) + ... ][~:]. (39) 
,#0 21 'f'p 

We thus obtain two equations for the eigenvalues. We have 
to distinguish the corrections of the two channels and we get 
two results. 

The weight W Zj of the functions "'p + Zj is now defined by 
a vector given by 

(40) 

The complete solution is then (apart from an overall factor) 

(41) 

3. GENERAL EXPRESSIONS FOR THE COEFFICIENTS 
C(p,p + 2jJ 

We now discuss the derivation of the coefficients 
C (p,p + 2J) for either of the single- or the two-channel prob
lems formulated above. The S;(PJ) can be calculated from 
the recurrence relation 

Sm(PJ) = Sm ~ I (PJ + 2)(P + j + 1)/2 

+ Sm ~ I (PJ - 2), 

where 

and 

Sm(PJ) = ° if ~I > 2m. 

(42) 

But this relation is not the most suitable for computer calcu
lations. Ifwe wish to calculate a coefficient C (P,p + 2j) for a 
specified value of j, we need to know a large number of such 
coefficients. For this reason, we generalize the procedure. 

It is found to be convenient to factorize Si in the form 
(forj>O) 

. 1 (2n + l)rn . 
SZn+j(P' ± 211 = W(P, ±J) 2n n j(P, ±l), (43) 

where W(P, ±j) is defined as: 

{

I if + j>O 

W(P, ±j) = (P - 1) (P - 3) ... (P + 1 - 2j) 
2 2 2 

and the functionf;(p) is a polynomial of order n in p. In 
particular we have 
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S)p, ± 2j) = W(p, ±j) 

and 

Sj _ 2 (p, ± 2j) = O. (45) 

The coefficients C then become 

• 00 I (2n + lrn C(p,p±21/= W(P,±l) IH2n + j -;; j(P±l/, 
n~O 2 n 

(46) 

where H 2n + j are the coefficients defined in Sec. 2.2 (or h2n + j 
in Sec. 2.1), derived from a knowledge of the given potentials. 
The calculation of S2n + j(P, ± 2j) then implies the calcula
tion of/;(P ±j). We found the general expression for/;(p) by 
trial and error, i.e., 

or 

I;(P) = pn + in(n - 1)(2n _ I + 3j)p" - 2 + .... 
From the first few terms of/;(P) we can develop a recurrence 
relation in much the same way as for systems of orthogonal 
polynomials. But we cannot find an interval [a,b ] and a 
weight function w(P), on the real axis, so that 

f w(plf;(Plf'j'(P)dp -onm· (48) 

The reason is the following. In such a system, the zeros of 
I;(P) have to be within [a,b]. But any zero which we have 
calculated lies on the imaginary axis. This means that if we 
want to construct an orthogonal system on the real axis, we 
have to rotate/;(p)in the complex plane. Here we are not 
interested in these functions, although our calculations pro
ceed parallel to the problem of handling orthogonal systems. 

Orthogonal polynomials Pn posses a recurrence rela
tion of the form 

(49) 

where x is the variable and an' bn, and en depend only on n. 
In our case the relation is 

I; + lIP) = pl;(P) + n(n + jlf; - lIP)· (50) 

We have checked this relation for more than 70 Ii's with the 
help of REDUCE. With the help of this recurrence relation, 
we can derive another recurrence relation for Sm(P' ± 2j). 

Replacing the/;(p)'s in (50) by Sm's, with the help of 
(43), we obtain 

Sm +2 (p, ± 2j) 

= (m + l)(m + 2)1(m + 2 - j)(m + 2 + j) 
X [2(P ±j)Sm(P, ± 2j) + m(m - I)Sm_2(P' ± 2j)], (51) 

with the constraints 

Sj(P' ± 2j) = W(p, ±j) 

and 

(52) 

For particular values of the coefficients H 2n + j of the 
potential, we can regard C (p,p ± 2j) as a generating function 
and contruct a differential equation from the recurrence re-
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lation for Sm. If this differential equation is sufficiently sim
ple, depending on the coefficients H 2" + j' we can integrate it 
and obtain for C (p,p ± 2j) an exact expression, Le., we find 
from 

and 

I; + I = pi; + n(n + jlf; - I 

the differential equation 

x 2Fj' - (1 + j)xF; + (1 + j + px - x 2 )Fj = 0, 

with the solution 

4. ALGEBRAIC ITERATION OF THE EIGENVALUES 

4.1. Summation of parts of the Iteration 

(53) 

(54) 

(55) 

(56) 

The first description of the iteration procedure, given in 
Sec. 2 is useful for a numerical iteration of the wavefunction 
in inverse powers of the coupling constant. In algebraic cal
culations it is not so interesting to calculate the complete 
wavefunction. Our primary interest here concerns the calcu
lation of the eigenvalues. We give the lowest order contribu
tions of Eqs. (27), and (39) explicitly. 

In calculating these contributions we find that some 
terms can be summed by hand. We now demonstrate how 
this can be done. First we classify the different contributions 
in certain combinations of Hi' Each combination with only 
one Hi is an element of the first iteration I T I. 

I T 1 = C(P,p) = IHiSi(P,O). (57) 

Any combination of a pair HiHj belongs to the second 
iteration 

I T 2 = I C (p,p + 2i)( l/2i)C (P + 2i,p), (58) 
i#O 

and so on. We can write each iteration in the form 

I T 1 = fSiH" 
i=O 

I T 2 = IITijH,Hj' 
i j 

I T 3 = IIIUijkHiHjHk' 
, j k 

I T 4 = IIIIVijk,H,HjHkH,. 
i j k , 

(59) 

The coefficients Si' Tij ,. .. are defined by comparison with 
the nth order iteration. They are given in Appendix C. The 
coefficients Si' Tij"" are scalar functions of the quantum 
number p and thus commute with the matrices Hi' 

From the first iteration we get 
Si-Si(P,O). (60) 

The Tij's of the second iteration can be obtained as follows. 
The first correction to the wavefunction is 
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(61) 

Thus the part proportional to Hj is constructed in the follow
ing way: 

(i) mUltiply ifJp by yi and use Eq. (18); 

(ii) replace ifJp + Zk by (l/2k) ifJp+ Zk if k #0; 

(iii) ignore ifJp. (62) 

The right-hand sided of Eqs. (10) and (36) now operate 
on ifJ(I) from the left. This right hand side contains only one 
term, which is proportional to H;. Hence we get the 
combination 

The contribution to the second iteration of the eigenvalue is 
the term proportional to ifJp; we call this term Tij, i.e., 

~ 1 Tij = L Sjlp,2k) ....:.....sjlp + 2k, - 2k). 
k= -j.k #0 2k 

(64) 

In the same way we obtain corresponding expressions for 

Uijk' Vijkl,'" i.e., 
+k 

Uijk = L Sklp,2no) 
no = - k.no'#O 

+. 1 
X f ~Ip + 2no,2nd -----

n,= -j,no+n,#O 4no(no+n l ) 

S; [p + 2(no + n l ), - 2(no + n l )]. (65) 

The coefficient function of a combination 

(66) 

of one of the next iterations can be related to Eq. (64). We 
demonstrate this for n = 1 with the help ofEq. (65). 

The combination H;HoHk belongs to the coefficient 
function U,Ok' In (65) we setj = 0. With Solp + 2no,0) = 1, 
we see that the sum over n I reduces to a factor l/2no. We 
obtain therefore, 

U.Ok = r Sklp,2n0)(-I-)zS;1p + 2no, - 2no)' 
n" = - k.no#O 2no 

(67) 

By the same reduction we obtain a factor l/2no for each Ho 
in the coefficient function of 

(68) 

The complete contribution of(68) to the iteration of the ei
genvalues is therefore 

H;(Ho)nHk· f Sklp,2no)( _1_)n + IS;1p + 2no, - 2no). 
no = - k,n,,#O 2no 

(69) 

Now we insert (Hal" into the sum. The number n varies from 
zero to infinity and (Ho/2no)n represents a term of a geomet
ric progression. Summing this part of our iteration gives 

( 2:) 1 - ~o!2no 2no _ Ho (70) 
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within (69). In Sec. 6 we calculate Ho explicitly and we will 
see that Ho is proportional to l/g. For a sufficiently large 
coupling constant g, we have IHol < 1. We now define 

~ +. 1 
Tij = f Sjlp,2no) S;1p + 2no, - 2no)' 

"o=-j,no#O 2no-Ho 
(71) 

and Uijk, Vijkl,'" correspondingly, with the condition, that 
each of these quantities is zero, if one of the indices is zero. 

Our iteration of the eigenvalues is now obtained from: 

(72) 

T;j is a matrix, so we have to be careful about its position in 
the above sums. For a triple combination H;~Hk' two of 
the substitutions (70) are required and we have to distinguish 
between factors l/(2k - Ho) arising from the first and sec
ond substitutions. 

Summing over all combinations H;Hj means that for a 
specific combination H;Hj' the complete contribution is 

H;TijHj +HJj;H;. 

In the one-dimensional case we get 

h; Tijhj + hj Tj;h; = 2h;hj Tij' 

(73) 

(74) 

where T;j = Tj;. The coefficients Tij are given in detail in 
Appendix D. 

4.2. The choice of the order of 1/g 

In our iteration of the eigenvalues we ignore all contri
butions which are of order higher than n + 1 in l/g, whereg 
is the coupling constant. According to our definitions [Eqs. 
(9), (32)], thecoefficientsH; are of the following orderin l/g: 

H; ~(l/g)1 + ;/2. (75) 

The number of possible combinations of H; appropriate to a 
particular power (l/g)" grows rapidly with n. Many of these 
combinations contain HI or Hz. Because oftheirlow order in 
l/g, they lead to many combinations of HI, Hz, and H; 
which contribute to the iteration of the eigenvalue. In the 
one-dimensional case, it can be arranged that hI and hz are 
zero. In the two-channel problem HI and Hz are zero only in 
special cases, and then we have fewer terms which determine 
Ho (i.e.,.J ). In Table I we give the number of terms which 
contribute to the nth order iteration of H a = .J / g, neglecting 
terms of order (l/gj" + I. In column Ia we give the number of 
coefficients So Tij'''' if HI #0 and Hz#O. Column Ib gives 
the number of these coefficients if HI = Hz = 0. Columns 
IIa, an~ lIb give the number of the corresponding coeffi
cients T,j .... 

From Table I we conclude that it is reasonable in the 
case of coefficients in column Ia to iterate up to 0 (l/g6); this 
has also the advantage, that our equation for Ho remains 
linear. E.g., to 0 (l/g6) we have the equation: (in the one
dimensional case with hI = hz = 0) 

0= ho(1 + h j U303) 

+ h4S4 + h~6 + hgSg + hlOSIO 

+ T33h ~ + T44h ~ + 2T3Sh3hS + o (l/g6), (76) 

or with Eq. (9) 
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TABLE I. This table gives the number of terms which contribute to Eq. (27) 
if terms of 0 (l/g" " I) are neglected. Column Ia gives the number of terms if 
we use the coefficient functions T", U'lk' ..•. Column Ib gives the same as Ia 
but with hI = h2 = O. Column IIa gives the number of terms if we use 
T", U", ,'" and lIb the same for hI = h2 = O. 

n Ia Ib IIa lIb 

2 2 2 
3 4 2 4 2 
4 9 3 8 3 
5 22 5 17 5 
6 67 16 37 9 
7 139 19 73 17 
8 296 39 141 26 

1 b ~ U303 

..1 (1 + gS 8M ) 

1 1 1 ( bgSg b ~ T33 ) 

g2 b4S4 + ..,3S6 + - -- - --
5 g4 24M 3 SM 

+ J...( bloSlO _ b ~ T44 _ b3bsT3S) 
gS 2sM4 24M2 23M2 

1 
+0(6')' 

g 
(77) 

5. REPRESENTATION OF t/! p + j IN TERMS OF t/! p AND 

t/!; 
We have also calculated the first few terms of the wave

function algebraically. Here we give an alternative represen
tation of the wavefunction and then discuss the results for 
the coefficients w2j of 

00 

t/J = I W 2j t/J p + 2j' (78) 
j= - 00 

We can rewrite each t/Jp + 2j in terms of t/Jp and t/J~ = dt/J/dy. 
For this reason we define two functions C)LY,p) and C2LY,p) 
with the property 

! w2j (P)t/Jp + 2jLY) = CI/y,p)t/Jp + C2LY,p)t/I;, (79) 
) = - 00 

where w2j (P) are the coefficients determined earlier [Eq, (2S)] 
and contained in (7S). 

We obtain our second representation from the recur
rence relations 

(80) 

and 

t/Jp + 2 = Jplt/Jp - t/J;. (SI) 

We now set 

t/Jp + 2j = W~'}) [l'jLY;p)t/Jp + GjLY,p)t/J; ], (S2) 

where W(P,}) is again the function defined by (44), and l'j , Gj 
are defined by (S2). An explicit list of Fj' Gj is given in Ap
pendix E. From the recurrence relations for l'j and Gj , to be 
derived below, we see that l'j and Gj are polynomials iny and 
p. With a different choice of the function W(P,}) in the de
nominator of (S2), we would get complicated recurrence re
iations with rational expressions. From (82) and (80) we can 
deduce recurrence relations for F; and G" We find 
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l'j+ I = _y_F_j __ 
W(p,j + 1) W(P,}) 

and 

yGj ----
W(p,j + 1) W(P,}) 

p-l+2} F. 
2W(Pj-l) )-1 

p-l + 2} G . 
2W(P,} _ 1) }-I 

We subdivide these recurrence relations into two sets 

(i) if}> 0 and W(P j) = 1, 

(ii) if} < 0 and W(P j):;6 1. 

If}> 0, we get 

l'j+ I =yl'j -!(P - 1 + 2})l'j_ I' 

with 

Fo = 1, FI =y/2 

and 

with 

(S3) 

(S4) 

(S5) 

Go=O, GI = -1. (86) 

For negative) it is more practical to redefine the index} so 
that we get the index - Ij + 1) on the left-hand side of the 
recurrence relations. 

With these substitutions, we have 

F_ li + l ) =yF_ j -!(P+ 1-2})F_ li _ l ) 

and 

G- IJ + I ) =yG_ j -!(P+ 1-2})G_ li _ I ), 

where} > 0 and the boundary val ues are 

Fo= 1, F_I =y/2, 

(S7) 

(88) 

Go = 0, G_ I = 1. (S9) 

The functions CILY,p) and C2LY,p) of (79) are now defined by 

+ 00 l'jLY,p) 
CILY,p) =. I W2j W(P ')' 

)~-OO ,j 

(90) 

These expressions have an important consequence for the 
coefficients w2j . C I and C2 are well-defined functions of y. 
For negative values of} the function W(P,}) has lil zeros at 
p = 1,3, ... , - 2j - 1. These zeros must be compensated by 
w2j l'jLY,p) and w2j Gj LY,p). However, the functions l'j and Gj 
do not provide this cancellation for the following reasons: 

(i) For negative}, l'j and Gj are polynomials inp of 
degree lower than lil so they cannot compensate lil zeros of 
W(P,}). 

(ii) The zeros of Fj and Gj depend also ony and we can 
find a value of y for which neither y for which neither l'j nor 
G)s zero atp = 1,3,. ... Consequently, w2j must compensate 
the function W(p,j), i.e., 

w2j ~ W(P,}). (91) 

In the case of the first contribution to w2j we see immediate
ly, that it is proportional to W(p,j). 

w2j = l/2}[C(P,p + 2}) + ... J 
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and 

CIp,p + 2j)- WIp,j). (92) 

(see Appendix A). 
The proportionality has also been verified for several 

other contributions derived from the next iterations. The 
overall factor Wlpj) has no consequence forj> 0; hence the 
common factor is one. However, for negativej we have 

p-l 
W-2 = (- P --(HI + ... ), 

2 

p-1p-3 
W-4 = ( -!) -2---2-(H2 + ... ), 

W =( _1) p-1 p-3p-5(H
3
+ ... ), (93) 

-6 6 2 2 2 

and so on. 
Here we have a nontrivial factor which implies that for 

a fixed number p = 1,3,..· the weights w2j lp) are zero for 
( - 2j) > p. The function tPp + 2j with the lowest index, for 
which w2j #O,js always tPl' This is reasonable if we compare 
(78) with ansatz of the usual perturbation method. 16 There 
one starts with the ansatz 

(94) 

where (tPn I is the complete set of eigenfunctions of the un
perturbed Hamiltonian. 

For the harmonic oscillator this complete set is given by 
the parabolic cylinder functions tPP ' p = 1,3,.·. The func
tions tPq with negative q do not belong to this set and the 
iteration procedure reduces the coefficients w2j of these 
functions automatically to zero, leaving 

+00 00 

tP = L w2j tPp + 2j = L w2j tPp + 2j 
j ~ - 00 j ~ (I - pl/2 

! Wk_ptPk' (95) 
k ~ 1.3.5 

Although the denominator W IpJ) in (90) is cancelled out by 
factors of w2j , we do not get an additional contribution to the 
wavefunction. From (82) we get 

WIp,y)tPp + 2j = FjtPp + GjtP; = 0 if P < - 2j. (96) 

tP p + 2j is a known function for each p and j, and from 
tPp + 2j < 00 it follows that the product Wlpj) tPp + 2jis zero if 
p < 2j, and thus the sum FjtPp + GjtP; = 0 if P < - 2j. 

Finally we make some remarks concerning CI(y,p) and 
C2(y,p). Ifwe represent the wavefunction in terms ofw2j , the 
number and the relative magnitude of the terms grows very 
rapidly, so that in this way, we obtain only a crude approxi
mation of the wavefunction. 

The contruction ofCi(y,p) is therefore more economical 
if it is possible to sum up a large number of terms in the 
definition (90), especially for the ground state p = 1 and at 
the originy = O. The weight w2j is given by the expansion 
v;;;. 0) 

W2j = (I/2j){ Hj + !(2 + j)1p + j)~ + 2 

+ A(4 + j)(3 + j)[1p + N + 1 + j]HH- 4 + '" J. 
(97) 

If we set p = 1 we get for Fj and Gj the same recurrence 
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relation as for Hermite polynomials 15; from (85) and(86), 

Fj+ I =yFj - jFj-1 

and 

GJ+ I = yGj - jGj _ I' (98) 

The generating function depends on the boundary con
ditions, but we can expect that the contribution of 

00 00 1 
L W2jFj(y,1)~1 + L ---;HjFj(y,I) (99) 

j=O j~ I 2.J 
to CI(y,p) is ofthe same kind as the contribution of the gener
ating function of the Hermite polynomials. Therefore, for 
the class of physically interesting potentials, the coefficients 
Hj are of the form 

H j -ailj1 (100) 

where a is a parameter, which represents the perturbation of 
the harmonic potential. 

The generating function of the Hermite polynomials is 

(101) 

Similarly we have 

( 
a2) an 

-expya- - =L,Gn + I (y,p=1). 
2 n n. 

(102a) 

To obtain C2(y,p), we have to compensate an additional ( - 1) 
in (102), so we get 

C2(y,p) = 1 - exp(ya - a 2/2). (102b) 

6. QUARK·POTENTIAL MODELS 

We first of all recapitulate some lowest order iterations 
for potentials which have been discussed in the litera-
ture. 10,11 We then consider additional contributions and give 
here a more extensive numerical analysis of the results. It 
suffices to compare equation (10) with the corresponding 
equations in previous papers 10,11 in order to fix the param
eters. hi' With these hi we then get the approximation deter
mined by the nth iteration. 

Before we start, we comment on the expansion in pow
ers of the coupling parameter. It is true that we always com
bine all contributions of the same order (I/gr. But the com
binations of the coefficient functions Si' Tij"" depend on 
combination of the coupling parameter with the coefficients 
hi of the potential. Sometimes, i.e., in some problem, it is 
advantageous to substitute the Taylor coefficients aj of the 
potential via ai = g·b i , in order to obtain simple expressions. 
Thus we switch from a combination of h/s to powers (I/g)". 
In Sec. 2 we have seen that the coupling constant g and the 
coefficients hi are related in the following way: 

hi -I/l+il2, i=0,1,.... (103) 

In the case of the linear potential \ \ it was found to be 
convenient to divide out a factor of g2. The correspondence 
there is 

ho-I/g, 

1 
h~ - i>O 

I g\/,_,' . 
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In the first case hsSs and h ~ T33 are the same order in 
1/g; in the second case h4S4 and h j T33 . Ifwe now truncate 
our iteration at a certain order (1/g)", the contribution ne
glected in the two cases are not the same. There is no general 
criterion for deciding which ordering is the more suitable; 
this has to be decided from case to case and depends on the 
specific form of the potential under consideration. 

We find that for our potentials the effect is not suffi
ciently significant in order to yield deviations which change 
the results considerably. However, we can take a more statis
tical viewpoint for our choice of relevant contributions. 
There is a correspondence between the power of y and the 
degree of the polynomials of the quantum number p arising 
in the coefficient functions. A high degree of p requires high 
powers of y. So it is perhaps more practical to sum all contri
butions of the same order in p. If we combine all contribu
tions of the same order we have to use Ti}' Uijk>'" and the 
order of p is half of the indices. The contributions of order p" 
are 

pO_So, 

pl-S2' TIl' 
2 A A A 

P -S4' T 13 , T 31 , T 22, 

UII2 , U121 , U211 , Villi' (105) 

The relation ratios ofthe coefficient functions Tii' Uiik , .. • 

grows very rapidly, so it is more convenient to consider all 
polynomials up to the degree p" than to take all contributions 
of an order (1/ gt. 

6.1. The power potential V(r) = r" A,> 1 

We do not repeat each step of the calculations of Ref. 
11. All we need here are the coefficients hi and nothing else. 
After the transformation r = eZ has been applied to the ap
propriate radial wave equation, we get an effective potential 
of the form 

vIz) = ae2z _ {Je12 + A Iz + {jez
, 

where 

a = 2J.t(E - Vo)/Ii, {J = 2J.tgl/1i2
, 

D=2J.tgo/Ii2
, y=L 2 -!=I(/+ 1), 

(106) 

(107) 

J.t is the reduced mass,gl is the coupling constant ofr\ and go 
the coupling constant of a Coulomb potential. 

We write thisl'0tential in the form 

00 (z Z)i 
vIz) = v(zo) + L ~,o vUlzo, 

i~ 2 1. 

where vlil(zo) is the Taylor coefficient, i.e., 

Vlil(zo) = a2 ie2z" _ {J (2 + A )ie(2 + A Iz" + (jez", 

and Zo is determined by 

V(II(zo) = O. 

The coupling paramter h is 

h = [ - 2vI21(zo)]l. 

(108) 

(109) 

(110) 

(111) 

The variable isnamedcu and given bycu = h (z - zo). With the 
differential operator (11) we can rewrite the appropriate 
equation in the form 
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(112) 

We now have to compare (112) with (10). The relations be
tween the relevant parameters are 

ho=211 /h, 

hi = h2 = 0, 

_ vli)(zo) 1 1 
hi=-----, i>3. 

V(2 )(zo) 11 h i - 2 
(113) 

Setting 

hi = - c;lh i- 2, i>3, (114) 

we obtain the following set of iterations for Ll: 

ITt = 211 _ c
4 

_1_S4 - c
6 
~6 _ 0 ( _1_) 

h h 2 h4 h 6 ' 

T2 1 2 1 2 ( 1) I =?3 T33 + h'4(c4 T44 + 2c3csT 3S ) + 0 --,;z;' 

IT3 = 2: ( h12 cj U303) - cj C4 h14 (U334 + U343 + U433 ) 

+o( -is). 
IT4 = ( 2: )2 ~~2 V 3003 + 24 V3333 + o( -is). (115) 

To this order of our interation, we obtain an equation, which 
is quadratic in Ll. 
In the case of the linear potential (A = 1, (j = 0) we have 

Ci = (1/i!)(3 i
-

1 
- 2i

-
I
). (116) 

This gives 
11h [1 + (q/h 2)(0.395q2 + 1.28)) + (Llh )2(1/h 4) 

X (0.3Oq2 + 0.10) 
= - (1/72)(51q2 + 1) 
- (l/h 2)(q/256)(71.71q4 + 253.9q2 + 4.86) 
+ O(1/h 3). (117) 

We can iterate the quadratic equation and express Llh in 
powers in q provided 

q(0.395q2+1.28)<h2. (118) 

Then we get 

51q2+1 q 67q2+1 
-Llh = -"-7-2'--+ J;2 25 X33 

1 ( 4925 4 551 2 3965) 
+ J;4 62208

q 
- 31104

q 
- 186624 

(119) 

Numerical test show, that for Llh the difference between the 
approximation (119) and the quadratic equation (117) is less 
than 1 % if (118) is satisfied. 

Now the relation between h and the energy E is 

(120) 

This means that in calculating Llh for small values of E we 
have to use the quadratic equation (117). Calculating s states 
for the linear potential presents a further problem. The con
tributions of the next order 0 (1/h 4) are already so large for 
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relatively small h, that the asymptotic approximation for the 
s states has to be truncated after terms of 0 (1/ h 2). 

6.2. Iteration with higher contributions 

In Sec. 4 we showed that we can sum a part of the iter
ation. We give here the result with the coefficient functions 
Tij'" and later we compare this with the result of J1h in Sec. 
6.1. Of course, we get contributions, as explained in 6.1, so 
we can expect the numerical result to differ, particularly in 
the range of low energies. But we can also expect these re
sults to be closer to the exact result, and for this reason we 
include higher contributions. 

The following numerical resuls for J1h differ from those 
of Sec. 6.1 markedly only in the domain oflow energies. This 
can be seen in the following way. In the coefficient functions 
Tij"'" wehavedenominatorsoftheformn h 2 ± J1h, wheren 
is an integer. Ifwe setJ1h =0 we get the coefficient functions 
Tij which were used in Sec. 6.1. So we get the same results 
where we can neglect the term J1h in comparison with h 2. 

From Eq. (119) we know that for sufficiently large h the 
quantity J1h becomes constant. Thus, irrespective of our 
choice of the potential we can conclue that for sufficiently 
large values of h we have h 2> lJ1h I. In the range oflarge h, it 
is therefore no problem to replace the denominator by the 
first few terms of a geometric progression in powers of 
J1h /nh 2. 

For small values of h - 1, we cannot make a general 
statement for arbitrary potentials. For the linear and loga-

rithmic potentialsJ1h and h 2 are of the same magnitude. We 
are there approaching the limit of validity for the expansion 
of the denominator as a geometric progression. 

The difference in the numerial results arises from the 
difference of the denominator and its representation by a few 
terms of the geometric progression. 

Here we quote all terms up to and including those of 
polynomials of degree four. Doing the calculation with the 
help of the coefficient functions Tij'''' instead of ordering in 
powers of 1/h implies this criterion. The reason is very sim
ple. The value of the coefficient functions grows very rapidly 
and the complete expression would not be manageable. In 
this case there are only contributions from the first and sec
ond iterations: 

2.j 1 lis 
IT! = h - C4 ""'f;iS4 - C6 ?6 - CgSg J;'6 + 0 (q ), 

1 2~ 1 ~ ~ 
IT2 = ~3 T33 + C3CS ~T3S + TS3 ) 

h h4 
2 1 ~ S + C4 "h"4T 44 + 0 (q ). (121) 

Substituting the coefficient functions gives 

IT! = 2.j - ~(q2 + 1) _ ~5n(q2 + 5) 
h h 22 ~ 

_ ~~(q4 + 14q2 + 9) 
h 6 8 

+ o (qS), (122) 

and 

IT2 = C/ ( q3 + 9q2 + 23q + 15 _ q3 - 9q2 + 23q - 15 + 9 q3 + 3q2 + 3q + 1 _ 9 q3 - 3q2 + 3q - 1) 
16 3h 2 _ J1h 3h 2 + J1h h 2 - J1h h 2 + J1h 

+ ~ C ( q4 + 12q3 + 5Oq2 + 84q + 45! _ ~ q4 - 12q3 + 5Oq2 - 84q + 45 
8h 2 3 S 3h 2 _ J1h 3h 2 + J1h 

+ 3 q4 + 4q3 + 8q2 + 8q + 3 _ 3 q4 - 4q3 + 8q2 - 8q + 3) 
h 2 _ J1h h 2 + J1h 

+ C4
2 ( q4 + 16q3 + 86q2 + 176q + 105 _ q4 - 16q3 + 86q2 - 176q + 105 

2h 2 16(4h 2 _ J1h ) 16(4h 2 + J1h ) 
+ q4 + 8q3 + 23q2 + 28q2 + 12 q4 _ 8q3 + 23q2 - 28q + 12) 

2h 2 - J1h 2h 2 + J1h 

The complete expression is 

o = IT! + IT2 + 0 (qS). (124) 

We have also calculated the contributions of order (qS), 
which are given in their general form in Appendix F. 

6.3. Regge trajectories a q (E) and particle spectroscopy 

In Ref. 11 it was shown that for the linear potential the 
angular momentum I is given by 

(I + ~f = h 4/12 - ~qh 2 - J1h (125) 

Th us in calculating the Regge trajectories a q =1 we need J1 h 
as a function of a = 2fl (E - Vo)lh. In this section we give 
the results for some iterations. In particular we are interested 
in the behavior of these trajectories for s wave states. 
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(123) 

First of all we consider the numerical results of Eq. 
(117) and their approximations given by Eq. (119). Numeri
cal evaluation shows, that the approximation is good in a far 
wider range, i.e., even if the condition 

(126) 

is not strictly fulfilled. Figure 1 gives these results for q = 1 
and q = 3; the corresponding Regge trajectories are shown 
in Figs. 3 and 4. 

The solutions J1h of the quadratic equation (117) are not 
necessarily real. For sufficiently small values of h the solu
tions can be complex. However, it can be shown that for h> I 
the solutions are always real. Difficulties arise only near 
h -1, i.e., in the domain ofthes states. Our curves in Figs. 1-
4 start at this point, where Eq. (117) develops real solutions. 
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-Ah 
q = 1 

1.0 L quadratic equ. 

0.5 linear equ. 

o. ::-_---:L-_----1 __ --.J. __ ---L __ _ 

O. 1. 3 4. 2 
rJ.. = m(E-VO) GeV 2 

FIG. J..dh for q = I, as obtained from Eq. (117) or the linear approximation 
Eq. (119). 

For q = 1 the difference between the results obtained with 
these methods of approximation is small. The case of q = 3 
presents a new problem. 

The Regge trajectories do not become negative, so that 
we cannot determine an s state. Here we can use only the 
approximation (119). This seems to be an acceptable and 
smooth extrapolation from high energies to low energies. 

We require additional contributions to our iterations, 
but we have to remember, of course, that after a certain num
ber of iterations the asymptotic expansion begins to diverge. 
In the case of the linear potential the expansion behaves so 
badly, that the next iteration cannot be used. The best way to 
include higher order contributions seems to be to use the 
coefficient functions Tij"" and to take into account all con
tributions up to and including polynomials of degree qn. This 
kind of procedure has further advantages. In this approxi
mation, we always obtain a real result for tJh. The reason is 
the following. We always add to the iteration of tJh symmet
ric contributions of the form: 

P(q) P( -q) 
nh 2 - tJh ± nh 2 + .:ih' 

(127) 

where n is an integer and P (q) a polynomial. If we multiply 
our equation for tJh by the common denominator, we always 
get a polynomial of odd degree, so that an additional term of 
the form (127) raises the degree of the polynomial by 2. In 
this way we have removed the problem of complex results for 
.:ih. But the other problem remains, i.e., the early divergence 

-Ah 
q=3 

10. 

C'~" 
linear equ. 

1. 2. 3. 4. fA GeV2 

5. L-__ .l..-__ ...l-__ -L-__ --L __ __ 

O. 

FIG. 2. The same as Fig. 1 with q = 3. 
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6. 

5. 

4. 

3. 

2. 

1. 

Reggetrajector ies. q = , 

quadratic equ. 

O. ~----.i~:,..t£.--.1....---.1....-__ ..J....... __ 

O. 2. 3. 4. fA GeV2 
linear equ. 

FIG. 3. Regge-trajectories for the corresponding results of.dh from Eq. 
(117) and Eq. (119) for q = J. 

of the asymptotic approximation for the linear potential. 
In Figs. 5 and 6 we give the correction tJ h and the Regge 

trajectories for the same values of parameters as were used 
for Figs. 1-4. Figures 5 and 6 show the results for q = 1 for 
calculations up to polynomials of different degree. 

Detailed analysis shows that for h'::!:: 1 the contributions 
of polynomials of higher degree dominate over those oflow
er degree. This is a consequence of the asymptotic behavior 
ofthe iteration. However, from Fig. 6 we see also that it is an 
alternating effect, so it is suggestive to use a summation pro
cedure which cancels the effect of alternating contributions 
to this order. A simple and effective method is the Holder
Cesaro summation procedure. 17 

If we use an arithmetic procedure, we obtain the mean 
of the three curves of Fig. 6, so the iteration up to 0 (q3) is 
sufficient. Without more complicated techniques of summa
tion this would be the limit of our asymptotic iteration for 
the linear-power potential. It should be noted that we have 
adjusted the parameter f3 in such a way, that the two quanti
ties underlined in Table II correspond to well-known experi
mental values. 

The difference between the present and earlier results 
stems from a false sign in Ref. 11. Further we see that the 
unknown parameters (/3,8 ) can be varied over a large range. 
Finally Figs. 7 and 8 give the Regge trajectories for different 
values of f3 and q = 1,3,5,7 using the approximation up to 
polynomials of degree 3 . 

~q (E) q=3 

6. 

5. 

4. 

3. quadratic equ. 
2. 

1. 

O. 
O. 1. 2. 3. 4. tI. GeV 2 

FIG. 4. The Regge-trajectories forq = 3 obtained from Eqs. (117)and (119). 
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TABLE II. The linear potential. 

m = 1.65 
GeY; 1=0; (m = Quark 

mass) 
2 3 4 

p= 0.3934 0.3726 0.2390 0.2335 GeY' 
6= 0 Vi'/' 0 Vi'/' GeY 
q=1 3.096 3.096 3.096 3.096f 
q=3 3.684 3.684 3.684 3.684 Input 

q=5 4.178 4.165 4.229 4.225 GeY 
q=7 4.619 4.592 4.717 4.706 GeY 

I and 2: masses of s states ofEq. (119). 
3 and 4: masses of s states of Eq. (124) up to 0 (q'). 

-Llh q=l. fl=.3934 GeV3 

4. 

3. 

2. 

1. 

O. 
0 1. 

-1 t 
-2. 

2. ~.",q5 
/ tl.,GeV2 

- 3. 

FIG. 5. Comparison of the results for i1h obtained from Eq. (124) if an 
contributions of order q', q4, q' are taken into account. 

6.4. The logarithmic potential combined with a Coulomb 
potential 

Another potential which has attracted considerable in
terest in connection with the spectroscopy of the newly dis
covered heavy quark-antiquark states is the logarithmic po
tential. 1O We consider this potential in the form 

V(r) = - gJr + gln(rlro), (128) 

whereg,gc>O. 
After separation of the motion of the center of mass, the 

SchrOdinger equation for the radial wavefunction 

¢(r) = (1/rl/2)<,6 

is 
d 2<,6 (r) [y ~ ] --+ a - --p(lnr- -) <,6(r) =0, dr r r 

(129) 

cLq 
7. 

6. 

5. 

4. 

3. 

2. 

1. 

O. 
O. 1. 

FIG. 7. Regge-trajectories for the linear potential obtained from Eq. (124) 
and for 6 = 0, P = 0.2390 Ge y' and terms up to q'. 
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tl.,q Reggetrajectories q = 1. fl = .3934 GeV 3 

6. 

5. 

4. 

3. 

2. 

1. 

O·O~.------I~.~~--2~.--~--~3.------~4-~--G-eV2 

FIG. 6. Regge-trajectories for the i1h-values of Fig. 5. 

where 

a = (2p/~)(E + glnro), 

P= ~g, y=l(l+ 1), 

~=gJg. 

Setting 

r=lf- C 

and choosing 

c= -alP, 

we obtain our basic equation 

~~ + [ - L 2 + U(z)]¢(z) = 0, 

where 

L 2==y + ! = (/ + ~)2 
and 

U(z) = pe2(z- C)(8e- z + c - z). 

The maximum of U (z) - L 2 at Zo is given by 

~e-z,,+c - 2zo - 1 = O. 

Setting 

x = ~!ec+l, 

we obtain 

Zo~ - ~ + l(3 + 1/(1 + X)2) In(1 + x). 

Regget rajectories 
cLq q =1 

7. 

6. 

5. 

4. 

3. 

2. 

1. 

O. 
O. 

(130) 

(131) 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

FIG. 8. Regge-trajectories for the linear potential combined with a Cou
lomb potential obtained from Eq' (124) for 6 = !, P II'; P = 0.2335 GeY'. 
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~q 
q: 1 

6. 

5. 

4. 

3. 

2. 

1. 

O. 
O. 1. 2. 3. 4. do. GeV2 

linear equ. 

FIG. 9. Comparison of the results for J1h obtained from the quadratic equa. 
tion and the linear approximation. 

Again we expand U (z) around zoo Then 

U(z) = U(zo) + f (z ~ zo); UIi)(zo), 
;= 2 I. 

where 

U(i)(zo) = (3e2Izo-C)(8ec-zo - tzo _ i2;-I). 

Next we set 

h 2 = [ _ 2U(2)(Zo)] 1/2 

and change the independent variable to 

w = h (z - zo). 

Then 

d
2

1/J + _1_( _ L 2 + U(w = 0) + f UIi)~ WI) 
dw 2 h 2 ; = 2 11 hI 

(139) 

(140) 

(141) 

(142) 

I/J(w) = O. (143) 

This equation can now be written in our standard form (10). 
Thus 

with 

~q 

6. 

5. 

4. 

3. 

2. 

1. 

!iJ I/J(w) = ( 2.J + f 2UIi) w;)I/J, (144) 
q h; = 3 11h I + 2 

ho = 2.J Ih, 

hi =h2 =0, 
2UIi) 

h;= ---= 
11h;+ 2 

UIi) 
- 11 U (2) h; - 2 • 

Reggetrajektories 
q: 1,3.5,7 

(145) 

O.L-_-,~~_~~~-+ __ L-___ ~ ___ ~ 

~ GeV2 O. 1. 2. 3. 4. 

FIG. 11. The linear approximation (147) with the parametersfJ = 1.004 
GeY' and 8 = fJ 14. 
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~q 
q: I, 3,5,7 

5. 

4. 

3. 

2. 

1. 

O. 
O. 1. 

FIG. 10. Regge-trajectories using the linear approximation (147) for the 
logarithmic potential with 8 = 0 andfJ = 1.113 Gey3. 

We now determine the correction.J in terms of these coeffi
cients. For gc = 0 we obtain particularly simple expressions 
of Zo and hence for the coefficients h;, Thus 

Zo= -! 
and 

(146) 

A crude approximation, similar to (119), of the linear poten
tial is 

X (264 44Sq4 - 23 79Oq2 - 43 199) 

(147) 

We now perform calculations similar to those for the linear 
potential. The Regge-trajectories are obtained from 

L 2 = (/ + ~)2 = U(w = 0) - ~qh 2 - .Jh. (148) 

Generally speaking we find that the logarithmic potential is 

~q q = 1,3,5,7 

6. 

5. 

4. 

3. 

2. 

1. 

O. 
O. 1. 2. 3. 4. tJ., GeV 

FIG. 12. Regge-trajectories calculated by an itera~ion similar to Eq. (\24) 
including terms of 0 (q3), with 8 = 0 and fJ = 0.95\ GeY'. 
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olq q= 1.3,5,7 
6. 

5. 

4. 

3. 

2. 

1. 

O. 
J.., GeV 2 O. 1. 2. 3. 4. 

FIG. 13. The same as Fig. 12, but with {j = (J /4 and (J = 0.884 GeV3
• 

TABLE III. The logarithmic potential. 

s states with 
m = !.56GeV 

1 2 3 
(J 0.888 1.113 1.004 
8 0 0 (J /4 
q=1 3.095 3.096 3.096 

q=3 3.685 3.684 3.684 
q=5 4.008 4.014 4.002 
q=7 4.233 4.242 4.218 
Q=9 4.405 4.416 4.381 

1: from numerical integration (Ref. 18). 
2 and 3: approximation with Eq. (147). 
4 and 5: approximation with Eq. (124). 

4 5 
0.951 0.884 
0 (J/4 
3.096 3.096 ~ I 
3.684 3.684 
4.020 4.008 
4.242 4.220 
4.405 4.374 

APPENDIX A: THE COEFFICIENTS S/ p,2j) 

GeV2 

nput 

GeV 
GeV 
GeV 

easier to handle in an iterative treatment than the linear po
tential. In particular the coefficients h; decrease more rapid
ly. However, this is not very important in the calculation of 
the s states. Here we present the results for the s states using 
the approximation (147) and an equation which is similar to 
(121). 

Here we give the explicit form of the coefficient func
tions S; defined by Eq. (18). They are obtained from the re
currence relation of the parabolic cylinder function t/Jp, i.e., 

zt/Jp = t/Jp + 2 + !( p - 1 )t/Jp ~ 1 • 

Figure 9 shows the Regge-trajectory for q = 1, using 
(147) and the solution of the original quadratic equation. 
Figures 10-13 show the same Regge-trajectory for different 
values of/3and 8. Finally, Table III summarizes the values of 
the meson masses ofthes states using again typical values of 

The function W(pJ) referred to in the text [cf. Eq. (44)] is 
defined as 

[

1 if j';;!-O, 

W(pJ) = P - 1 P - 3 ... P + 1 + 2j if j <0. 
2 2 2 

the quark masses. • Results of znt/Jp (z) are: 

zt/Jp = W(p, + 1)t/Jp+1 + W(p, - 1)t/Jp~1' 

Zl = t/Jp = W(p, + 2)t/JP+4 + W(p, - 2)t/JP~4 + pt/Jp' 

Z3 = t/Jp = W(p, + 3)t/JP+6 + W(p, - 3)t/Jp~6 + ~(p + I)W(p, + 1)t/Jp+2 + ~(p - l)W(p, - 1)t/Jp~2' 

Z4t/Jp = W(p,4)t/Jp+s + W(p,-4)t/Jp~s +2(p+2)W(p,2)t/Jp+4 +2(p-2)W(p,-2)t/JP~4 +~(pl+ 1)t/Jp, 

zSt/Jp = W(p,5)t/Jp+ 10 + W(p, - 5)t/Jp~ 10 + ~(p + 3)W(p,3)t/Jp+6 + ~(p - 3)W(p, - 3)t/JP~6 

+ ~(pl + 2p + 3)W(p,I)t/Jp+1 + ~(pl - 2p + 3)W(p, - 1)t/Jp~l' 
Z6t/Jp = 

W(p,6)t/JP+12 + W(p,-6)t/JP~12 +3(p+4)W(p,4)t/Jp+8 +3(p-4)W(p,-4)t/Jp~s + ¥(p2+4p+7)W(p,2)t/Jp+4 
+ J,l(pl - 4p + 7)W(p, - 2)t/Jp~4 + JjJ(p2 + 5)t/Jp, 

Z7t/Jp = W(p,7)t/Jp+ 14 + W(p, - 7)t/Jp~ 14 + ~(p + 5)t/Jp+ 10 + ~(p - 5)W(p, - 5)t/Jp~ 10 

+ <;f(p2 + 6p + 13)W(p,3)t/Jp+6 + <;f(p2 - 6p + 13)W(p, - 3)t/JP~6 
+ ¥(p3+3pl+ lip + 9)W(p,I)t/Jp+l + ¥(p3_3p2+ I1p-9)W(p,-1)t/Jp~2' 

ZSt/Jp = 

W(p,8)t/Jp+ 16 + W(p, - 8)t/Jp~ 16 + 4(p + 6)W(p,6)t/Jp+ /1 + 4(p - 6)W(p, - 6)t/Jp~ 12 + 7(pl + 8p + 21) W(p,4)t/Jp + S 

+ 7(p2 - 8p + 21)W(p, - 4)t/Jp~s + 7(p3 + 6pl + 23p + 30)W(p,2)t/Jp+4 

+ 7(p3 - 6pl + 23p - 30)W(p, - 2)t/Jp~4 + ¥(p4 + l4pl + 9)t/Jp. 

APPENDIX B: LIST OF THE COEFFICIENTS C( p + 2j) 

The following are the expressions for the coefficients C calculated from (20). We neglect all contributions of 0 (l/g9): 

C(p,p) = Ho + pHl + ~(pl + I)H4 + ~(pl + 5)H6 + ¥(p4 + 14pl + 89)Hs + ¥p(p4 + 30pl + 89)HIO 

+ W(p6 + 55p4 + 439pl + 225)HIl + Wp(p6 + 91p4 + 1519pl + 3429)H14 + 0 (l/g9), 

C(p,p + 2) 

= HI + i(p + I)H3 + i(pl + 2p + 3)Hs + ¥{p3 + 3pl + IIp + 9)H7 + ¥(p4 + 4p3 + 26pl + 44p + 45)H9 
+ W(p5 + 5p4 + 50p3 + 130pl + 309p + 225)Hll + W(p6 + 6p5 + 85p4 + 300p3 + 1219pl + 1854p + 1575)H'3' 
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C(p,p - 2)= W(p, - 1)[ HI + i(p - 1)H3 + i(p2 - 2p + 3)Hs + ¥{p3 - 3p2 + IIp - 9)H7 
+ ¥-(p4 _ 4p3 + 26p2 _ 44p + 45)H9 + W(pS - 5p4 + 50p3 - 130p2 + 309p - 225)HII 

+ ¥j(p6 _ 6ps + 85p4 - 300p3 + 1219p2 - 1854p + 1575)H13] , 

C(p,p + 4) = H2 + 2(p + 2)H4 + .!}(p2 + 4p + 7)H6 + 7(p3 + 6p2 + 23p + 30)Hg 

+ ~(p4 + 8p3 + 50p2 + 136p + 165)HIO + 9j(pS + lOp4 + 90p3 + 380p2 + 989p + 1050)H12' 

C(p,p - 4) = W(p, - 2)[ H2 + 2(p - 2)H4 + 1((p2 - 4p + 7)H6 + 7(p3 - 6p2 + 23p - 30)Hg 

+ ~(p4 _ 8p3 + 50p2 _ 136p + 165)HIO + 9j(pS - lOp4 + 90p3 - 380p2 + 989p - 1050)HI2] ' 

C(p,p + 6) = H3 + i(p + 3)Hs + Z}-(p2 + 6p + 13)H7 + ¥(p3 + 9p2 + 41p + 69)H9 

+ 1f-(p4 + 12p3 + 86p2 + 300p + 441)HII' 

C(p,p - 6) = W(p, - 3)[ H3 + i(p - 3)Hs + Z}-(p2 - 6p + 13)H7 

+ ¥(p3 _ 9p2 + 41p _ 69)H9 + ~(p4 - 12p3 + 86p2 - 300p + 441)HIl] ' 

C(p,p + 8) = H4 + 3(p + 4)H6 + 7(p2 + 8p + 21)Hg + 15(p3 + 12p2 + 65 + 132)Hlo, 

C(p,p - 8) = W(p, - 4)[H4 + 3(p - 4)H6 + 7(p2 - 8p + 21)Hg + 15(p3 - 12p2 + 65p - 132)HIO], 

C(p,p + 10) = Hs + i(p + 5)H7 + 9(p2 + lOp + 31)H9' 

C(p,p - 10) = W(p, - 5)[ Hs + i(p - 5)H7 + 9(p2 - lOp + 31)H9] ' 

C(p,p + 12) = H6 + 4(p + 6)Hg 

C(p,p - 12) = W(p, - 6)[H6 + 4(p - 6)Hg], 

C(p,p+ 14)=H7' 

C(p,p - 14) = W(p, -7)H7. 

APPENDIX C: THE COEFFICIENTS S;, T;i' Uijk"" 

I U2II = -h(P2 + 3)] 
U I21 = A(P2 + 5) l: = i(P2 + 4), 

U I12 = U211 Here we give the coefficient functions S;, Tij' •.. which 
are discussed in Sec. 4. 

We have the following general results: 
(i) The coefficient functions are zero if the first or last 

index is zero. 
(ii) A coefficient function is zero if the sum of the indices 

is an odd integer. 
The terms S;(p) are: 

So = 1, 

S2=P, 

S4 = !(p2 + 1), 

S6 = JjJ(p2 + 5), 

Sg = ¥(p4 + 14p2 + 9), 

Sw = ¥p(p4 + 30p2 + 89), 

SI2 = V61(p6 + 55p4 + 439p2 + 225), 

SI4 = Wp(p6 + 91p4 + 1519p2 + 3429). 

Terms which contain i = 1 are: 

746 

Til =~, 

TI3 =T31 =p, 
T I5 = TSI = l}(p2 + 1), 

Tl7 = T7I = ¥p( p2 + 5); 

U IOI =-V', 
U lO3 = U301 = ~(p2 + 1), 

UlO5 = U50l = i(p2 + 5)p, 

U I07 = U701 = ~(p4 + 14p2 + 9), 

J. Math. Phys., Vol. 22, No.4, April 1981 

U411 = kfJ(P2 + 11)] 
U I41 = kfJ(P2 + 28) l: = ~ (3pZ + 50), 

U I14 = U411 
U123 = t-,(5pZ + 61) 

U231 = frp(pz + 23) 

U312 = -j-pjJ(5pz + 43) l: = ~2 (2pZ + 107); 
U l3Z = UZ31 
U3Z1 = U IZ3 
UZI3 = U312 

VW01 = h 
VI003 = V3001 = iJp, 

VlOO5 = VSOOI = -ij(P2 + 1), 

Vzo I I = -t-rP 
VZIOI = kfJ 
VI201 = iJp 
VI0I2 = kfJ 

VI 102 = 1!16p 

V IOZI = ~p 

V40li = ir,(P2 + 1) 

V4101 = ~(pz + 1) 

VI401 = -ij(pz + 1) 

VlO41 = -ij(pz + 1) 

VlO14 = ~(pz + 1) 

VI W4 = ir,(pz + 1) 
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VlIlI = W, 
VI! 13 = -b(9p2 + 7), 

V!!3! = fi.l3p2 + 5), 

V J3I1 = -fi(3p2 + 5), 

V3111 = +J..9p2 + 7); 

W IDOOI = -&P, 
W IDOO3 = W3000I = Np2 + 1), 

Wl0005 = W5000I = -fjJ(P2 + 5), 

WIDIII = WIJIDI = -h1p2 + 3), 

WIIOII = 11s(P2 + 3); 

XI 000 I = 12, 
XI 0000 3 = X3 0000 I = 3/32p. 

Terms containing i = 2 are: 

Tn =;p, 
T42 = T24 = ~1p2 + 1), 

T62 = T26 = 1j-p1p2 + 5); 

U202 = n(P2 + 3), 

U402 = U204 = it;( p2 + 11), 

U602 = U206 = Nslp4 + 26p2 + 21), 

Um = f,p(p2 + 19); 

V2OO2 = fil, 

V2OO4 = V4OO2 = -f21p2 + 1), 

V2202 = V2022 = ~(2p2 + 3), 

W2OOO2 = slzlp2 + 3), 

W2OOO4 = W4OOO2 = I!--J'(p2 + 11). 

Terms with index i> 2 are: 

T33 = !(15p2 + 7), 

T35 = T53 = iP(7p2 + 19), 

T37 = T73 = W(3p4 + 26p2 + 11), 

T39 = T93 = ¥J'(33p4 + 670p2 + 1337), 

T44 = 1R( 17p2 + 67), 

T46 = T64 = ~(11p4 + 11Sp2 + 63), 

T48 = T84 = ~p(3p4 + 70p2 + 167); 

U303 = f-,p(41p 2 + 133), 

U305 = U503 = 2~8(55p4 + 482p2 + 207), 

U307 = U703 = fJ'(23p4 + 450p2 + 847), 

U309 = U903 = 1~2(83l' + 3 1 25p4 + 6277pz + 5715), 

U334 = t-,JJ(Sp4 + 334p2 + 749), 

U343 = ck(37p4 + 2742p2 + 4541), 

APPENDIX D: THE COEFFICIENTS f ... 
1/ 

U336 = (527p6 + S4 725p4 + 356 273p2 + 131 355)/1152, 

U633 = U336 

U363 = (293p6 + 49 775p4 + 271 547p2 + 86625)/576, 

U354 = (239p6 + 37 445p4 + 248 921p2 + 93555)/768, 

U345 = 669p6 + 71 795p4 + 351 691p2 + 125685)1960, 

U435 = (181p6 + 17 655p4 + 104 259p2 + 45585)3/1280, 

U345 = U543, 

U453 = U354, 

U534 = U435, 

U404 = 5l2(65p4 + 1558p2 + 873), 

U444 = 1524(65p6 + 9623p4 + 75 263p2 + 33 705), 

U406 = U604 = st-,p(41p41830p2 + 4849); 

V3OO3 = th(123p2 + 43), 

V3333 = 2hP(615p4 + 14 972p2 + 21 721), 

V3'105 = V5OO3 = f#J( I1p2 + 23), 

V4OO4 = 2~rP(13p2 + 47), 

V3403 = (693p4 + 3782p2 + 1085)/192, 

V4033 = TIb(263p4 + 2682p2 + 959), 

V4303 = ;/s(S6p4 + 601p2 + 225), 

V3043 = V3403, 

V3034 = V4303 , 

V3304 = V4033; 

W3OOO3 = 2i95P(73p2 +221), 

W33303 = (7507p6 + 593 695p4 + 2 521 681p2 

+ 643 005)182 944, 

W33033 = (4294p6 + 57 7468p4 + 3 174 784p2 

+ 806463)/165888, 

W30333 = W33303' 

W4OO33 = 459tP(19p4 + 121Op2 + 2451), 

W40303 = 61~;J'(30Ip4 + 9534p2 + 16853), 

W43OO3 = W30034' 

W34OO3 = W33004' 

W30403 = 34'StP( 1261p4 + 16 422p2 + 21 317), 

W33004 = 34~rP(289p4 + 19 950p2 + 24521), 

W3OO34 = 7~\iP(39p4 + 2362p2 + 4063), 

W30043 = W33004' 

W30304 = W40303; 

X300003 = s'~4(1095p2 + 367). 

Here we give the coefficient functions To which we need if h, = hz = O. We quote these up to 0 (PS): 
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TJ) = l( p3 + 9p2 + 23p + 15 _ p3 - 9p2 + 23p - 15 
- 8 6 -Ho 6 +Ho 

748 

+ 9 p3 + 3p2 + 3p + 1 _ p3 - 3pz + 3p - 1 ), 
2 -Ho 2 +Ho 

T35 = T53 = ~.( p4 + 12p3 + 50pz + 84p + 45 
16 6 -Ho 

_ p4 _ 12p3 + 50p2 - 84p + 45) 

6+Ho 

( 
p4 + 4p3 + 8p2 + 8p + 3 p4 _ 4p3 + 8pz - 8p + 3) +u - , 

8 2 -Ho 2 +Ho 

T37 = T73 = 13
oi(ps + 5p4 + 18p3 + 34p2 + 29p + 9)1(2 - Ho) 

- 13
0i(ps - 5p4 + 18p3 - 34p2 + 29p - 9)/(2 + Ho) 

+ H(ps + 15p4 + 90p3 + 270p2 + 389p + 195)/(6 - Ho) 

- H(ps - 15p4 + 90p3 - 270p2 + 389p - 195)/(6 + Ho), 

T46 = T64 = ¥(ps + 1Op4 + 42p3 + 92p2 + 101p + 42)1(4 - Ho) 

- ¥(ps _ 1Op4 + 42p3 _ 92p2 + 101p - 42)/(4 + Ho) 

+ -&(ps + 20p4 + 150p3 + 520p2 + 809p + 420)/(8 - Ho) 

- -&(ps _ 20p4 + 150p3 - 520p2 + 809p - 420)18 + Ho), 

TS5 = ¥(ps + 5p4 + 14p3 + 22p2 + 21p + 9)/(2 - Ho) 

- ¥(p5 _ 5p4 + 14p3 - 22p2 + 21p - 9)/(2 + Ho) 

+ H(ps + 15p4 + 86p3 + 234p2 + 297p + l35)1(6 - Ho) 

- H(ps - 15p4 + 86p 3 - 234p2 + 297p - 135)/(6 + Ho) 

+ -h(ps + 25p4 + 230p3 + 950p2 + 1689p + 945)/(10 - Ho) 

- -h(P5 - 25p4 + 230p3 - 950p2 + 1689p - 945)1(10 + Ho) 

(;343 = -&(PS + 21p4 + 168p3 + 624p2 + 1031p + 555)/(H6 - 12HO + 36) 

+ fl,(pS - 21p4 + 168p3 - 624p2 + 1031p - 555)1(H~ + 12Ho + 36) 

+ i(p5 + 14p4 + 72p3 + 166p2 + 167p + 60)/(H~ - 8HU + 12) 

+ i(p5 - 14p4 + 72p3 - 166p2 + 167p - 60)/(H~ + 8HO + 12) 

+ -,}z(p5 + 7p4 + 6p3 - 22pZ - 7p + 15)1(H6 - 4Ho - 12) 

+ -,}z(p5 - 7p4 + 6p3 + 22p2 - 7p - 15)/(H6 + 4HO - 12) 

+ ff,(PS + 7p4 + 20p3 + 28p2 + 19p + 5)/(H~ - 4HO + 4) 

+ ff,(p5 _7p4 + 20p3 - 28p2 + 19p - 5)1(H6 + 4HO + 4) 

+ -,}z(p5 - 7p4 + 6p3 + 22p2 - 7p - 15)1(H~ + 4Ho - 12) 

+ -,}z(pS + 7p4 + 6p3 - 22p2 - 7p + 15)1(H~ - 4HO - 12) 

+ ~(P4 _ 2p2 + l)1(H~ - 4), 

(;334 = (;433 = -,}z(pS + 23p4 + 198p3 + 778p2 + 1337p + 735)/H~ - 14Ho + 48) 

+ -,}z(pS - 23p4 + 198p3 - 778p2 + 1337p - 735)1H~ + 14Ho + 48) 

+ n(P5 + 17p4 + 102p3 + 262p2 + 281p + 102)/(H6 - WHo + 16) 

+ n(PS - 17p4 + 102p3 - 262p2 + 281p - 102)1(H6 + WHo + 16) 

+ i(p5 + 16p4 + 96p 3 + 266p2 + 335p + 150)l(H~ - WHo + 24) 

+ i(p5 - 16p4 + 96p3 - 266p2 + 335p - 150)l(H~ + WHo + 24) 

+ ~(p5 + 1Op4 + 38p 3 + 68p2 + 57p + 18)/(H6 - 6Ho + 8) 

+ ~(p5 _ 10p4 + 38p3 - 68p2 + 57p - 18)1(H6 + 6Ho + 8) 

+ ~(p5 _ 4p4 + 10p2 - P - 6)1(H6 + 2Ho - 8) 

+ ~(p5 + 4p4 _ 10p2 - P + 6)1(H~ - 2Ho - 8). 
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APPENDIX E: EXPLICIT EXPRESSIONS OF ~(y,p) AND G/y,p) 

j lj Gj 

+4 (2y4 _ lOy2 _ 4py2 + p2 + 6p + 5)/4 _ y(y2 _p _ 4) 

+3 3y(2y2 - 3p - 5)14 - (2y2 - P - 3)12 
+2 (y2 _ P _ 1)/2 -y 
+1 y/2 -1 

0 1 0 
-1 y/2 +1 
-2 (y2 _ P + 1)/2 Y 
-3 y(2y2 - 3p + 5)14 (2y2 + 3 - p)/2 
-4 (2y4 + y2(10 _ 4p) + p2 - 6p + 5)/4 y(y2 _p + 4) 

APPENDIX F: THIRD-ORDER ITERATION OF THE EIGENVALUE OF ONE-DIMENSIONAL SCHROoINGER 
EQUATION 

If we set for the coefficients hi 

ho=2..1/h, 

hi =h2 =0, 

hi = - c;lh i - 2, 

i>3, 

we get a polynomial of fourth-order in ..d. If we iterate this polynomial we get the following solution: 

-..dh 
= A [7c~ - 6c4 + 3p2(5c~ - 2c4)] + /P/32h 2) fp2(280C5C3 + 68c; - 900c4d + 705c~ - 4Oc6) 

+ 76Oc5c3 + 268c; - 1836c4c~ + 1155c~ - 200c6] + (1I256h 4) [5p4(504c; - 7728c5C4C3 + 15624c5d 
- 600c! + 19956c~c~ - 4653Oc4C~ + 528c4C6 + 23151c~ - 4344c~C6 + l008c3c7 - 112cg) 

+ 2p2(868Oc; - 11736Oc5c4c3 + 19092Oc5d + 13656c! + 248052c~d - 47997Oc4C~ 

+ 1416Oc4c6 + 209055c~ - 6828Oc~C6 + 2184Oc3c7 - 392Ocg ) + 8856c; - 90672c5c4C3 + 118216c5d 
- 12312c! + 161044c;c~ - 263634c4C~ + 1512Oc4c6 + 101479c~ - 4844Oc~C6 
+ 18480c3c7 - 5040cs ] + 0 (lIh 6). 
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Derivation of "Bethe's hypothesis" from the quantum inverse scattering 
transformation -for the nonlinear SchrOdinger equation 

Andreas Wiesler 
FakultG't fur Physik der UniversitG't Freiburg. Hermann-Herder-Str. 3. 7800 Freiburg; West Germany 

(Received 28 November 1979; accepted for publication 14 March 1980) 

Using the quantum version of the inverse scattering transformation for the nonlinear Schrodinger 
equation, eigenstates of the Hamiltonian can be constructed. We show that these eigenstates are of 
the Bethe form. 

PACS numbers: 03.65.Ge, 03.70. + k 

INTRODUCTION 

It has been noticed recently'·2 that field theoretic mod
els in 1 + 1 dimensions possessing an inverse scattering 
transformation may be solved exactly at the quantum level. 
In this note we treat the nonlinear Schrodinger theory with 
Hamiltonian 

(1) 

We consider the case c > O. The canonical commutation rela
tion reads ["'(x),'" + (y)] = l>(x - y) and in N-partic1e Fock 
space we have 

N ( d
2 

) JY= I - -2 +cIl>(Xj -XI)' 
j~ 1 dXj Nt 

(2) 

The main observation made in Refs. 1 and 2 is that the 
equations of the inverse scattering transformation may be 
taken over to the quantized theory. For our purposes only 
the operator version of the Zakharov-Shabat eigenvalue 
problem3 will be needed: 

ifJlX = - !iqifJ,(x) + V~ifJ2(X)tf(X), 
(3) 

ifJ2x = + !iqifJ2(X) + V~'" + (X)ifJl(X), 

The special operator Jost solution (ifJ"ifJ2) we are looking for 
is defined by the asymptotic behavior 

X---+ - 00: ifJ, ~ e - iqx/2, ifJ2---+0. (4) 

Then the Jost operators A (q) and B + (q) are defined as 
x---+ + 00 by 

ifJ,eiqX/2 ---+A (q), ifJ2e - iqx/2 ---+ V 21T'C B + (q). (5) 

The following commutation relations have been 
established' : 

and 

[JY,A(q)] =0, 

A (q)B + (q') = (1 - ~)B + (q')A (q). 
q-q' 

From (6) it follows that the state vectors 

B + (ql) .. ·B + (qN) 10) 

(6) 

(7) 

(8) 

are eigenstates of cW' with eigenvalue };,q7. 10) is the 
ground state of cW' and is identical with the vacuum of the '" 
fields. 

From (7) and A (q)IO) = 10) itfollowsthatthestates(8) 
are eigenstates of A (q) too. The expansion of the eigenvalue 
in powers of q - I may be compared with the corresponding 
expansion of A (q) = A [q;'" + ,"'] in order to obtain the eigen
values of the infinite sequence of operators commuting with 
JY. 

On the other hand, the eigenfunctions of (2) have been 
calculated in Refs. 4 and 5. Their particular form is known in 
the literature as "Bethe's hypothesis" or "Bethe-ansatz.,,6 

Following Lieb and Liniger,4 these eigenfunctions read 

IJI< + )(q, .. ·qN I XI ... x N) 

1 1 (X""XN ) = - I A (P)E . 
(21T')NI2 N! PerN P,"'PN ' 

(9) 

here 

I 8 (xQ, - x Q, ) ••• 8 (xQ• - xQ,) 
QEy" 

(10) 
j 

denotes the "ordered exponential function" and ~ is the set 
of all permutations of the numbers 1 to N. 

The coefficien tsA (P) are prod ucts oftwo-particle S ma
trices of the form 

i\ql - qj \ + c 
Sf' = , 

~ i\ql - qj \ - c 
(11) 

where ql and qj are the momenta of the corresponding parti
cles. The precise form of A (P) depends on the permutation P 
and can be determined from simple rules given in Ref. 4. All 
A (P)'s are uniquely determined up to a common multiplica
tive constant which we have choosen such that A (I) = 1, 
where I is the identity permutation. The wavefunction ob
tained in this way represents an outgoing wave.5 

In this paper we want to prove that the states given by 
(8) are of the Bethe type and closely related to (9), namely, 2 

B + (q,) .. ·B + (qN) 10) = II [1 + Y(qt, qj)] 1+ ,q,'" qN) 
l<i 

. (12) 

where 

Y(ql' qj) = ic/ \ql - qj \ (13) 

and 

I + ,ql···qN) = 5 dx1 .. ·dxN IJI< + )(ql .. ·qN I X)"'XN) 

750 J. Math. Phys. 22 (4), April 1981 0022-2488/81/040750-04$1.00 © 1981 American Institute of Physics 750 



                                                                                                                                    

(14) 

In the nonlinear Schrodinger theory, therefore, "Bethe's hy
pothesis" appears to be a consequence of the inverse scatter
ing transformation. 

THE PROOF 

In this section we show that the following relation 
holds: 

B +(K) I + ,ql'" qN) 
N 

= II [1 + Y(K, qj)] 1+ ,q,'" qNK). 
j=' 

By repeated application of(15), Eq. (12) immediately 
follows. 

(15) 

We start with the explicit representation of B + (K) in 
terms of free field operators 

B +(K)= 1 ! fdj+'xdjyg2/X I y IK) 
V21T j =o 

X t/J+ (x,)· .. t/J + (xj+' )t/J(y,) ... t/J(y), (16) 

where 

g2j(X I y IK) = c j IT O(x l +, - YI)O(YI - XI) 
1=' 

xexp[ - iK(xt +x2 + ... +xj+t - Yt - Y2'" - y)]. 
(17) 

Here d jx-===dx , ... dxj , x = X t"'Xj' () denotes the step function, 
and in (17) a symmetrization in x and y is to be included. 
Using (16), the Ihs of (15) in F ock space reads 

Y(X''''XN+' ) 
N 

= (21T)-(N+I)/2 L S[(N-])!(N+l)]-' 
j=O 

(18) 

Here the symbol S denotes symmetrization in X ,'''X N +' . In 
what follows we consider the case 

X, <X2 < ... <XN <XN +' (19) 

which simplifies the considerations but imposes no restric
tion. Since 4Jt{ + )(q I x) and g:q(x I y IK) are themselves 
symmetric, S may be expressed as a sum over ordered subsets 
fromj + 1 numbers out of N + 1, i.e., 

(20) 

where aiEl 1, ... ,N + I} and at <a2 .. • <aj+ I' The ordered 
complement of aiN+1, is denoted by 

P(aiN++'t) = {1, ... ,N + l}1aiN+1, = I P" .. ·J3N-j 1(21) 

and /3, </32 < ... </3N _ j' We will write aiN+11 =a since the 
dependence onj and N is obvious in what follows. Using (16), 
(17), and (9), we may write for the lhs of(15) 

(22) 

where 
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... ~~, 

FIG. I. Graphical element representing the integration over y,. The various 
terms resulting from this integration are symbolized by arrows. 

I/a,P) = d IX", dy, ... IX,,; ,I dyjE (XfJ' · .. XfJ ,· ; Yt'''Yj ) 

Jx", JX"J P,'" PN 

xexp[-iK(x + .. ·+X. -y,···-y·)1. a, a J II J 

(23) 

[E ( ... ) stems from the N-particle Bethe function in (18), the 
exponential function and the limits of integration follow 
fromg2j ]. 

We have to show that Y(X" ... ,xN +' ) is the (N + 1)
particle Bethe function times the factor D[ 1 + Y (K,qj ) J ap
pearing in (15). To facilitate the comparison, it is useful to 
manipulate the (N + 1 )-particle Bethe function in the fol
lowing way: Extract from A (P) where PEyIV + I all factors 
containing q N + , ===K and rewrite the sum over permutations 
as 

N+' L I(P) = L L I(Per;), 
Pey'" + I PeyN ;= 1 

(24) 

where (Ii is a suitable transposition. Then the remainingA (P) 
are identical to those appearing in (22). Finally we multiply 
by U[1 + y(K,q)l to obtain 

N II [1 + Y(K,qj)]4Jt(+)(q,· .. qNK I x) 
j= 1 

(

X,,,,V".XN 1) . 
xE + e-·Kx

" 

PI "'PN 

where we have abbreviated 
lj = Y(K,qp) 

J 

I 

and V means that the variable XI does not occur in the 
symbol E ( ... ), ii denotes the subsets of ! 1 , ... ,N I, and 

(25) 

(26) 

sig (a I /){ 1~1 if the number of iij with iij >/ is even, 
otherwise. 

(27) 

Comparing (22) and (25), we have reduced the problem to 
showing the identity 
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TABLE I. Rules for finding the analytical expression of a term that corre
sponds to a given descent. 

(i) Write down 

E(X{J'""X{J, ,'YI"'Y'). 
P, ... P

N 

(ii) For each step in the descent, substitute and multiply according to the 
scheme below. 

(iii) The resulting expressions has to be multipled by exp [ - iK (xa , 

+ x'" + ... + x'" ,)]. 

Element Substitute Multiply 

(Y{J" - Y/3,. _ I) exp(iKx iJ) 

- Y", , , _ I exp(iKx",., _ I ) 

N+I 

'2J/a,P) = L L Ya, "'Yaj sig(a,l) 
a 1= I a 

(
XI'" ~ "'X N I) -'K XE + e' XI. 

PI "'PN 

(28) 

i.e., the main problem consists of doing all the integrations 
appearing in ~(a,P) [cf. (23)]. 

Every integration in (23) can be done in a straightfor
ward manner, but due to the presence of the () functions in 
E ( ... ) a lot ofterms arise. It turns out, however, that every 
term can be uniquely identified by the elements of the subsets 
a and /3. 7 The terms resulting from an integration over say Y 1 

may be represented symbolically as in Fig. 1, where al </3/1-, 
< ... </3/1-... < a, + I • Since the integrand is essentially an expo
nential function, the resulting terms are of the form E ( ... ) 
times a factor, where in E ( ... ) YI has now been replaced by 

• • • 

• • • 
FIG. 2. Situations which lead to unwanted terms. 
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• • • 

• • • 

k = 1 

/ 
I 

I 

(ji) la, 

1 < k < J.1 

(Y0 
"\u, 

, , 
\ 

\ 
\ 

\ 
\ 

\ 
\ , 

\ 

k = j + 1 

'~ 

~ 

FIG. 3. Descents of the terms which contribute to the lhs of (28). 

one of the xj's. The precise form of the substitutions and the 
factors occurring for each arrow in Fig. 1 can be found by the 
rules in Table I. 

The carrying through of all integrations can be visual
ized as a chaining together of graphical elements given in 
Fig. 1. In this way a "genealogical tree" for all terms appear
ing in ~(a,P) is obtained. Every term can be uniquely identi
fied by its "descent," the corresponding analytical expres
sion is given by applying the rules of Table I for every step in 
this descent. 

We may write symbolically 

~(a,P) = L ("last born" terms). (29) 

Next we observe that in (29) terms occur which are "not 
wanted" in (28). These are all terms in whose descent at least 
one of the situations of Fig. 2 occurs. 

Using the rules in Table I, one finds that this leads to a 
factor 

-exp( - i(qm + q.)xa ], (30) 

i.e., the variable Xa occurs twice in E ( ... ). Using the tech
niques developed in this section, one may show that all terms 
of this kind vanish from (22), so they are not present in (28). 
We do not present here the complete procedure. In the Ap
pendix we describe the essential ideas by a special example 
and outline the general case. 

Now it is easy to see, that the graphical equivalent for all 
"wanted" terms are thej + 1 cases depicted and character
ized by an index k in Fig. 3. 

The analytical expression for the sum of all these contri
butions is 

j+ I 
" Y ... y ~ a l a" 

Y ... y (_I)j+k-1 
I a", II -1 a j +1- 1 

k=1 

(

a, ) X ···V ... X I 
XE 1 N + exp( - iKxa) 

PI "'PN 

Doing the sum over all a in (31), it is a matter of minor 
manipulations to arrive at the rhs of (28). 

Hence (15) and consequently (12) are proven. 
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FIG. 4. A term where xP" occurs twice in E(- .. ). Parts of the diagram are 

symbolized by boxes. 
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APPENDIX 

We describe here the essential ideas how one can see 
that the "unwanted" terms cancel in (22). We discuss the 
case when only one variable, say x P,,' occurs twice in the 
symbol E ( ... ): 

( 
· .. xp x[3 ... ) 

E PI :~. "PN -exp[ - i(qp ... + qpn)xp], (AI) 

where we have identified P PI-" P' PI-' - 1. 
A term of this kind shows in its descent one of the situa-

tions given in Fig. 2. Sepcifying 

{a,j,PJ, (A2) 

we consider a term in whose descent the second situation of 
Fig. 2 occurs for the variable x P" (see Fig. 4). Using Table I, 
one finds that it has the form 

(A3) 

where R contains all factors which do not alter in what 
follows. 

Next one looks for terms which lead to the same R. 
Because of (A 1), R is symmetric in q Po and q Pp' Therefore, 
the diagram with the choice (A2) butPreplaced by P', where 
P' differs from P by the exchange q Pp ~ Po' again yields 
(A3). 

Next, one associates with (A2) the following choice: 

{a = au{PIl J ,j + 1, P }, (A4) 

where now the first situation of Fig. 2 occurs for xP" but the 
remaining steps in the descent are unchanged (see Fig. 5). 
This term has the following form: 

( - l)R Yp Yp .. (AS) 

Again, the term with the same diagram but P replaced by P , 
yields (AS) too. 
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D 

FIG. 5. The term associated with Fig. 4 via (A4). The boxes symbolize the 
same parts of the diagram as in Fig. 4, 

These four terms in (22) can now be collected to yield 
the contribution 

{A (P) + A (P')jR (YfJ - Yfj') 

+ {A (P) +A (P')J( - l)RYfJYp •. (A6) 

From the rules determining the A (p),S,4 one finds 

i(q - q ) + c 
A (P') = . PI' Po A (P); 

l(qp" - qpo) - c 
(A7) 

therefore, (A6) reads 

A (P)R. {Yp - Yp. - Y[3 Y[3' 

i(qpp - qpw) + c [Y Y Y Y ] l + [3 - (3' - (3 (3' • 

i(qpp - qpw) - c 
(AS) 

It is easy to see that the curly bracket vanishes. 
In the general case there are several variables occurring 

twice in E ( ... ), but one proceeds in the same way: One starts 
with a term of the type of Fig. 4 (with several xP,:s) and 
considers all possible replacements P-P , and from Fig. 4 to 
Fig. S, as above, where, of course, many combinations are 
possible. Then the corresponding "curly bracket" is shown 
to vanish. The main work to be done consist merely in for
mulating and bookkeeping. The graphical description pre
sented above is of great use for this work. 
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Through the imposition of orthogonalization conditions, a number of results are derived for 
wavefunctions and eigenvalues in the framework ofhypervirial methodology. Some previous 
results are extended and various similar developments of off-diagonal Hellmann-Feynman and 
sum rule formulas are indicated. 

PACS numbers: 03.65.0b 

I. INTRODUCTION 

Practical applications of diagonal hypervirial formulas 
began with communications of Hirschfelder, I Epstein and 
Hirschfelder,2 and Hirschfelder and Coulson.3 The relation
ship between diagonal hypervirial formulas and the vari
ational theorem was analyzed in Refs. 2 and 3. Later, Chen4 

introduced the formalism of unitary operators to study hy
pervirial relations. Robinsons.6 showed the importance of 
diagonal hypervirial relations within the context of pertur
bational theory. The usefulness of off-diagonal hypervirial 
formulas to compute spectroscopic constants was pointed 
out by Chen.7 Coulson8 introduced the off-diagonal hyper
virial relations as an alternative method for obtaining ap
proximate eigenfunctions and eigenvalues. Bradley and 
Hughes9

•
10 extended such methodology for periodic poten

tials and general hypervirial operators. The present au
thors II generalized the analysis given in Ref. 9 and 10. Fur
thermore, the concerted utilization of diagonal and off
diagonal hypervirial relations was given from a practical 
point of view, 12 and then it was discussed from·a theoretical 
standpoint. 11 Klein and DeVries l3 gave sufficient conditions 
for variational wavefunctions and energies to satisfy some 
off-diagonal hypervirial formulas which exact wavefunc
tions and associated eigenvalues satisfy. 

Let H be an Hermitian operator which is defined over 
the Hilbert space V,andletyA, y A(y

A;2YA),and Y B be 
three closed subspaces of V. If X is a linear operator and 
la)EYA, Ib )EYB , such that 

&,A(H - Ea)la) = 0, (1) 

&' B(H - Eb)lb) = 0, 

y A;2XYB, X+YA ~YB' 

Then, Klein and DeVries showed that the hypervirial 
relations 

(2) 

(3) 

(4) 

are satisfied. &,A and &' B are projection operators onto yA 
and Y B respectively. It is interesting to note in Eq. (4) that 
neither \a) nor Ib ) isrequired to beeigenkettoH. The result 
(4) can be obtained when, from given X and Y A' one chooses 

Y B =X+YA, (5) 

and through an appropriate selection of linear parameters, 
Eq. (1)-(2) are satisfied; and from nonlinear parameters the 

condition 

&'dH-Ea)la) =0, L=yA-YA (6) 

is fulfilled. Furthermore, it is well known that in order that 
the functional energy 

E(t/J) = (t/JIH I t/J)/(tPl t/J) (7) 

be stable regarding a variation tJt/J, then the equation 

«(H - E )tP I tJt/J) = 0 (8) 

must be satisfied. The previous results are generalized for 
two wavefunctions t/JI and t/J2 in the following way: 
For 

(9) 

and 

then 

(t/JII [H,W] ItP2) = (EI - E2l<tPt\ WIt/J2)' (11) 

From Eqs. (1), (2), (6), (8), and (10) we can see the key role 
played by the fact that the vector (H - E )tP is allowed to be 
orthogonal to a given subspace. When t/J is an eigenfunction 
of H with eigenvalue E, then 

(H - E)tPlV, or (H - E)tP = o. (12) 

Exact eigenfunctions of H and associated eigenvalues can 
not be obtained for general cases of physical interest. As a 
consequence, we shall restrict ourselves to the case 

(H -E)t/J1U, (13) 

where U is an arbitrary closed subspace of V, and E is given 
byEq. (7). 

We present here the results for different choices of U, as 
well as the connection with other previous conclusions given 
by different authors. It will be assumed that operators are 
defined on the total space V throughout all the following in 
order to avoid difficulties regarding domain and range. 

II. DIAGONAL HYPERVIRIAL RELATIONS AND 
ORTHOGONALITY CONDITIONS 

Let Vbe a Hilbert space, U a closed subspace of V, and 
H an Hermitian operator on V. Given t/JE V, we search for 
AER such that 

&' u(H - A )tP = 0, (14) 
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where flI u is a projection operator onto U. Then, the follow
ing known results are obtained: 

(a) For bt/JEU a variation over t/J and A = E (t/J) given by 
Eq. (7), then 

8E (t/Jlt/J) = [8t/JI(H - E )t/J) + «(H - E )t/J I 8t/J) ] 
= (8t/J1 flI u(H - E)t/J) + c.c. = 0, (15) 

where c.c. denotes the complex conjugate term. Eq. (15) 
means that under preceding assumptions, E is an extremum 
for the variations ~t/J + bt/J. 

(b) If, in addition, t/JEU; then 

flI uHflI ut/J = Et/J. (16) 

When U is finitely generated by the basis set 
I t,b;. i = 1,2,.··,n l, then 

flI u = i It,bi) (t,bd 
i= 1 

and Eq. (16) gives us the variational method of Rayleigh
Ritz 

(c) For t/JEV and Ht/JEU, Eq. (14) gives 

(Ht/!I(H - A )It/!) = IIHt/!1I2 - A (t/JIHt/!) = 0, (17) 

so AER. The condition A = E is fulfilled iff Ht/! = Et/!, which 
is proven as follows: 

so 

(¢::) If A = E, then 

(t/JI(H - E)t/J) = 0, 

(Ht/!I(H -E)t/!) = «H -E)t/!I(H -E)t/!) 

= II(H -E)t/!1I2=0. 
(=» It is immediate that if Ht/! = Et/!, then A = E. 

(d) if v is an anti-Hermitian operator over V and 
W= v + r, rER, then 

«(H - A )t/!I Wt/!) + c.c. = (Ht/!Ivt/!) + r«(H - A )t/!It/!) 
+ c.c. (18) 

From Eq. (18) we can see that if conditions A =E and 
(H - E )t/!1 Wt/! are satisfied, then the diagonal hypervirial 
formula 

(t/!I [H,v] It/!) = 0 (19) 

is valid. 
(e) the analysis of orthogonality conditions carry us to 

obtain the results previously deduced by Robinson5.6 in a 
wholly independent way, too. Let t,b O(a,x)e Vbe a function 
which depends on a parameter a, and H°,H two Hermitian 
operators over V, such that 

H~o=E~~ ~~ 

(21) 

Then, the first order correction equation for the wavefunc
tion is 

(22) 

Equation (22) is valid for any a-value. For the choice 
A = E = EO + E(1), and the parameter a chosen in such a 
way that the orthogonality condition 

(23) 
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is satisfied, then, from Eqs. (22)-(23) 

«(H(I) - E(J)),p °lx) = 0, (24) 

or, equivalently 

«(HO - EO)¢ (1)Ix) = O. (25) 

If the functions,p 0 and,p =,p ° +,p (1) are normalized, then 

(,p °l,p (I) + c.c. = O. (26) 

Let us consider another Hermitian operator L over V, which 
satisfies the condition 

(H0 -EO)X = (L - L O),p0, 

withL o = (,p°IL~O). 

(27) 

The first-order improvement for the expectation value of 
L in the E-eigenstate of His 

L (1) = (,p °IL~ (I) + c.c. = «(L _ L O),p °l,p (1) + c.c. 

= «(HO - EO)xl~ (I) + c.c. 

=0. (28) 

When X = J,p 0; Ja, we obtain the results presented in Ref. 5, 
while for X = W,p 0, W defined as in (d), the more general 
results of Ref. 6 are gotten. These results are extended with
out difficulty if,p ° depends on n parameters aI' a2,···, an. In 
this case such parameters are determined through the condi
tion (14) when A = Eand Uisspanned by n linearlyindepen
dent vectors Ix I".·,X n J. Eqs. (24), (25), (27) adopt the more 
general following form: 

«(H(I)-E(I))~Olxi) =0, i= 1,2, ... ,n, (29) 

«(HO - EO),p (1)Ixi) = 0, i = 1,2, ... ,n, (30) 

(HO-EO)Xi =(L j -L?),p°, i= 1,2, ... ,n, (31) 

and, as particular cases: 

XI = J,p o;Jai , i = 1,2, ... ,n, (32) 

or 

Xi = Wj~ 0; i = 1,2, ... ,n. (33) 

Ill. OFF-DIAGONAL HYPERVIRIAL RELATIONS AND 
ORTHOGONALITY CONDITIONS 

Let Vbe a Hilbert space, U and U' two dosed subspaces 
of V, Van Hermitian' operator, and Wa linear operator. H 
and Ware defined onto VIf, for given t/!eU, and t/!'eU' there 
exist A and A 'ER such that 

then 

(H - A )t/!lWU', 

(H -A ')t/!'lW+U, 

(t/!I [H,W]t/!') = (Ht/!I Wt/!') - (W+t/!IHt/!') 

(34) 

(35) 

= (X -A ')(t/JIWt/J'). (36) 

Various results emerge from Eq. (36): 
(a) Let us suppose that U and U' are spanned by the basis 

set [~I> .. ·,,pn J and [,p ; , ... ,,p ~ J respectively. Furthermore we 
assume that W fulfills the condition 

dim(WU') = dim(W+ U) = n. 

Then, for 
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n 

t/J = LCjl/>j, 
i= 1 

t/J' = t/J = i c;l/>; (37) 
i= I 

Eqs. (34)-(35) give us 

iCj{(Hl/>jIWl/>;) -A (l/>jl Wl/>;)} = 0, j= 1,2, ... ,n, 
i= 1 

(38) 

iC;{(Hl/>:IW+l/>j) -A '(l/>:IW+l/>j)}= 0, 
i= 1 

j= 1,2, ... ,n. (39) 

If there exist A 1, ... ,A,k, A; , ... , A ~;R corresponding to 
t/JI, ... ,t/Jk EU,t/J; , ... ,t/J~; U' which satisfy Eqs. (38-39); then 

(t/Jj I [H, W] It/J;) = (Ai - A ;J(t/Jj I Wlt/J;); 

i = l, ... ,k, j = l, ... ,k '. (40) 

Conversely, ift/JEU,AER satisfy Eq. (34) and there exist A 'ER, 
t/J'EU' that satisfy Eq. (36), then it follows that 
(H - A ')t/J'lW+t/J. Equations (34)-(36) or (38)-(40) are more 
general than usual hypervirial relations because neither t/J 
nor t/J' are required to be eigenfunctions of H. 

(b) For U' = W+U, then 

(H-A)tf;lWW+U, (41) 

(H - A ')t/J'lU'. (42) 

From Eq. (4.2) we can see that t/J' is stable with respect to H 
restricted to U', i.e., 

f!!> v·Hf!!> v' t/J' = A 't/J'. (43) 

But ift/Ji,t/Jjsatisfy Eq. (41) with Ai,A,jER, then 

(t/Jjl [H,WW+] It/Jj) = (Ai -Aj}(t/JiIWW+IA). (44) 

Equation (44) corresponds to the results mentioned in Ref. 
14. 

(c) Previous results lead us to give the following 
Theorem: If (t/JI, ... ,t/Jn J satisfy condition (41) and t/J'EU' 

fulfills hypervirial relations 

(t/Jj I [H, W] It/J') = (Ai - A ')(t/Jj I Wt/J'), i == 1, ... ,n, (45) 

then t/J' is stable with respect to H restricted to U', i.e., t/J' 
satisfies Eq. (43). 

756 

Demonstration: From Eq. (45) we have 

(t/Jjl[H,W]It/J') = (Ht/JjIWt/J') - (W+t/JjIHt/J') 
=Ai(t/JiIWt/J') - (W+t/JiIHt/J') 

=Ai(t/Jil Wt/J') -A '(t/Jjl Wt/J'), 
i = 1,2, ... ,n. 
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Then 

(W+t/Jj I(H - A ')t/J') = 0, i = 1,2, ... ,n. (46) 

Corollary I. If W + U = V, then Ht/J' = A 't/J'. 
Corollary II. If U' is invariant under HthenHt/J' = A 't/J'. 

The theorem and corollaries extend previous results of the 
authors. IS 

(d) When we add the condition 

f!!> vHf!!> vt/J = At/J (47) 

to those of (b), then t/Jand t/J' will satisfy Eq. (36) andA,A 'will 
be the eigenvalues of Eqs. (43)-(44), respectively. This case 
was discussed at full length by Klein and DeVries. l3

. 

IV. DISCUSSION 

We have seen that the only considerations of orthogon
ality allow us to obtain a number of interesting general re
sults for wavefunctions and eigenvalues. Particularly signifi
cant are those discussed in (c) because it is not necessary to 
know in advance exact wavefunctions as it is required in 
previous treatments. 8-11 Moreover, the proposed methodolo
gy could be extended in a natural and feasible way to the 
analysis of off-diagonal Hellmann-Feynman and sum rule 
formulas. Such formulas, as well as hypervirial relations, are 
necessary in the computation and study of electronic state 
changing transitions, polarizability and Rayleigh and Ra
man photon scattering. 
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Startin~ wit~ path integrals in the SU(2) coherent state representation, the semiclassical 
app~oxlm.atlOn ofth: propagator for the spin system is investigated. By extending the idea of the 
semlclas~lcal expa~slOn method, which was developed in the usual phase-space path integrals, to 
the pat~ mtegrals m the curved phase space, which is characteristic of the SU(2) coherent states, 
we ~btal~ a closed ~orm for the semiclassical propagator. As an application, we discuss the 
semiclaSSical quanttzation condition for the spin system. 

PACS numbers: 03.65.0b, 03.65.Sq 

1. INTRODUCTION 

One of the significant advantages of a path integral for
mulation of quantum mechanics lies in the fact that the 
propagator (or transition amplitude) expressed in the form of 
a path integral can be systematically calculated within the 
semiclassical approximation. Among numerous works on 
this subject, one of the most noteworthy is the semiclassical 
analysis developed by Gutzwiller! for bound state problems 
which has been extensively applied to nonlinear field theory 
models by Dashen, Hasslacher, and Neveu.2 

The path integral formulation has so far been carried 
out by using two different approaches: One is the Lagrangian 
formulation and the other is the Hamiltonian (or phase 
space) formulation. Besides these conventional ones, there is 
another approach, namely the "coherent state path integral" 
formulation, which was pioneered by Klauder and proved to 
be particularly suited for describing quantum dynamics of 
Bose systems.3 Although the coherent state path integral is 
formally considered as an alternative to the conventional 
phase-space path integral, the former has a crucial advan
tage since it can be extended to wider class of physical sys
tems through the use of "generalized coherent states.,,4 One 
of the simplest but important examples is the spin system, 
the quantum dynamics of which is successfully described by 
the path integrals in the SU(2) (or spin) coherent state repre
~e~t.ation.5 In Ref. 5(b) it has been shown that the propagator 
Jommg the SU(2) coherent states is cast into the path integral 
in a generalized phase space and that in the classical limit 
one arrives at a classical dynamics in a "curved phase space" 
(=two-dimensional sphere S 2), which is a natural general
ization of the usual Hamiltonian dynamics. 

As for a path integral for spin, Schulman formulated it 
as a Lagrangian path integral on the group manifold SU(2).6 
The key concept of his theory is that the configuration space 
giving rise to a spin is the group SU(2) itself and the spin 
propagator is completely given by the geodesics (the extrema 
of the action) on the group manifold SU(2) (=three-dimen
sional sphere S 3). 

The purpose of the present paper is to put forward a 
semiclassical analysis of the propagator for the spin system 
expressed by the path integral for the SU(2) coherent states. 
We shall treat the semiclassical approximation of the path 
integral on the "phase space" SU(2)/u (1), which is the ho
mogeneous space ofSU(2), in contrast to the path integral on 

the group manifold. To investigate this problem would be 
worthwhile since it would provide us with an analytic device 
for obtaining the bound state spectra of the spin and/or anal
ogous systems which one encounters frequently in actual 
physical problems. The main aim is to get a closed form for 
the semiclassical propagator which consists of the dominant 
part with the classical action and the "reduced propagator" 
coming from the second variation of the action functional 
around the classical path in the curved phase space. To do 
this, we extend the idea of the "path expansion method", 
which was developed by Levit and Smilansky7 in the semi
classical analysis of the conventional Hamiltonian path inte
grals, to path integrals in curved phase space. The essential 
point of the calculational procedure lies in that the reduced 
propagator for the curved phase space is transcribed into the 
one for the flat phase space by a simple transformation and 
we can thereby utilize the technique developed in Ref. 7. 

In the next section we will recapitulate the essence of 
the path integral formulation in the SU(2) coherent states 
and discuss its classical limit. In Sec. 3 we will derive the 
formula for the semiclassical propagator. Section 4 is devot
ed to the derivation of the semiclassical quantization condi
tion for the spin system as an application of the formula 
obtained in Sec. 3. In Sec. 5 we will give additional remarks. 

2. PATH INTEGRAL FORMULATION FOR THE SPIN 
SYSTEM 

. We recapitulate the necessary ingredients for the path 
mtegral representation of the propagator for the spin system 
expressed in the SU(2) coherent states, which has been for
mulated in Ref. 5(b). 

We start with the SU(2) coherent states defined by 

I~) = exp(pi + - JL*} _)10) 
=(I+~*~)-Jexp[~i+]IO) (J=P, .. ·) (2.1) 

with 

~ = (p/IJLiltanIJLI, 

for arbitra11: complex numbers~, where 10) denotes the ei
!i.enstate

A 
of Jz !"ith th~ minimum eigenvalue - J, and 

J ± (=Jx ± iJy)andJz are the SU(2) generators. The system 
! I~ ) I has the completeness relation 

JlndJL(~)(~ I = 1, (2.2) 
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which holds for an irreducible representation of each J. The 
SU(2)-invariant measure is given by 

d (;-) = 2J + 1 dRe;-dIm;-
p 1T (1+1;-1 2)2' 

(2.3) 

The overlap of two coherent states is given by 

(2.4) 

Time evolution of the spin system is described by the 
transition amplitude which joins two coherent states 1;-') 

which is formally written as 

K = J .@p[;-(t)]exp(iS /~). (2.7) 

The action functional S [;- (t )] is given by 

S [;- (t )] = f" [ iJ~ 2 (;- *t - ;-t *) - K]dt, (2.8) 
J" 1+1;-1 

with 

Classical limit 

In the limit of Ii-O, the dominant contribution to the 
path integral (2.7) comes from the path which makes the 
action functional stationary (the stationary phase approxi
mation). The dominant path obeys thus the variation princi
ple oS = 0, which yields the equations of motion 

t = (1 + 1;-12)2 aK 
2iJ~ a;- *' 

t * = _ (1 + 1;-12)2 aK (2.9) 
2iJ~ a;- , 

whose solutions are subject to the end point conditions 
;- (t') = ;-' and;- (t") =;-". Forlaterpurposesitisconvenient 
to rewrite (2.9) in terms of real variables X and 
Y(;- = X + iY): 

. (1 +X2+ y2)2 aK 
X= 4J~ ay' 

y= _ (1+X2+y2)2aK 
4J~ ax' 

(2.10) 

The equations of motion (2.9) [or (2.10)] can be regarded 
as an extension of the usual canonical equations to those for 
the "curved phase space" (=two dimensional sphere). In 
fact one can define the Poisson bracket (PB) as 

IABj= (1+X2+Y2)2(aA aB _ aB aA), 
, 4J~ ax ay ax ay 

(2.11) 

where the factor in front of the bracket on the rhs reflects the 
metric of the curved phase space. By means of PB (2.11), the 
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and 1;-"): 
K (;-" ,t" I;-'t') = <;-" lexp[ - iiI (t" - t ')I~] 1;- '), 

(2.5) 

where the Hamiltonian iI is given by a polynomial form of 
} ± and}z which obeys a prescribed convention of ordering. 
Making use of the completeness relation (2.3), the propaga
tor (2.5) is cast into the path integral form 

K =!~ J"J)IdP(;-k)exp[iS(N)/~J. (2.6a) 

(N£~"-,,) 

(2.6b) 

equations of motion are expressed as 

X=[X,Kj, 

y= [Y,Kj. (2.12) 

In the special case A = X and B = Y, we have 

[X,Yj = (1 +X2 + y2)2/4J~, (2.13) 

which implies that X and Yare canonically conjugate to each 
other in the curved phase space. 

3. SEMICLASSICAL APPROXIMATION 

We investigate the semiclassical analysis starting with 
the propagator (2.7). [Hereafter we use the real form of (2.7) 
through the relation;- = X + iY.] In order to do this, one has 
to specify the classical path around which the semiclassical 
expansion is performed. As was suggested by Klauder,4.5(a) 
the equations of motion (2.10) do not always have any solu
tion satisfying the arbitrary boundary conditions (X (t '), 
Y(t')) = (X', Y') and (X(t "),Y(t")) = (X ",Y"), that is, the 
number of boundary conditions is excessive compared with the 
number of the equations of motion. In the limit Ii-O, howev
er, the propagator (2.7) takes a value, Kcl_exp(is"I/Ii), if the 
classical path starting with the initial point(X', Y') passes 
through the final point (X" , Y"); otherwise it vanishes. This is 
seen from the fact that the classical action scI is defined only 
for the path given above. In order to get the classical path, it 
is actually sufficient to specify boundary values of only one 
variable (X', X ") [or (Y', Y" I], since the boundary values of 
the other, (Y', Y")[or(X',X ")]"are automatically determined 
by the equations ofmotion.s Thus we shall perform the semi
classical expansion about the so determined path. 

A. Semiclassical propagator 

Let [XCI (t), YcI (t)] be the classical paths satisfying the 
boundary conditions 

Xc.!t') =X', 

Xc.!t")=X". (3.1) 

There are in general several paths which satisfy (3.1), and we 
assume, hereafter, that these paths are far enough apart from 
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one another to treat separately their contributions to the 
path integral (2.7). We introduce the path variation from the 
classical path: 

s=X -Xci' 

1J=Y-YcI , 

which satisfies 

(3.2) 

s (t ') = s (t") = O. (3.3) 

The action functional is then expanded up to second order 

(3.4) 

Sci is the action for the classical path and the second vari
ation of the action functional is calculated as 

S(2) = J'" 2Jfz 
I' (1 + X~l + Y~lf 

X [(1Jt - s,q) - (AS 2 + 2BS1J + C1J2)]dt. (3.5) 

The second term of(3.5) is called the "secondary Hamilton
ian" and the coefficients are given by 

where the subscript "cl" denotes the value along the classical 
path. In the derivation of(3.6), we have used the equations of 
motion (2.10) together with integration by parts to eliminate 
the derivatives of the classical path Xci and Yel • 

The propagator (2.7) thus can be approximated as 

K SC = K exp(iSel1fz). (3.7) 

K (which may be called the reduced propagator) is given by 

K=fexP(iS(2)/fz) II ( ds(~)d1J(t)2 2 2J+ 1), 
1'<1<1" (1 +Xcl + Yc.! 1T 

(3.8) 

where the path measure is obtained as a consequence of the 
stationary phase approximation, i.e., the weight factor in the 
original path differential in (2.7) is replaced by the value 
along the classical path. 

In order to carry out the functional integral (3.8), we 
introduce the following transformation: 

X= 2JJfz S 
2 2' l+Xcl+Ycl 

Y 
= 2JJfz n 

2 2 .,. 
1 +Xcl + Y cl 

(3.9) 

Hence, using the functional Jacobian 

l5[s,1J] = II (1 +X~I + y~.!2 
15 [x,y] 1'<1<'" 4Jfz 
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the reduced propagator is written as 

K = f eXP(iS(2)/fz) II (2J + 1 dx(t )dY(t)), (3.10) 
1'<t<I" 2J 21Tfz 

where 

S(2)[X,y] = JT" [!(yx - xy) - ~2)(x,y)]dt, 
I. 

and 

(3.11) 

S (2) is written as a discretized form by using the boundary 
condition x(t ') = x(t") = 0, 

S-(21- ~(Yk+Yk-l)( ) N- L Xk-Xk_\ 
k~ I 2 

N 

- ! I E(AkXk + 2BkxkYk + Ckyk)· (3.12) 
k~\ 

We can replace the mean value (Yk + Yk _ .)/2 by Yk; then the 
N 

first term of (3.12) turns out to be I Yk (Xk - X k _ I)' Thus 
k~\ 

(3.10) becomes 

K = limKN = lim (2J + I)N-lfexp(S~I) 
N~oo N~oo 2J fz 
N-\ dxkdYk II. (3.13) 
k ~ \ (21Tfz) 

K is of a similar form to the conventional phase-space path 
integral, but the path measure is different from the usual 
sort, i.e., the integration over YN is missing. This missingYN 
can be recovered by taking an average of (3.13) over YN: 

KN-+V O- 'f dYNKNI(21Tfz) with Vo = f dYNI(21Tfz). The fac

tors before the integral are considered as simple constants 
(though infinite) and do not play any physical roles; hence we 
can discard them by performing the normalization 

K 1 lim [(2J + 1)12J] N - \ V 0- l-+K. Thus the reduced 
N~oo 

propagator is just transcribed into the one for the usual flat 
phase space path integral: 

K = f exp(iS(2)/fz)!iJ [x(t ),y(t)], (3.14) 

with 

N N-\ 

!iJ [x(t ),y(t)] = lim II dYk II dxd21Tfz) - N. 
N~OOk~1 k~1 

B. Calculation of R 
The evaluation of the Gaussian path integral in(3.14) 

can be most readily carried out by the path expansion meth
od.7 In order to do this, we write S (2) in a bilinear form of x 
andy: 

S(2) = !J><PA<Pdt, (3.15) 

where <P and A are defined by 

(
-A A-

-B+dldt 
-B-dldt) 

_ C . (3.16) 
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The operator A is called the Dirac type operator in the litera
ture.9 Let us consider the eigenvalue problem 

Ac1>k=Akc1>k' x,,(t')=xdt")=O. (3.17) 

It is noted that the eigenvalues A k are real since A is Hermi
tian. The system of eigenfunctions I c1>" I is orthonormalized: 

r "'c1>k(t )c1>/(t )dt = r" [xdt ).x/(t) + Ydt lYdt) ]dt 

=8,,/. (3.18) 

An arbitrary c1> (t) can be expanded as 

c1> (t) = La" c1>dt). (3.19) 
k 

with the coefficients a" determined by 

a k = r"'c1>dt )c1>(t)dt 

= f" [xdt ).x(t) + Ydt lY(t) ]dt. (3.20) 

By means of (3.19) and (3.17) the path integral (3.14) is cast 
into 

K = f···fexp[ _,_' f Akai ] . .:1. IT da k • (3.21) 
2fi I< = I I< = I 

which is readily calculated as 

K =.:1. IT [21TifiIA" p. (3.22) 
1<=1 

The factor.:1 in (3.21) is the functional determinant defined 
by 

.@[x(t),y(t)] =.:1. IT da". (3.23) 
k=1 

We see that.:1 is independent of the choice of the secondary 
Hamiltonian. Let (i,y) be another variation associated with 
an alternative secondary Hamiltonian; then (i.Y) can be con
nected with (x. y) by an appropriate canonical transfonna
tion,1O which remains the measure .@ [x(t ), y(t )] invariant. 

Using the invariant property of.:1. K is rewritten 
through a reference propagator K (a): 

K = [ IT A \:')1 IT Ak] 1/2.K (a), 

k=1 k=1 

(3.24) 

where A \:,)·s are eigenvalues for the operator A (a) corre
sponding to a reference Hamiltonian. As the reference Ha
miltonian. we can choose the simplest case A = B = 0, 
C = a with a real parameter a > 0; then K (a) reads as 

K(a) = fexPI (i/2fi)f" [(vi - xy) - ay2]dt J 

x.@ [x(t ),y(t )]. (3.25) 

which is just the propagator for a free particle which goes 
throughx(t') = x(t") = O. The integral (3.25) is evaluated as 

K (a) = [21Tifia(t" _ t')] -1/2. (3.26) 

The eigenvalue equation for the reference Hamiltonian reads 

- : = A (a)x, ~: = (A (a) - alY. (3.27) 
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with 

x(t') = x(t") = O. 

We immediately obtain the eigenvalues 

A ~a~ I =!(a ± la2 + [2n1T1(t" - t'WI 1/2) (n = 0.1.2 .... ). 

(3.28) 

In particular we have two eigenvalues AI = O. a for n = 0; 
but AI = 0 should be discounted, for the corresponding ei
genfunction is trivial: x(t ) = y(t )=0. Thus, isolating AI = a 
in (3.24). we get 

K = [JtAla)/}JIA" ] I12.aI/
2

• [21Tifia(t" _ t ')] -1/2 

= [21Tifi(t" - t')] - 1/21Jj/ \:'\Jj/k ] 112. (3.29) 

Finally, in the limiting case of a-+o (i.e .• the identically van
ishing secondary Hamiltonian). (3.29) approaches I I 

K = [21Tifi(t" - t ')] - 1/21Jj/ )?)/)lA,,] 112. (3.30) 

where 

A)?) = ± (k - 1)1T/(t" - t') (k = 2.3,4 .... ). 

1. Absolute value of R 
In order to handle the expression (3.30), it is convenient 

to investigate its absolute value and phase separately. First • 
we study the absolute value. We assume (without mathemat
ical rigor) that the ratio of the finite products in (3.30) con
verges uniformly. According to the theorem proved in Ref. 
7, the absolute value of the infinite products in (3.30) is com
pactly written as 

I IT A )?)I IT A" I = (t" - t ')lI¢ (t ")1, (3.31) 
"=2 k=1 

so that 

IK I = (21Tfi)-1/2·1¢ (t ")1- 1• (3.32) 

¢ (t ) is the solution ofthe initial value problem 

AX = 0, X = (:). ¢ (t') = O. 1/I(t ') = 1. (3.33) 

The proof of (3.31) [or (3.32)] is based on some special tech
niques on the spectral theory of the Dirac type boundary 
problem. Alternatively we can verify this formula by direclty 
evaluating the Gaussian path integral (3.14) with the aid of 
the conventional discretization procedure (see Appendix). 

In order to construct the solution of(3.33). we perform a 
transformation 

f= (1 +X~l + Y~d¢/2.jJfi, 
g = (1 + X~I + Y~d1/l/2.jJfi, (3.34) 

which is the same transformation as (3.9). Then, after simple 
calculations. we get 
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j=~[(1+X2+Y2)2aK] 1 
axcI 4Hz a Y el 

+ ~[(1 +x2 + y2)2 aK] 'g, 
aYel 4Hz ay cI 

_g=~[(1+X2+Y2)2aK] 1 
axcI 4Jfz ax el 

+ ~[(1 +x2 + y 2f aK].g (3.35) 
a Yel 4Jfz ax el 

with the initial conditions 

fIt ') = 0, g(t ') = (1 + X'2 + y'2)/2~Jfz. (3.36) 

Equations (3.35) may be regarded as the "Jacobi equations" 
for our curved phase space. Alternatively, these correspond 
to the variational equations in the stability theory of orbits 
(cf. Whittaker I2

). In fact, as is easily verified, Eqs. (3.35) can 
be derived by taking variations of the equations of motion 
(2.10) up to first order. 

We can construct the solutions ofEqs (3.35) in terms of 
the classical orbits. We consider a family of classical paths 
parametrized by some real number a [i.e., Xci (t,a), Yci (t,a)], 
and the "response" associated with the variation with re
spect to a (i.e., aXellaa, aYci/aa) (we can assume that this 
family is differentiable with respect to a). Differentiating 
Eqs. (2.10) with respect to a, we get 

!!..(aXel) = ~[(1 +X2+ y2)2 aK] .aXel 
dt aa aXel 4Jfz ay cI aa 

+ ~[(1 +X2 + y2)2 aK] . ayel , 
aycl 4Jfz ay cl aa 

_ !!..( ayel ) = ~[ (1 + x 2 + y2)2 aK] . aXel 
dt aa aXel 4Jfz ax cl aa 

+ ~[(1 +X2+ y
2f aK] 

a Yci 4Jfz ax el 

aYel (3.37) . aa' 

which means that the response functions form a set of solu
tions of (3.35). Especially we can choose the initial values 
Xcl (t ') = X', YcI(t')= Y' as parameters a. Taking account 
of the initial conditions (3.36), we obtain 

1 +X'2 + y'2 aXedt) 
f(t) = ---'-----'--ay.-' 

2~Jfz 

1 +X'2 + y'2 aYedt) 
aY' . 

g(t) = 

2~Jfz 
Making use of transformation (3.34), we get 

1 +X'2 + y'2 aXcl(t) 
t/J (t) = ----.:...--....:---

1 + Xci (t)2 + Yci (t)2 ay.-' 
1 +X'2 + Y'2 aYedt) t/J( t ) = ---'---=----'-=---

1 +Xedtf aY' 

Thus, we finally arrived at the closed form 

IK 1= (21Tfz)-112 

(3.38) 

(3.39) 

1

1 +X"2+ y,,2 (ax (t))-I I x _e_1 _ 1/2 (340) 
1 +x'2 + y'2 ay' ,=," . . 
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The formula (3.40) indicates that the reduced propagator 
(and hence the semiclassical propagator (3.10)) is completely 
given in terms of the classical orbit in the curved phase space. 
It is of a similar form to the reduced propagator for the usual 
phase space,? IK I = (21Tfz)-I/2laq" lap'I- 1I2. However, 
there are two differences between the cases: (i) the factor 
(1 + X ,,2 + Y" 2)/( 1 + X ,2 + Y '2), which reveals nothing but 
the curved nature of the phase space, appears in our case, 
and (ii) in the case of the usual phase spaceK is reduced to the 
well-known Van Vleck determinant through the relation 
p' = - as laq', whereas it is not written in such a simple 
form in our case, by virtue of the fact that the pair (X,Y) 
cannot be regarded as a canonical pair of the usual sort. 

Here we remark that the semiclassical propagator ob
tained by (3.40) is quite different from the propagator on the 
SU(2) group manifold,6 which is a natural consequence of the 
DeWitt expression for the propagator in the Riemannian 
manifold. 13 The discrepancy lies in the point that in our case 
the manifold on which the propagator is defined is the coset 
space SU(2)!U(1) and the action functional [i.e., (2.8)] has a 
rather different form from the one used in the conventional 
Feynman path integral. 

2. PhaseofK 

Now we discuss the phase of K. We first note that the 
Dirac type operator has the twofold eigenvalues Ak • ± for 
k = 2,3,.··, except one single eigenvalue which we denote as 
AI' With this in mind, we separate the ratio of infinite pro
ducts of eigenvalues into two groups labeled by i = ±: 

1 00 A (0) 

- II II~, 
Al i=±k=2 Ak,i 

(3.41) 

where A ~)± = ± (k - l)1T/(t" - t') for k = 2,3,···, and the 
eigenvalue A I is isolated which tends to A \0) = 0 in the limit 
of the vanishing secondary Hamiltonian. We observe that 
for a sufficiently large k the sign of each ratio A ~\I Ak,i is 
positive for both groups; therefore the total sign is deter
mined by the ratios for only small k 'so In fact we can see that 
for a small k the ratio for each group may exhibit an opposite 
sign to that for the other group. and we denote the number of 
such k 's as v. Then the total sign becomes ( - IV. The phase of 
the reduced propagtor K is given by exp( - iV1T/2). 

The number v corresponds to the "Morse index" of the 
classical path, which is precisely defined in the variational 
analysis in the large. 14 In the variational analysis, it is known 
that the Morse index is closely related to the notion of focal 
points. In our case, the focal point is defined as the point at 
which the solution t/J (t) ofEqs. (3.35) vanishes along the clas
sical path and the Morse index v is given by the number of 
such focal points. 

C. Simple model 

In order to illustrate the results obtained in the preced
ing subsections, we consider the motion of the spin system 
described by the simple model Hamiltonian 

(3.42) 

(e.g., a single spin in a homogeneous magnetic field). Making 
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use of the formula in Ref. 5(b), the classical Hamiltonian is 
given by 

l-X2 _ y2 
~ = wfIJ (3.43) 

1 +X2 + y2 

The equaitons of motion are immediately obtained as 

X(t)= -w.Y(t), Y(t)=w.X(t), (3.44) 

solutions of which are subject to the end-point conditions 
X(t') =X' and X(t") = X". By solving (3.44), we get the 
classical orbit 

Xci (t ) = X' ·cosw(t - t ') - Y' ·sinw(t - t '), 

Yel (t ) = X ' ·sinw(t - t ') + Y' ·cosw(t - t '), 

where Y'=Ycl(t '), which depends onX' and X " 
The eigenvalue problem (3: 17) now reads 

dXk --+ WYk = AkYk' 
dt 

dYk - dt + WX k = AkXk , 

xk(t') = Xk(t") = 0, 

from which the eigenvalues are readily obtained as 

Ak = w + nk 1T/(t" - t '), 

(3.45) 

(3.46) 

(3.47) 

where nk = ± 1, ± 2, ... , for k> 1 and n 1 = 0. On the other 
hand, the eigenvalues A rl turn out to be 

A rl = nk 1T/(t " - t '). (3.48) 

Thus the reduced propagator is given by 

K = [21Tiw(t" - t ')]-112 

X {)JJ 1 _ (W(t '~; t ') Y}} -112, 

which becomes, with the aid of the Euler formula (sinx)lx 
= n: = 1 [1 - (xln1TfL 

(3.49) 

The result (3.49) can be readily deduced from the initial 
value problem (3.33). In fact Eqs. (3.33) are written as 

~ (t) = - wrP(t), ¢(t) = w4> (t), 

4> (t ') = 0, rP(t ') = 1, 

whose solutions are 

aXeI(t) 
<P (t) = --= - sinw(t - t'), aY' 

aYcI(t) , 
rP(t) = ~ = cosw(t - t ). 

(3.50) 

(3.51) 

By substituting 14> (t ")1 into the formula (3.32), we arrive at 
the expression (3.49). The index v is given by 

v = [w(t" - t')l1T]G' (3.52) 

where [ ] G is the Gauss symbol. 

4. SEMICLASSICAL QUANTIZATION CONDITION 

In this. section, as an application of the semiclassical 
propagator obtained in the previous section, we shall exam
ine the semiclassical quantization condition of the spin sys-
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tem, which leads to bound state spectra. 
In the case of stationary bound states, the orbit appear

ing in the semiclassical propagator becomes a closed curve 
and lies on the constant energy surface ~(X, Y) = E. The 
classical action is now given by 

it YX -XY 
Sci = Un 2 dt - E·t 

o I+X +y2 

i
(X",Y") YdX - XdY 

= Un - E-t, 
(r,Y') 1 + X 2 + y2 

(4,1) 

where we put t " = t and t' = ° for the sake of simplicity, and 
(X,Y) is used to mean the classical path, The last integral in 
(4,1) means the line integral along the classical trajectory 
passing through the end points (X', Y') and (X", Y"), The semi
classical propagator thus reads 

K(X",Y",t IX',Y',O) = K.e- iEtiF
" (4,2) 

whereK does not explicitly depend on t, The propagator (4,2) 
can be regarded as a wave/unction ofthe final poin t (X ", Y ", t ) 
with the initial point (X',Y',O) being fixed, or vice versa; 
hence Eq, (4,2) corresponds to an ordinary wavefunction re
presenting a stationary state of energy E. In the following we 
consider the case that the initial point (X', Y') is fixed, 

Following Keller's idea,15 we derive the semiclassical 
quantization condition, The essential point of Keller's pro
cedure is that the semiclassical wavefunction 

1/lC(q,t) = A (q,t )exp [iScI (q,t )In] 

=exp{i[Scl + (nli)logA ]In} (4,3) 

should be "single-valued" with respect to the argument q, 
The single-valuedness makes a restriction on the change of 
the phase .dScl + (nli) . .d 10gA when the system cycles along 
closed orbits, and this leads to a generalization of the Bohr
Sommerfeld quantization condition, We take over this idea 
into the present problem. 

Let us write the semiclassical propagator as 

K(X",Y",t IX',Y',O) = exp{i[Scl + (nli)logK ]In}, 
(4.4) 

and evaluate the change of the phase, i.e" .dScl and (nli)·.d-
10gK, when the system goes around a closed loop starting 
from the point (X " ,Y"), First, from (4,1), .dScl is given by the 
line integral 

.dS = Un ( YdX - XdY , (4,5) 
cl )c 1 +X2+ y2 

or using Stokes' theorem 

f dXl\dY 
.dScl = 4Jn 2 22' 

s(I+X +Y) 
(4,5') 

where the integral is taken over the area encircled by the 
classical orbit. Next, the change.d 10gK is deduced from the 
number or singularities of K along the classical orbit [see also 
Keller l5 : it should be noted that the reduced propagator K 
plays the role of the amplitude A in (4,3)]. Recalling that the 
trajectory goes through a focal point, K changes Y-=-l and 
.d 10gK becomes i1T /2. If the index is v, the total change of 
.d 10gA' yields iV1TI2. Thus, by the single-valuedness condi
tion exp[i(.dScI + (nli).d 10gK)fz] = 1, we get 
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4J r dXAdY (2 + v) Js (1 +X2 + y2)2 = n 2 '1T, 

where n = 0,1,2, .. ·. With the aid of the stereographic 
projection 

X = cot{t? 12).cosq?, 

Y = cot{t? /2).sinip, 

(4.6) reads 

J lSin -8d-8dip = (2n + vI2)1T. 

(4.6) 

(4.7) 

(4.6') 

Equation (4.6) isjust regarded as a quantization condition a 
la Bohr-Sommerfeld in the curved phase space S 2. However, 
in contrast to the usual (flat) phase space quantization condi
tion, the integer n does not take arbitrary positive values 
because the integral (4.6) isjust proportional to the area on a 
unit sphere encircled by the closed orbit and is bounded by 
41T. 

Finally we examine the formula (4.6) for the simplest 
Hamiltonian if = - fl£uJz, which was taken up in the pre
vious section. The classical orbit (3.45) is written in angle 
variables as 

-8 = -80 = const, ip = wt + ipo, (4.8) 

which just describes a circle on a unit sphere. The energy is 
given by 

E = - wf1./z = - wf1./cos-8o' (4.9) 

The index v is given by 2 for the solution (4.8), since the 
singularity of the semiclassical propagator, as.is seen from 
Eq. (3.49), appears twice per period, i.e., sin wt vanishes at 
two points t = 1Tlw, 21Tlw. Thus Eq. (4.6') yields 

21TJ(1 - cos-8o) = (2n + 1)1T. (4.10) 

Using the relation Jz = Jcos-8o' we get 

Jz = J - (n + !). 
From (4.11), Jz takes an integer or half-integer value between 
- (J - 1/2) and J - 1/2. Hence we obtain an energy 

spectrum 

Em = - wfun [m = - (J - !), - (J - ~), ... ,J - !)]. 
This spectrum clearly differs from the exact result of the 
quantum theory, i.e., the magnitude of the spin is reduced by 
fz12. This discrepancy originates from the index v = 2. It 
suggests that in the semiclassical approximation one makes a 
replacement J-+J + 1/2. This is correct in the large J limit, 
where the semiclassical picture becomes accurate. 

5. CONCLUDING REMARKS 

In this paper we have investigated a semiclassical analy
sis of the spin system and obtained a closed form of the semi
classical propagator. The formula obtained here is useful for 
the approximate calculation of the energy spectra of an 
asymmetric top and the many-body systems which can be 
described by the quasispin formulation, etc. '6 

The essential point of our treatment is that the semiclas
sical propagator in the curved phase space (~two-dimen
sional sphere), which appears at first sight rather complicat
ed, can be handled on the same footing as that in the usual 
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flat phase space. In this way, the present method would pro
vide us a promising tool for the semiclassical analysis of the 
path integral in a curved phase space with more complicated 
geometrical structure. As an immediate extension, we can 
consider the spin systems with many degrees of freedom, 
e.g., a spin chain. 

The other problem is the extension to the path integral 
in the coherent states for the unitary group of higher dimen
sion which has been proposed elsewhere '7 in connection 
with the quantization of nuclear collective motions. The pre
sent method would provide us with a useful basis for this 
subject. As for a path integral on the group manifold SU(n), 
Dowker found a compact formula for the propagator by ap
plying the DeWitt formula for the Riemannian space as the 
case ofSU(2) propagator, 18 whereas the path integral form in 
Ref. 17 is given by the functional integral on the homogen
eous space U(m + n)/U(m)XU(n); hence the semiclassical 
propagator may result in a quite different form from the one 
for the group manifold SU(n). 
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APPENDIX 

In this appendix we evaluate the reduced propagator 
(3.14) by adopting the discretization procedure for function
al Gaussian integral. 19 The Nth approximation for K reads 

KN = (21Tfz)-Nj)l'dXk JJ/Yk 

XeXP[(ilfz)ktl{YdXk -Xk _ 1 ) 

2 - 2 
- !<=(AkXk + 2Bkx kYk + CkYdJ]. (AI) 

with <=={t" - t')/N. By performing the integration over Y 
variables, we get 

_ N 

KN = (21Tfz) - N( - 21Tifzt12 II (Ck<=)-1/2 
k~1 

j Yt'dxkex p[ ~L ~I]. 
k ~ 1 fz 

(A2) 

L ~I is the Nth approximation of the Lagrangian 

L 121 It" [ 1 -2 B. ( B 2 ) 2] = -x - -xx +! - - A x dt. 
t' 2C C C 

(A3) 

By using the integration by part and noting the boundary 
Xo = x N = 0, the Nth approximation of L (2) becomes 

L~)=ktJ(Xk~k;I)2 -+[A- ~2 -(~),Lx~'<=}' 
(A4) 

where ( )' denotes the differentiation with respect to t and ( )k 
the value at the time tk = t' + k<=. Noting that the (A4) is 
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written as the quadratic form, and, using the Gaussian inte
gral formula, we get for K N 

KN ~ 12,,11;)- '''{Ic.<)-de{ e:< 

where 0 is the "Jacobi matrix" of order N - 1: 
1 

o 

(AS) 

o 

(A6) 

ak _ 1 = _1_ + _I + (A - ~ - (!!.-),) .e. 
Ck_1e Cke C C k-l 

Following the procedure by Gel'fand and Yaglom, 19 we 
evaluate the limit K = limKN • Let us introduce 

Dk = c1e.det[ (c~e ... ~JOk] (k = 2, ... ,N), (A7) 

where Ok is the matrix obtained by the replacement N-...k. 
The matrix in (A 7) is also the Jacobi type matrix (but not 
symmetric). Making use of the recurrence relation for the 
determinant of the Jacobi type matrix, we obtain the differ
ence equation 

Dk+2=[I+ ~:::+Ck+2C(A- B; -(~)')k+J 
D Ck+2Dk' 

• k+l-
Ck + 1 

(A8) 

Putting Dk =D (ke), (A8) is rewritten as 

D ((k + 2)e) - 2D ((k + I)e) + D (ke) 

e2 

=(Ck +2 -1 D((k+l)e)-D(ke) 

\Ck + 1 C 

+ Ck + 2(A - ~ - (!!.-)') D ((k + l)e). (A9) 
C C k+l 

In the limit N-...~ (e-...D), this reduces to the differential 
equation 

d 2 D _ ..!.. dC dD _ C (A _ ~ _ ..!!....( !!'-)).D = o. 
dil C dT dT C dT C 

(AIO) 

The initial conditions to determine the solution of (A 1 0) are 
given by 
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and 

D3 - D2 [ C3 ( B 2 (B )') 2] e = C1 1 + c; - C3 A - C - C 2 ·e 

X [ 1 + ~: - C2( A - BC
2 

- ( ~) 1·e2] - ~: 

-[1+ ~: -C2(A- B; -(~)1.cl 
Noting C2/C1, C3/C2-...1 for e-...D, these reduce to 

D(t')=O and ~~IT=t' =C(t'). (All) 

Thus we get for the reduced propagator K 
K= (21TiIi)-112[D(t")]-1/2, (A12) 

whereD (t ")isthevalueatt = t" of the solution of (A 10) with 
the initial conditions (A 11). We can show that D (T) becomes 
the solution x( T) of the initial value problem: 

dx 
-=Bx+Cy, 
dT 

dy 
-= -Ax-By, 
dT 

(Al3) 

withx(t') = O,y(t') = 1, which are just Eqs. (3.33). This is 
verified by observing that the elimination ofy from (Al3) 
yields (AlO). 
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Semiclassical approximations are developed for stochastic mechanics and stochastic field theory 
at positive temperatures. The tunneling phenomena of Euclidean quantum mechanics is seen to 
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fluctuations around a scalar soliton and in the pure SU (2) Yang-Mills theory are also briefly 
considered. 
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I. INTRODUCTION 

In previous papers l
-
5 Nelson's stochastic model of 

quantum mechanics6 has been extended to a more complete 
description of particle motion and fields. Although math
ematical methods used in stochastic descriptions of micro
scopic phenomena still have a long way to go before they can 
compete with the highly successful mathematical algorithms 
of quantum mechanics, the program of developing them is 
interesting if only for the basic differences in interpretation 
that are obtained. 

In a recent paper path-integral methods were devel
oped for treating problems in stochastic mechanics (SM) and 
stochastic field theory (SFf) at both zero and positive tem
peratures. Many of the formulas of Euclidean quantum me
chanics (EQM) were given a real-time interpretation in the 
spirit of Guerra and Ruggiero.7 However, at the level of in
terpretation it was pointed out that SM and SFf are to be 
distinguished from EQM and, in particular, stochastic fields 
are essentially different than Euclidean fields. 3 Other inter
pretational problems, such as that of the /Hi-periodicity in 
time for eqUilibrium states (KMS condition), have also been 
treated.5 

A natural approximation to use for path integrals is the 
semiclassical one, i.e. the expansion around the path (or 
paths) that make stationary the action functional. Indeed, 
this technique has been mentioned by Yasue for the zero
temperature case in SM8 and SFf.9 In particular, the path
integral formulas of his second paper9 can be made rigorous 
using the nonstandard analysis approach of the present au
thor,3.4 an approach also initiated by Yasue. 10 Yasue has also 
linked these semiclassical methods with stochastic control 
theory. II Another essentially different approach has recent
ly advanced by Jona-Lasinio, 12 based on the semiclassical 
approximation in stochastic differential equations devel
oped by Ventsel' and Freidlin.13 

In this paper the objective is to study semiclassical 
methods in stochastic physics in some detail using the path
integral methods developed in the previous paper.3 These 

-IResearch financed in part by Colciencias. 

have been treated extensively in EQM at zero temperatures 
(see the excellent review by Coleman 14 for basic concepts and 
references), but the positive-temperature case has not been so 
treated. A~ analysis has been given for some specific exam
ples at positive temperatures, 15-17 but there still remains 
much to be done. Stochastic physics, being similar to EQM, 
has some things in common with the latter, but it also brings 
some surprises. Moreover, stochastic physics, with its direct 
probability interpretation, may be at least a definite aid to 
EQM and possibly a useful alternative to it. 

Since the treatment of the zero-temperature semiclassi
cal approximation can be considered as the limit of the posi
tive-temperature one, attention is given here to positive-tem
perature phenomena. In the next section particle mechanics 
is considered, since this forms the basis for the treatment of 
field theoretical problems. 1-3.5 The tunneling phenomena of 
EQM is seen to have a statistical interpretation. A semiclas
sical algorithm for calculating the generating functional of 
the moments of the positive-temperature process is devel
oped. In the last section positive-temperature fluctuations 
around a scalar soliton and in the pure SU (2) Yang-Mills 
theory are also briefly considered. 

II. PARTICLE MECHANICS 

The basic postulates of SM were given in previous pa
pers. I

-
3.5 They generalize Nelson's formulation,6 both in 

form and in their interpretation. One assumes that the phys

ical system is described by a stochastic process in Rn satisfy
ing the stochastic differential equation 

dq(t) = b (q(t ))dt + dw(t ). (1) 

Here dw is the differential of a Wiener-like process corre
sponding to Wiener measure over periodic paths; i.e., it is 
Gaussian with the first moments given by 

(dw(t) = 0 (2) 

(dwi(t)dwj(t) = 8ij f eiWn(t-t'ldtdt', (3) 
13m n = - 00 

where 

wn = 21Tnl13fz. (4) 

(The zero temperature moment corresponding to (3) is sim-
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ply the limit whenp~oo and is the one used by Nelson.6
) 

Some interpretational problems associated with SM 
were mentioned in previous papers. 1,3 They have been treat
ed in a more recent paper.5 It is probably best to consider SM 
as a zero charge Markov limit of classical stochastic electro
dynamics,18 although this concept is not well defined since 
there is more than one way to take the Markov limit. 19 These 
interesting questions aside, one can summarize the results of 
the treatment of interpretational problems as follows5

; (1) q 
should be considered as a fluctuation around a classical equi
librium point (this holds for classical stochastic electrody
namics as well); (2) Thepli-periodicity (KMS condition) of q 
can be interpreted as an approximation to be used at low 
temperatures. To see this, one only needs to consider the 
spectrum of the positive-temperature process in classical sto
chastic electrodynamics. It is a Fourier integral and can 
therfore be approximated by a Fourier series using exponen
tials of period pli. Thus the stochastic process can be ap
proximated by one of period PIi, and, in the Markov limit, 
one obtains the pli-periodicity used previously. 2,3 Of course, 
this would not make sense without (1); (3) The drift velocity b 
has the same form at all temperatures where the approxima
tion is valid and is determined by the zero-point probability 
density: 

b = (1iI2m)Vlnp. (5) 

The last observation means that the temperature depen
dence ofb in Eq. (1) comes from q itself through W. Also one 
must be careful to calculate averages since an average calcu
lated with p only gives the zero-temperature average. 

These observations about the interpretation of SM do 
not change the main results of the previous paper.3 For ex
ample, the passage from the Fokker-Planck equation for the 
transition probability, 

: = - V·(bp) + (1i12m).Jp (6) 

to the path integral formula, 

(7) 

is still correct, although Eo is the zero-point average energy. 
Uis now written instead of V, where U(x) = V(x + X)and.iis 
the classical equilibrium point around which q fluctuates. 5 b 
appears in (7) through p, but neither b nor Eo appear in the 
generating functional for the moments, 

G{J} = fdJLw {q}exp [ -1i-J~:)U(q)+J.q)dtl 
(8) 

which was the basic tool used before.3 For the rest of this 
paper (7) will be written as 

p(x,t Ixo,to) = - D {q J ~(X))I/2f 
(xo) 
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x exp{ -1i- lfBmq2 + U(q)-Eoldt'}, 
o (9) 

with similar changes in (8). The use of a path integral mea
sure fi1 {q} instead of the WienermeasuredJLw {q} is justified 
only by the ease of comparison with EQM. 

The most probable fluctuation path qo will be the one 
that makes the action functional 

S {q}== L (!mq2 + U(q)) dt' (10) 

stationary. Expanding S {q} in a functional Taylor series 
around qo' one has that 

S{q} =S{qo} +~qoS{Q} +~~oS{Q,Q} + .... (11) 

The first variation of S {q}, namely ~q S {Q J, is zero by defi-
nition of qo. This is20 0 

~q.S {Q} = mqOjQ;j:. + itt -mqOj + Uj(qo))Qjdt'. 
to 

(12) 

As long as t - to <PIi, one can guarantee that there exists a 
periodic path qo such that qo(t ) = x, qo(to) = Xo' Hence the 
surface term in (12) is zero since Q(t) = Q(to) = O. Thus, to 
have a stationary point, qo must satisfy 

(13) 

The fact that it has been assumed that t - to <PIi 
should not be passed over lightly. Indeed, the first surprise of 
SM (in comparison with EQM) is that for t - to <PIi there is 
no difference between the zero-temperature case and the 
positive-temperature one. Any path on [to, t] can be made 
periodic with periodpli if t - to </31i.21 

It is amusing to consider a simple example ofthis equiv
alence. The example is any double well potential with equi
librium points a and b, VIa) > V(b). Take q to be the fluctu
ation around the "false vacuum" .i = a. Letx l andx2 be such 

that a <XI <X2 <b and V(xtl = V(x2) = Eo. (For the mo
ment, it is assumed that such x I and X 2 exist.) Since the full 
path is q +.i, q(to) = XI - a, q(t) = X2 - a. As a gross ap
proximation, one has 

P(X2 - a, t IXI - a, to) 
~Const exp[ -Ii-IS {qo} + 1i-IEo(t - to)]' (14) 

Equation (13) shows that 

~mq6 - V(qo + a) = K (IS) 

is a constant. This can be used to change variables in S { qo J : 

S{qol = -K(t-to)+ f'';2m(k+ V(x)) dx. (16) 

Thus (14) is time independent if K = - Eo and, in this case, 

it reduces to 

constexp [ -1i- l f'';2m(V(X)-Eo) dX]. (17) 

Now it may happen that Eo is so low that X I does not 
exist. Then there is no solution for qo with K = - Eo·22 The 
best one can do is takeK = - VIa). In this case (14) reduces 
to 
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Const exp [ -1i- 1f',,2m(K + V(x)) dX] 

x exp[Il- 1(Eo + K)(t - to)]. (18) 

Since K < - Eo, one has expontential decay with increasing 
t. 

These results can be considered as a generalization of 
Yasue's.8 As approximate calculations, their limitations 
should be recognized. First, the fact that (17) is the WKB 
approximation of EQM is interesting, but misleading. One 
could, in general, take K to be larger than - Eo [but less 
than - V(a)],althoughK = - Eo is, in some sense, a "mini
mum ftuctuation." Hence the time independence of (17) is 
illusory. Moreover, one knows very well that (17) is not cor
rect if t - to = PIl, since 

lim pIx, ! Ixo, to) = c5(x - xo) (19) 
1--10 

implies 

lim pIx,! Ixo,to) = c5(x - xo). 
t-to-n/Jli 

(20) 

The same observation shows that the exponential decay in 
(18) can only go so far, up till t - to = pli. 

Nevertheless, (17) and (18) show that the phenomenon 
of "tunneling" exists in stochastic physics, although the 
name here is perhaps inappropriate. What happens is that 
the ftuctuations can be so large that there is a finite probabil
ity that the particle "climbs the hill" and arrives at the "true 
vacuum". However, once it gets there, it does not necessarily 
stay there as it would in classical physics, as one can easily 
show by calculating the transition probability for the ftuc
tuation around x = h; it can go back. This provides a real
time realization of instantons. 14.15.17 

When t - to = PIi, (20) shows that the only interestingp 
to calculate is the one for equal endpoints. In this case, it is 
more interesting to calculate G {J}, which is related to 
p(0,{31i1210, - P1i12) (see Ref. 3). In fact, once it has been 
shown that tunneling exists, G {J} is the interesting object, 
since it determines the moments. Unlike EQM, however, SM 
has no direct method for determining the partition function. 

Up to the second variation of SJ, where 

SJ = f~ )!ml? + U(q) + J.q) dt, (21) 

(T = P"/2 to ease notation) one has 

G IJ !=Const exp[ - ,,-ISJ 11/0 J]D!Q J 

xexp [ -"-J~)~mQ2+!Uij(I/o)QiQj)dt J. 
(22) 

I/o( ± T) = 0 would seem to leave Q( ± T) arbitrary, but 
Q( ± T) = Ois seen to be correct by consideringi/o ( ± T) = € 

and taking the limit €-<J. I/o is the path making S J station
ary i.e. 

- ml/oi + 0;(1/0) + Ji = O. (23) 

Note that there is no problem with arbitrary endpoint condi-
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tions as in EQM. 15.17 This is because G {J} can only be indi
rectly related to the partition function through the average 
energy when this can be calculated from the moments, 3.5 
although both SM and EQM produce the same partition 
function when it can be calculated in the former. 

The oscillator calculation mentioned in the previous 
paper is really a semiclassical approximation made exact by 
the fact that the path integral term in (22) does not depend on 
J. Hence one finds that 

G {J} = Const exp [ - _1_ fT fT dsJ(t)G(t - S).l(S)]. 
2m" -T -T 

(24) 

where the second G is the Green's function for the differen
tial operator d 21 dt 2 - {U~ with periodic boundary condi
tions. This enters directly in the calculation of q{" which is 
why it appears in (24), i.e., the exponential is just 

exp [ - S~ {I/o }I"l 
The oscillator example in fact shows how to carry out 

the first step in the algorithm for calculating G I J }. From 
(23), one calculates the Green's function and determines q{,. 
HenceS J {I/o} and Uij(q{,) are known. For the oscillator one 
needs go no further, since U ij is independent of I/o, but for the 
general case, one must calculate the path integral. This is 
done by shifting techniques?3 Choose the matrix N so that 

Nij = m-lUik(I/o)Nkj' 

Then (22) reduces to 

G !J J =Const exp[ - ,,-ISJ {I/o}] 

X IN(T)N( - T)llf2II~ TN kl l(t)N kl I(t)dt I. 

This completes the algorithm for the semiclassical 
approximation. 

(25) 

(26) 

Thus the problem of solving for G I J } in the semiclassi
cal approximation reduces to one of solving the differential 
equations (23) and (25) and calculating the integrals and de
terminants in (26). Because J is arbitrary, these steps are not 
too amenable for solving with a computer, but at least in (26) 
there is no longer any reference to the path integral. 

III. FIELD THEORY 

The semiclassical approximation and tunneling are par
ticularly important in SFT when there exist topological con
servation laws. These appear in classical nonabelian gauge 
theories, for example, so one should expect that the nontri
vial structures found there (e.g., the monopole of't Hooft 
and Polyakov24 and the instanton of Polyakov and collabo
rators25) become important in SFT. 

Given a solitary wave solution (soliton) that is indepen
dent of time, one can expand around this solution to find the 
stochastic ftuctuations. Yasue has already done this for the 
zero-point scalar field. 26 It is a simple matter to see that the 
only change for positive temperature is in the second mo
ment, which can be written 
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«(lP(x, t) - lPo(x, t ))(lP (y, t ') - lPo(Y, t ') 

1 fdk/3-1 ~ ( 2 + 2)-1 jw.(,-,'I = - ~ Oh Wn e . 
211' n = - 00 

(27) 

But here the semiclassical approximation is not needed, so 
details will not be considered. 

More interesting, perhaps, are Yang-Mills fields. Here 
the semiclassical paths, called calorons in the context of 
EQM, 16 are generalizations of the POlyakov instanton. 25 The 
same case of a pure Yang-Mills SU (2) gauge field will be 
considered here. The results will be a positive-temperature 
generalization of those of Yasue for zero temperature. 9 

The Ao = 0 gauge is appropriate for SFT since it allows 
the separation of a potential term (see below). The fact that it 
is not Lorentz invariant is irrelevant since the Lorentz frame 
where the ensemble is defined is priveleged, even for zero 
temperature.3

•
5 Moreover, theAo = 0 gauge is the one used 

in most instanton calculations. 
The standard Lagrangian is 

(28) 

where 
F:v=aI'A ~ - avA: + ~bcA!A ~. (29) 

(Latin indices are the SU (2) indices and Greek indices are the 
space-time ones. The ~bc are the structure constants of the 
SU (2) Lie algebra.) Define electric and magnetic gauge fields 
by 

(30) 

Then 

.Y = !(EfE~ - BfB~) = !(A ~A ~ - B~B~). (31) 

Da depends on the vector potential Aa but not on Aa, so one 
can separate kinetic and potential energy terms. Classical 
equilibrium points are determined by time independent field 
configurations for which the potential energy term, 
S~(D af d 3X , is zero. These are pure gauge fields and are di
vided up in homotopy classes labeled by the Pontryagin in
dex. For the purposes of this paper, one such field will be 
selected from each homotopy class and will be denoted by 
'A a, where r is the Pontryagin index. 

Anyone of the 'A a can be used as a base point for dis
cussing stochastic fluctuations around it. According to the 
path-integral description ofthe previous paper,3 the transi
tion probability from' A a at time to to ,+ SA a at time t is given 
by 

p(,+sAa, t I' Aa, to) = ~p('+ SAa)!p(' Aa) f.ffl [Aa} 

xexp [ - J(~kf + ~(Baf dt d 3x )eEo(t- (01. (32) 

Here the semiclassical approximation must be handled with 
care. There is no classical field with finite action which con
nects the two vacua. Nevertheless, because the right-hand 
side of (32) is well defined by a judicious handling of nons tan -
dard quantities,3.4 an infinite-action path is permissible in 
principle. This will now be shown to be true in practice. 

Let ~ be such a path that connects 'Aa to ,+ sAa. Write 
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it in terms of its standard components3: 

Ao(x, t) = [Lq~~NI(t)en(X)]. 
n<N 

(33) 

Since A:; -..1 ~ = 0, the equation for q~~N) is 

q~~N) _ k ~q~~) = O. (34) 

Thus the explicit form for (32) has the right-hand side in the 
semiclassical approximation equal to 

[~ P
(N)(qa(NI(t)) 

o ex [E(NI(t-to)] p(NI(q6(N)(to)) p 0 

xexp( - f (~(~(N))2 + !(knq~(N))2 + !(knq~(NI2)dt ')) (35) 

where E \J") is the average zero-point energy of the Nth com
ponent process. Each Nth component of (35) is now finite 
and the equivalence class therefore defines a nonstandard 
real number. Note that the base point for the expansion does 
not appear in Eq. (34) due to the linear force, but it does 
appear in (35) in the potential. However, this just introduces 
the constant term 

(36) 

where the q~(N) are the time-independent components of the 
base field r A a. 

Hence it is possible to give a more rigorous interpreta
tion to Yasue's Sec. V9 where the extension to positive tem
peratures has been shown to be direct as long as t - to <f3Ii. 

One could now proceed to construct the generating 
functional G t J }. However, it is easier to calculate the field 
directly using the construction introduced by Guerra and 
Ruggiero 7 and employed by the present author in order to 
construct the electromagnetic field? The technique is basi
cally the same for this case. The fluctuation field has 
moments 

(A f(x,t) = 0, 

(A f(x,t)A J(y,t ') = Dab f d 3kf3 -I n =~ 00 (wi + W~ - 1) 

Xe j
,,,·(( - "I(Dij - k

j
k

j
/lk\2). 

(37) 

(38) 

Hence the complete field corresponding to 'A a plus fluctu
ations has average 'A a and covariance equal to the right
hand side of (38). In the limit /3-00, one has the zero-point 
field. This should be compared to Eq. (4.10) of Ref. 9. The 
only difference is the polarization vector sum. 
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Using the FKG ine'Luality, we construct infinite volume expectations of products of boson fields 
and fermi currents (f/!f/!)ren for the scalar Yukawa2 model with arbitrary coupling constant. These 
expectations satisfy the Osterwalder-Schrader axioms with the possible exception of clustering. 

PACS numbers: 03.70. + k 

1. INTRODUCTION 

This paper is a sequel to our paper I on the FKG in
equality for the Yukawa2 (Y2 ) quantum field model. Our 
main motivation for establishing the FKG inequality was to 
be able to carryover to the Y 2 model with arbitrary coupling 
the method used by Frohlich and Simon2 to construct the 
infinite volume P (ffJ b model. (The infinite volume limit for Y 2 

has already been controlled for weak coupling,3.4 for large 
external field5 and for very large coupling in the pseudosca
lar case. 6

) Actually, since the FKG inequality is a statement 
about functions of the boson field only (see Theorem 1.1), we 
are able to control the infinite volume limit for expectations 
of boson fields but not of general fermion fields. However, as 
we show in Sec. 4, our control on the boson subtheory can be 
extended to certain fermi currents via the boson field 
equation. 

As usual,7 the starting point of a rigorous analysis of the 
Euclidean Y 2 model is the Matthews-Salam-Seiler formula
tion where the fermions have been "integrated out: "With a 
volume cutoff A C R2, the expectation of a function P(¢ ) of 
the boson field ¢ is 

(F) A = f Fdv A , 

where dv A is a probability measure on Y'(R2) of the form 
dv A = P A df.1, where df.1 is the free boson measureR with mass 
m" > 0 and (formally) 

PA (¢) = det(1 - KA )eTrK
, - \TrK \K, - (>'. (1.1) 

In (1.1), K A = ;"S¢x A r where;" is the coupling constant, S 
is the free Fermi two-point function, 

S(x,y) = ~fd2peiPIX-YI(mj -. iPI 
(21T) - lPo 

X A is the characteristic function of;", r = 1 for scalar Y 2 and 

(0 - 1) r = Ys = 1 0 for pseudoscalar Y 2' and mf>O is the 

bare Fermi mass. The term 

Fr:K~KA: = !8m~ i:¢ 2(x):dx, 

is the boson mass counterterm, 8m7, and e A being infinite 

"'Research partially supported by the National Research Council of 
Canada. 

constants. When properly interpreted, (1,1) makes rigorous 
mathematical sense. We refer the reader to the papers cited 
above l

•
3-7 for a more detailed discussion of (1.1). Our main 

result in Ref. 1 was the following. 
Theorem 1.1 (FKG inequality): Consider the scalar Y 2 

model with mj>00rthepseudoscalarY2 model withmf = 0 
with volume cutoff the rectangle A. Let fA be the class of 
increasing functions of the boson field, 

fA = ! F (¢ (h d, ... ,¢ (hit)) IF:RIt~R continuous 
and increasing;hjEL 2(...1), hj >0 J . 

Then for J, gEf A 

(fg)A>(f)A(g)A' (1.3) 

providedJ, g, andfg are dv A -integrable. 
In Sec. 2, (1.3) is the main input for constructing the 

pure boson expections for the infinite volume scalar Y 2 the
ory with m j > O. Briefly, we start with the large external field 
modification of the Y 2 interaction; the point is that the infi
nite volume limit of such a theory has already been shown to 
existS because the model may be transformed to a weakly 
coupled model in a way analogous to Spencer's treatment'! of 
theP (¢ b model with large external field. The weakly coupled 
model can then be controlled by the cluster expansion. 3

,4 

Following Frohlich and Simon,2 we "turn oft''' the large ex
ternal field by means of the FKG inequality (1.3). However, 
in our case there is a technical complication concerning 
boundary conditions: While the FKG inequality holds for 
theP (¢ b model for quite general boundary conditions, 10 (1.3) 
has been proven for the scalar Y 2 model only in the case of 
free boundary conditions; on the other hand the model trans
formation of Ref. 5 is based on periodic B.c. 

In Sec. 3 we investigate whether the infinite volume 
states constructed in Sec. 2 satisfy clustering. Following 
Frohlich and Simon's2 strategy for P (¢ b, we can reduce the 
question of clustering to a conjecture about the pressure 
(Conjecture 3.3). Unfortunately, we have been unable to ver
ify this conjecture because the techniques available in the 
P (¢ h case, such as conditioning, do not seem to have a useful 
analogue in the Y 2 case. 

In Sec. 4 we extend our boson sub-theory for scalar Y 2 
to a theory including both the boson field and the fermi cur
rent that is the nonhomogeneous term in the (Euclidean) bo
son field equation. We accomplish this by showing by a shift 
of the boson field that such'an extension of the theory is not 
really an extension at all! 
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In Sec. 5 we extend our analysis to the case where 
mf = 0 and hence to the case ofpseudoscalar Y2 with 

mf=O. 
We note also that our results continue to hold if we 

modify the Y 2 interaction by adding an additional P (4) b 
term. 

Although the results of this paper show that correlation 
inequalities, which have been so powerful in the case of pure 
boson theories, also can playa useful role in the case of mod
els involving fermions, there are several unfortunate limita
tions. The first, mentioned above, is that our proof of cluster
ing is incomplete. A second limitation is that our 
construction is essentially limited to pure boson expecta
tions. With the uniform bounds that are available for the 
Schwinger functions of Y / 1.I2 one could also construct infi
nite volume fermi expectations by a compactness argue
ment, but only the boson sub-theory of such a theory would 
satisfy Euclidean covariance. If one tries to remedy this 
problem by averaging the theory over the Euclidean group, 
the important OS positivity property is destroyed in general 
(see the remarks in Ref. 2). 

A third limitation is that we should like to duplicate 
Theorem 5.2 of Ref. 2, i.e., we want differentiability of the 
"pressure" to imply that the infinite volume theory is unique 
and independent of the classical boundary conditions cho
sen. It seems that the stability of the FKG inequality for 
P (4) b under changes in boundary conditions is truly critical 
for the method of Ref. 2. This stability is not available to us. 
Finally, the nonlocality of the Y 2 interaction effectively rules 
out DLRequations of the type satisfied by P(4) h theories. 2. 13 

Finally, we wish to comment on the striking similarity 
between the results of this paper and (unpublished) results of 
Frohlich and Park. 14 Instead of using the Matthews-Salam
Seiler formalism, they "bosonize" the fermi interaction cur
rents by representing them in terms of an auxiliary (massless) 
boson field u. Roughly speaking, the representation is 

:1f¢:~(1/21T):COS(~u):, :1fr¢:~(l/21T):sin(~u):, 
(1.4) 

where ¢ is the massless Euclidean field. For example, for 
scalar Y 2 (with mf = 0), 

det(1 - KII )eTrK~ 

= (exp [ (A /21T{4>:cOS(~U):dX]) u' (1.5) 

where (.) u denotes f·df-l(u). They then obtain Griffiths in
equalities involving cos such as 

(:cos.ji;oix): :cos~oiy):)u 
> (:cos~u(x):) u (:cosji;oiy):) u' (1.6) 

In this way they can (formally) construct the infinite volume 
limit of expectations of products of 4> 's for scalar Y 2 or pseu
doscalar Y 2 with mf = O. Like our results, theirs seem re
stricted to d = 2 since the transformation (1.4) is peculiar to 
two dimensions! (However, there is a technical difficulty 
concerning the removal of a regularization in their ap
proach, which, to the best of our knowledge, has not been 
solved.) The similarity between the two sets of results is not 
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surprising when one realizes that the basic inequality we 
used I to establish the FKG inequality, 

tP 
----log det(1 - KII »0, x¥y, 
04> (x)o4> (y) 

is, by (1.5), nothing but (1.6)! 

2. EXISTENCE OF THE BOSON SUBTHEORY 

In this section we apply the FKG inequality for the 
scalar Y 2 model with space cutoff to the problem of con
structing infinite volume measures for the boson subtheory. 
Although the arguments of Frohlich and Simon2 along these 
lines for the P (4) h models are of a fairly general nature, there 
is a technical difficulty to be overcome in our case: Periodic 
(or half-periodic) boundary conditions are required for the 
transformation5 that expresses a theory with a large external 
field in terms of a weakly coupled theory; on the other hand, 
free boundary conditions are required for the FKG inequal
ity. To overcome this mismatch, we shall impose two volume 
cutoffs A and A ' on the transformed theory with A 'CA and 
with free boundary conditions on A ' and half-periodic 
boundary conditions on A. We remove both of these cutoffs 
via the cluster expansion, taking care to remove the half
periodic cutoff first. This gives us the FKG inequality for the 
transformed model and also for the original model. 

We begin by recapitulating the model transformation of 
Ref. 5. Let E ±.II denote the pure boson expectation func
tional for the scalar Y 2 model with boson mass mb > 0, fer
mion mass mf > 0, external field ± f-loo , interaction volume 
the loXl1 rectangle A, and half-periodic Be; i.e., 

fF(4) )e±!L~¢lx~)p~P(4) )df-l~ 
E+ II (F)= ,(2.1) 

-' fe±!L~¢IX~p~Pdf-l~ 

where df-l~ is the free boson measure with periodic Be on A, 
and (formally) 

p~P(4) ) = const det(l - K ~ )eTrK~ -lTrK~K~:, (2.2) 

where K II = S4>x II as in (1.1), whereas K ~ = S ~ 4>x II with 
S ~ the Fermi two-point function with periodic Be, 

S p __ 1_" iplx _YI(mf - iPI - ipo )- I 
II - ~ e , (2.3) 

IAlpEllo -ipo mf+iPI 

whereA * is the lattice (21T1lo)Z X (21TIII)Z, Note that we have 
set A = 1 and that the Wick dots in (2.2) refer to Wick order
ing with respect to df-l~ (although we could equally well use 
df-l). 

Let Ell denote the expectation functional for the scalar 
Y 2 model with boson mass mb , zero external field, and half
periodic B.einA. For hEL ~(R2), the space of L' 2 functions of 
compact support, define 

4>c(h) = 4> (h) + c Jh (x)dx. 

The model transformation is given by the following. 
Lemma 2.1: (a) Let 

-(-2 2)J d 2 
Ll (mr,mr) = mr~; mr (p2 + m~);2 + m~) . 

For given mb , mr, f-loo , define mr = mr - c ± and 
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mb = [m~ + 2..1 (mr,mr)/mr r12
, 

where c ± is chosen to solve 

±J-l", - c ± m~ + A (mr,mr - c ± ) = O. (2.4) 

Then for hi"', hnEL 2(A ) 

E ±.A CUI¢ (h j)) = EA CUI¢c; (h j)). (2.5) 

(b) For given mb and mr, mb and Imrl can be made 
arbitrarily large by choosing J-l '" sufficiently large. 

Remarks: (1) This lemma is essentially Lemma 2 of Ref. 
5, but we have replaced the periodic BC used there by half
periodic BC. Half-periodic BC are more natural to work 
with. In particular, the transformation does not produce a 
small A -dependent boson self-interaction as in the case of 
periodic BC. 

(2) The relation (2.4) holds for functions of ¢ more gen
eral than products (see Lemma 2.3 below). 

(3) E A depends on the choice of ± sign since mr and mb 
do, but we suppress this dependence in the notation. 

For our purposes we must also consider EA with an 
additional space cutoff A ' (which we take to be a rectangle) 
imposed by replacing ¢ by ¢X A '. We denote this doubly cut
off expectation by E ~ , . We now fix J-l '" sufficiently large so 
that by Lemma 2.1 b the cluster expansion is applicable in the 
EA theory. Then the limits 

E= limEA' A ____ R? 
(2.6) 

EA '= lim E~', 
A_R' 

(2,7) 

and, by Lemma 2.1a, 

(2.8) 

exist. [If we do not specify otherwise, then we assume that 
the arguments of the various expectation functionals are of 
the form II7 = I ¢ (h j) and that hjEL ~ (R2

).] The following 
theorem is implicit in Ref. 5. 

Theorem 2.2: Let c + ,E A
', and E ± be given by (2.4), 

(2.7), and (2.8), respectively. Then 

(2.9) 

Proof The convergence (2.7) of E~ 'toEA' is uniform in 
A " since the cluster expansion provides an error estimate 
with exponential decay in the distance from aA to usupph o 
uniformly in A '. Therefore, we may interchange limits: 

limE A ' = lim limE ~' = lim limE ~ , 
A' A' A A A' 

= limEA (since E~' = EA if A CA ') 
A 

=E. (2.10) 

Equation (2.9) now follows from (2.5). 0 
Theorem 2.2 overcomes the BC mismatch referred to 

above. For E A ' is the expectation for the Y 2 model with 
boson mass mb, fermi mass mr, zero external field, interac
tion in A " and free BC (the half-periodic cutoff has been 
removed). Accordingly, the FKG inequality of Theorem 1.1 
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applies to the right side of (2.9) and hence to the left side. 
[Note that the cutoff A ' on E does not correspond to a cutoff 
on E ± but that we do not require such a cutoff in view of 
(2.9).] 

In order for the FKG inequality to be effective we must 
check that (2.9) holds for a rich enough supply of increasing 
functions of ¢. We merely sketch the arguments. [Notation: 
we shall drop the subscripts ± on E and c in (2.9) and we 
shall write Fc(¢) for F(¢c)·] 

We first note that (2.9) holds 

E(F) = lim EA'(Fc), 
A'_R' 

(2.11) 

for functions of the form 

(2.12) 

where h, gl"'" gnEL ~ and ReKj ;>0. This follows, for IKj I, 
small, from expanding the exponential in (2.12) and appeal
ing to Theorem 2.2 and the bound 

(2.13) 

where Ilh 112_1 =Slh(kW(k 2 + m~)-ld2k and Cis a con
stant independent of A ',n, IIhlll-I,· .. ,llh n 11-1 (but dependent 
on ujsupph j). The bound (2.13) is a consequence of cluster 
expansion estimates.3

,4 But it follows from (2.13) that 
EA '(F(¢cll is analytic in Kj > 0 and so, by the Vitali Conver
gence Theorem and the fact that II j { Kj I ReK > 0, IKj I < € l is a 
determining set in the sense of analytic functions, we deduce 
the desired convergence. 

Another type of random variable that will be of interest 
to us is the truncation of the field 15 

{

- 1, if ¢c(h)< - 1, 

O'c(h) = 1, if¢c(h);>I, 

¢c(h), otherwise. 

We claim that (2.11) holds for F of the form 

F(¢ ) = fI O'ci(h;). 
;=1 

To see this, we approximate Fby 

G (¢ ) = fI O'c,(hj)e - K,4>'i
1h

,I', 

j= 1 

with Kj > O. The error is controlled by the estimates 

100c, - O'c,exp [ - KjO'c,(hY] 1 <KjO'c,(hY, 

(2.14) 

and (2.13). To establish (2.11) for G, we apply the Stone
Weierstrass theorem to approximate G in sup norm by ran
dom variables 

where P is a polynomial. Since we know (2.11) holds for such 
random variables, it also holds for F given by (2.14). 

Clearly, the above argument applies to any 
F(¢ (hd, ... ,¢ (h m)), where F:Rm--+R is bounded and continu
ous. Moreover, it applies to such an Fmultiplied by an expo
nential and polynomial in the smeared fields, Accordingly, 

let 
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C{f = {F(~(hIl, ... ,~(hm))lm =0,1,2, ... ; hieL~; 

F(x) = P(x)G(x)e8
'
X

; 

P a polynomial, G bounded and continuous, aERm}. 

Obviously <fJ is closed under multiplication. We have 
checked the following. 

Lemma 2.3: (2.11) holds for any FE<fJ. 
As in Ref. 2, we introduce the expectations 

E (F) = E (Fe{J<=F/l~)<P(xA)IE (e{J<=F/l~l<P(xA) 
±./l.A ± ± ' 

(2.15) 

where taking the limit lim E ± .O.A corresponds to "turning 
A_R2 

off the large external field." Combining Theorem 1.1 with 
Lemma 2.3, we obtain the key result ofthis section: 

Theorem 2.4: Letf,gE<fJr>F where the class ofincreas
ing function of is defined like of A in Theorem 1.1, except 
that the condition hjeL 2(A ) is replaced by hjeL ~. Then 

E ± ./l.A (fg»E ± ./l.A (f)E ± ./l.A (g). (2.16) 

Proof We pass to a cutoff version E A~ ./l.A of (2.15) 
where c ± ,mr, and mb are defined as in Lemma 2.1: 

E~·./l.A (F)=EA '(Fe{J<=F/l~)<P(xA)IEA' (e{J<=F/l~)<P(xA). 

By Lemma 2.3, for FE<fJ, 

E±./l.A(F) = 1~~~·oI'.A(FeJ. (2.17) 

Now the FKG inequality holds for E A' and hence for 
EA' since the additional interaction term e{J<=F/l~)<P(XA) ± ./l.A 
does not affect the proof ofthe FKG inequality. Moreover, if 
Fd, then clearly so does Fe' Consequently, the inequality 
(2.16) holds for the expectations on the right of (2.17) and we 
obtain the theorem in the limit as A '-+R2. 0 

We are now in a position to carry out the Frohlich
Simon construction (Theorem 4.1 of Ref. 2) for the boson 
expectations of the scalar Y 2 model. First we recall some 
definitions.2 If { dv t • , } is a two-parameter family of measures 
on ,)<"(R2

), then we say that dvt.l converges to the measure dv 
by iteration if 

dv = lim(limdvttl, 
1- 00 1-00 • 

where the limits are taken in the sense of characteristic func
tions. If dV 1 and dV2 are two probability measures on Y'(R2

), 

then we say that 

dv 1<dv2 (FKG), 

iffor allfEC{f r>F 

Jfdvl <JfdV2' (2.18) 

[No regularity properties are specified in Ref. 2 on thef's 
occurring in (2.18), but in the case of the more involved Y 2 

model we have at least shown that the various integrals make 
sense for fEC{f . An inspection of the proofs in Ref. 2 shows 
that actually only functions fin <fJ are ever used.] 

We denote the probability measure8 on Y'(R2
) corre

sponding to E ± ./l.A by dv ± ./l.A . 

Theorem 2.5: (a) The limits dv ± = lim dv A exist 
./l A~R' ± ./l. 
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where the limit is taken in the sense of characteristic func
tions or in the sense of moments. 

(b) If A t•, = {(xo,xI)lxol<t 12,lx l l <I 12J, then 
dv ± ./l.A •. I-+dV ± 01' by iteration. 

(c) The pure boson theories defined by the probability 
measures dv ± 01' satisfy all the Osterwalder-Schrader axi
oms16 with the possible exception of clustering. 

(d) The Schwinger functions and Schwinger generating 
functionals for dv ± ./l are continuous in,u from the right and 
left, respectively. 

(e) If,ul <,u, then dv ± 01" ,<dv ±./l (FKG). 
Discussion: Given Theorem 2.4, the proof of this theo

rem follows as in theP (~ h case. 2 In particular, for,u <,u 00 and 
h>O, E ± oI'.A (e<P(h)) is monotone decreasing in A by the in
equality (2.16). The Vitali arguments work as in Ref. 2; the 
analyticity of the function 

f(A ) = Ii ± ./l.A (et<P (h )), 

follows from the bound (2.13), and the necessary uniform 
bounds in A are implicit in the arguments of Seiler and Si
mon ll (see the proof of Lemma 3.4 below for the essential 
idea). 

We have been unable to prove that the infinite volume 
measures dv ±./l constructed by this procedure are indepen
dent of the choice of,u 00 ,as in the P (~ h case. 2 

3. CLUSTERING? 

Let E ±./l be the boson expectation functional corre
sponding to the measure dv ±./l constructed in Theorem 2.5. 
E ±./l satisfies all the OS axioms with the possible exception 
of clustering. By virtue of the FKG inequality and a theorem 
of Simon, the clustering axiom reduces2 to the clustering of 
the two-point function E ± ./l (~ (x)~ (y)). Frohlich and Simon 
deduced this clustering for P (~ h from an identity for the 
pressure (Theorem 3.1 of Ref. 2). We have been unable to 
establish the corresponding identity for Y 2 but we conjecture 
it is true. Assuming this identity (Conjecture 3.3), we shall 
show that the Frohlich-Simon strategy for proving cluster
ing works for Y2 • The reasoning is similar to the P(~ h case 
but we shall be careful with some of the details since the 
chessboard estimates of Ref. 2 are proven in a way that de
pends on the local nature of the interaction in the P (~ b 
model. 

Conside~ the finite volume model corresponding to the 
expectation E A' of (2.7), i.e., the scalar Y 2 model with large 
fermi and boson masses mr and mb , no external field, and 
free BC on the boundary of the cutoff region A '. Now intro
duce the external field (,u =t=,u 00 )X A , and define the pressure 
as follows: 

a± (,u)= lim _1_IOgJe{J<=F/l~)<P(XA')dil " (3.1) 
A'~R2IA'1 A 

where dil A' is defined as in (1.1) but with masses mr and mb • 

As an immediate consequence of Theorems 6.1 and 7.2 of 
Ref. 11, we have the following. 

Lemma 3.1: (a) a ± (,u) exists. 
(b) a ± (,u) is convex and hence continuous in,u. 
(c) For fEe 0"(R2

), 

E(e<Plf))<exp{J dx[a ± (±,uoo + fix)) - a ± (±,uoo )]}. 

(3.2) 
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By (2.11) and (2.10) 

E ± (ew1) = E(e<Plfl)eC±ff, 

so that if we set 

a ± (P)E:cZ ± (P) + c ± Jl, 

then (3.2) reads 

(3.3) 

(3.4) 

E ± (e<Plfl)<exp{S dx[a ± (±Jloo + fIx)) - a ± (±Jloo)]}. 

(3.5) 

Since we shall be using Lemma 6.4 of Ref. 11 in our 
estimates, we state it here for convenience. 

Lemma 3.2: Letf(x) be convex in the region l<x < 00 

and linearly bounded from above. Then, a = limf(x)lx ex

ists; for any 10> O.j(x) - fIx - lo}--+alo as x--=:~ and 
fIx) - ax is monotone decreasing. 

Let X 1,/ denote the characteristic function of the rectan
gle A 1,/' Our conjecture is the following 

Conjecture 3.3: 

lim [lim ~logE (e!lt=FI-'~I<PIx,.'I)] = cZ ± (P) - cZ ± ( ± Jloo ). 
I~oo I~oo It 

(3.6) 

Remarks: (1) The identity (3.6) seems reasonable if one 
writes the left side as 
lim _I_logE (e!lt=FI-'~I<pIxAI) 
A~R2 IA 1 

= lim lim _l_logEA '(e!lt ±1-'~1<pIxAI) 
A A' IA 1 

= lim lim _l-[IOgSe!lt=FI-'~I<PIxAldVA' -lOgS dVA,], 
A A' \A \ 

and considers the limit with A = A '. As a matter offact, the 
inequality lhs (3.6)<rhs (3.6) is an immediate corollary of 
(3,2). It is the reverse inequality which is problematic. In the 
P (¢ b case, 2 the reverse inequality is proved by conditioning 
with Dirichlet BC. But we are doubtful that there is a useful 
analog of conditioning for the Y 2 model because of the infi
nite counterterms involved. 

(2) Perhaps it would have been more natural to formu
late our conjecture in terms of the pressure for the E ± .A 

model, but it is technically easier to work with free rather 
than half-periodic Be. By (3.3) and (3.4) we can state (3.6) 
equivalently in terms of E + : 

lim [lim ~logE+ (e!lt=FI-'>~"'IX"I)] 
1-_00 t~oo It ~ 

=a±(P)-a±(±Jloc)' (3.7) 

For the remainder of this section we assume Conjecture 
3.3. The next lemma supplies the necessary exponential 
bounds for applying the methods of Ref. 2 to prove cluster
ing. The basic technique of the proof is to use OS positivity in 
the manner of Seiler and Simon. II 

Lemma 3.4: For a ElR and..::1 C lR2 a rectangle 

E ± ,I-' (ea<pld)<exp! 1.1 1 [a ± (p + a) - a ± (P)]]. (3.8) 
Proof We take .1 to be the rectangle A 1

0
,1, centered at the 

origin. For convenience we shall concentrate on E +.1-' and 
drop the sUbscript +; the corresponding proof for E ~.I-' is 
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identical. By the definition (2.14) and Theorem 2.5b 

E (ea<PIx"I) 
I-' 

= lim limE (ea<pIx,,1 + !It ~ 1-'~1<P1x"')IE (e!lt ~ 1-'~)<pIx,.t) 
I I 

=lim lirnF(/o,/\;t,l )/Z (t,/), (3.9) 
where I t 

F (/o'!l;t,1 )=E (exp [a¢ U\.I, ) + (p - Jl 00 )¢ (x I.t! D· 
Z(t,/)=E (e!lt~I-'~I<PIx,.'I). 

Now the state E satisfies OS positivity so that in particular 

F(/o,!l;t,1 )<F(2/0,!\;t + lo'! )IZ (t - 10,/)1, (3.10) 

where we have reflected about the line Xo = 1012 and then 
appealed to the translation invariance of E to translate back 
in the Xo direction by 1012. We repeat this process on the first 
factor in (3.10) by reflecting about the line Xo = 10 , and so on. 
After m steps we obtain 

F(/0,!I;t,I)<F(2mlo,/l;t + (2m _ 1)/o,!)2 - m Z (t _ 10,!)1 ~ 2 m 

Reflecting n times in the x I direction, we have 

F{lo'!l;t,! )<F(2mlo,2n/ l ;t + (2m - 1)/0,1 + (2n - 1)/1)2 - on 

.Z (t + (2m _ 1)/o,!-/1)2 on ~ 2 m- "Z (t -10,1)1 ~ 2 on. 

(3.11) 

We apply (3.5) to the first factor in (3.11) to dominate it by 
(assuming 10 < t, II < I) 

eXpl2 l/lm + NI[2m + Nlo/l(a(a + Jl) - a(poo ))] 
+ ((t + (2m - 1)10)(1 + (r - 1)/\) - 2m + NIO/\) 
X (a(p) - a(p 00 ))}. 

which approaches, in the limit m, n-oo, 

exp[l..::1 I(a(a + Jl) - a(poo ))]. (3.12) 

By (3.5) the function ft.-+logZ (t,1) is linearly bounded, 
and by OS positivity the function is convex, so that by 
Lemma 3.2 there is an E, such that as t-+oo 

(3.13) 

and 

Z (t - lo'! )/Z (t,!)-e ~ 10E,. (3.14) 

Moreover,It--+E, is also linearly bounded and convex so that 
by Lemma 3.2 

lim(E, - E/~ I,) = lllimE,11 
/--0000 1-00 

(3.15) 

where in the last equality we have used the conjecture (3.7). 
By (3.13) the second factor in (3.11) approaches exp(/oE, ~ I,) 
in the limit m,n-oo. Hence by (3.9), (3.11), and (3.12) 

E (ea"'IX~I).;::el.:1l(ala +1-'1 ~ a!lt~lIlimexp(1 1<' )lim Z (t -/0,/) 
I' '" I O'-'/~/, t ZIt,!) 

=el.:1l(ala+l-'l~a!lt~lIlimexp(lo(E/~/, -E,)] [by (3.14)] 
I 

=el.:1l(ala+l-'l~all-',lIe~I.:1I(a!ltl~all-'~1I [by (3.15)] 
= el.:1 I(ala + 1-'1 ~ all-'I). 

The following theorem is the analog of Theorem 4.2 of 
Ref. 2 and, given Lemma 3.4, the proof is practically the 
same. 
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Theorem 3.5: E ± .1' (c,b (0)) = D ± a ± (.u), where D ± de
notes the right and left derivative, respectively. 

We have now developed all the machinery needed for 
the following clustering theorem whose proof is identical to 
Theorem 4.4 of Ref. 2. 

Theorem 3.6: Assuming (3.7), the statesE ± of' satisfy all 
of the Osterwalder-Schrader axioms, including clustering. 

4. FERMI CURRENTS 

In this section we show how our control over the boson 
subtheory of the scalar Y 2 model can be extended to include 
certain fermi currents as well as boson fields. Let I/J,fi, be 
(formal) Euclidean fermi fields. We do not control general 
fermi currents of the form (fi,rI/J)ren but only the current with 
r = 1 that occurs in the boson field equation, for it is actualy 
the boson field equation that provides this control. 

To motivate the objects that we consider below, we first 
work formally with the Fermi fields I/J,fi,. Denoting the free 
Fermi expectation with periodic BC on A by (.) f,A , we have 

p~p(c,b)= (e~UA(¢)f,A' (4.1) 

where 

U A (c,b ) = 1 :fi,(x)I/J(x):rc,b (x)dx 

+ !«5m~ I:c,b (xf:dx + eA, 

: :f denotes Wick ordering with respect to the free Fermi 
expectation (')f with free BC,and:: denotes Wick ordering 
with respect todf.L. Ifgl> ... ,g"ECO'(A) andAI, ... ,A,,,ER, we 

write A·g = IAjgj . Now clearly 
j=1 

UA (c,b - A·g) = UA (c,b ) - A·I g(x)j(x)dx 

+ !«5m~ i (A·g(X))2dx, 

wherej is the renormalized Fermi current 

j(X)=:#:f(X) + om~c,b (x). 

(4.2) 

(4.3) 

ForfEC O'(A), we writej(f) = fj(x)f(x)dx for the smeared 
current. 

Ifwe require that thegl, ... ,g" have disjoint supports, 

suppg;r1suppgj = c,b, i=/=j, (4.4) 

then by (4.2) 

(4.5) 

since the quadratic term in (4.2) makes no contribution at 
A = O. From (4.5) and (4.1) we have, assuming (4.4), 

f (jJ/(gk)e ~ UA(¢) f,A e¢(f)df.LA (c,b) 

a" f 
= aA I ,,·aA " J pHP(c,b - A·g)e¢ (f)df.L A (c,b ) I A = o· (4.6) 

As we show below, the right side of (4.6) is well-defined, i.e., 

Y A (f,g)==Z A Jp~P(c,b - g)e¢(f}df.LA (c,b I, (4.7) 
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with ZA = fp~Pdf.LA' is a well-defined generating functional 
for expectations of products of c,b 's andj's. We note that a 
"natural" expression for the generating functional like 

Z A J (eiW)e ~ UAI¢)f,A e¢(f)df.LA (c,b), 

does not make sense because expectations of products of 
j(gk)'S with overlapping arguments contain uncancelled in
finities. Although it will not be necessary for our purposes, it 
is possible to evaluate the derivatives in (4.6) directly and to 
control the resulting expressions in a finite volume. For 
example, 

a 
aAt~P(c,b-A·g)IA=O = {Tr[(1-KA)-IS~gl] 

+ «5m~c,b (g1)}P~P(c,b ), (4.8) 

which, for g lED (( - L1 + 1)1), can be shown to be in L P(df.L A) 
for any p < 00 by the methods of Ref. 4. As a matter off act, a 
frontal attack on (4.6) consists of proving that: (a) the right 
side of (4.6) exists for fixed A; (b) in the presence of a large 
external field ± f.L "" , (4.7) and its A-derivatives converge as 
A~R2; (c) the large external field can be switched off by the 
correlation inequalities. 

The analogs of steps (a) and (b) were carried out for 
weakly coupled c,b ~ by Feldman and Raczka, 17 but in fact 
there really is nothing to be done since we simply have to 
shift the field, as follows. 

Lemma 4.1: Forf,gECO'(A), 

fp~p(c,b - g)e¢(f)df.LA (c,b) = elg·f)fp~p(c,b )e¢(f) 

:e -.; II ~" + m~)g):df.L A (c,b ). (4.9) 

Proof Equation (4.9) follows immediately from the 
equations 

fp~p(c,b - g)e¢(f)df.LA (c,b ) = fp~p(c,b jel'; +g)(f)df.LA (c,b + g), 

df.LA (c,b + g) = e ~';II -" + m~)g)e ~ II -" + m~)g·g)/2df.LA (c,b I, 

and 

Note that since supp g is strictly contained in A, we may use 
the infinite volume Laplacian in place of the Laplacian with 
periodic BC on aA in these equations. 

From (4.9) we see that Y A (f,g) of (4.7) isa well-defined 
generating functional for expectations of products of c,b 's and 
j's. Moreover, as in Sec. 2, we can pass to the infinite volume 
by introducing an external field ± f.L 00 X A and then turning it 
off by the FKG inequality to obtain the infinite volume gen
erating functionals, 

Y ± (f,g) = E ± .0 (e<P (f) + Igj'):e ~ <pII ~.j + m~lg):), (4.10) 

wheref,gEC 0'. 
It may seem surprising that expectations formally cor

responding to the lhs of(4.6) can be rewritten as pure boson 
expectations until one realizes the physical meaning of (4.9). 
Replacing g with Ag, differentiating both sides of (4.9) with 
respect to A and then setting A = 0, we get (formally) 
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f (f dx g(x)[( - ~ + m~)tfo (x) + j(x)]e~ UA(~))f.A 
eW)dpA =0, (4.11) 

provided thatf and g have disjoint supports. Equation (4.11) 
is the Euclidean boson field equation for the spatially cutoff 
y 2 model. [The term involvingj(x) in (4.11) can be given a 
rigorous meaning in the Matthews-Salam-Seiler formalism 
via equation (4.8)]. 

In conclusion, we incorporate the Fermi currents in the 
following way: we construct the Schwinger functions for a 
theory that involves the two field tfo andj. Formally these 
Schwinger functions are given by 

S± (f1, .. ·Jm;gI,· .. ,gn) = (.{(tfoLt;))J!(gk)) ±.o' (4.12) 

where the g I, ... ,gn have disjoint supports, and where (.) ± .0 

denotes E ± .0 formally extended to smeared Fermi currents. 
The rigorous definition of these Schwinger functions uses the 
generating functional (4.10): 

am + n 

S ± (f1> .. ·Jm;g I, ... ,gn )= -:------
aKI' .. aKmaAI .. ·aAn 

xY ± (K·f,A·g)I" = A = o. (4.13) 

Actually (4.13) makes sense for arbitrary J:,g k EC 0' but bears 
the interpretation (4.12) only when thegl, ... ,gn have disjoint 
supports. In any event, the Osterwalder-Schrader recon
struction theorem 16 involves a knowledge of the Schwinger 
functions with noncoincident arguments, and since the 
Schwinger functions satisfy all of the OS axioms except pos
sibly clustering, we can analytically continue to the Wight
man functions 18 of a theory involving two fields cP (x,t ) and 
J (x,t). The Euclidean field equation (4.11) analytically con
tinues to the corresponding relativistic wave equation 

(a; - a~ + mDCP (x,t) + J(x,t) = O. 

Remark: If we were able to construct the Schwinger 
functions involving products offermi fields it would presum
ably not be hard to identify J in terms of the basic boson and 
fermion fields [as in the relation (4.3)]. Such an analysis 
could be carried out for the weakly coupled model, but we 
refrain from doing so. 

5. CASE OF MASSLESS FERMIONS 

In the previous sections we assumed that m f > O. We 
now wish to extend our results to the case m f = O. A reexa
mination of our approach with this in mind shows that two 
changes are needed in the definition of p~P of (2.2): (i) S~ is 
defined as in (2.3) but with p = 0 excluded from the sum over 
pEA *; (ii) the mass counterterm in (2.2) is chosen as 
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(5.1) 

The choice (5.1) has already been analyzed in Sec. 7 of Ref. 1 
for the case of free Be. The case of periodic Be can be treated 
as a perturbation of the free Be by applying Theorem 2.2 of 
Ref. 1. We omit the details, but the conclusion is that 
p~PEL P(dp~) and the arguments ofSecs. 2-4 go through as 
before. 

At first glance, one might expect further difficulties 
since the existing proofs ll

,I2 of exponential bounds for Y2 
rely heavily on the assumption that mf > O. However, our 
approach requires such bounds only for the transformed 
model [see (3.2)] which has a large fermi mass mf' 

As we noted in the introduction, the results for m f = 0 
hold also for the pseudoscalar Y 2 model (where we know the 
FKG inequality only when m f = 0). 
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A modified path integral form for the generating functional of the dynamical map is developed in 
terms of canonical field theory. The Yang-Feldman equation for arbitrary operator products is 
derived and a simple form of the boson theorem is proved. The effects of internal symmetry and 
broken symmetry upon the dynamical map are investigated. Simple applications to free fields and 
an interacting case are exhibited. 

PACS numbers: 03.70. + k 

I. INTRODUCTION 

In recent papers! Matsumoto, Umezawa, et al., have 
developed the boson method and applied it to numerous 
model systems. In their approach the central object of inter
est is the dynamical map,z which relates the interacting field, 
assumed to obey a nonlinear equation of motion, to asymp
totic in- or out-fields which obey free field equations. In this 
way the Hilbert space over which the interacting field is de
fined may be made consistent with the equation of motion. 
Spontaneous breakdown of symmetry is reflected in the as
ymptotic fields whose particles comprise the measurable 
spectrum, while the original symmetry operation on the in
teracting field is induced by operations on these asymptotic 
fields. This phenomenon is known as dynamical rearrange
ment ofsymmetry.3 

The topological singularities and extended objects oc
curring in the field theories under consideration are seen to 
arise from the condensation of Goldstone bosons into the 
ground state. This condensation is manifested through the 
boson theorem4 which states that the equation of motion for 
the interacting field maintains the same form when the as
ymptotic fields in the dynamical map are translated by c
number functions which satisfy the respective free equations 
of motion. Analysis of a similar nature may be found in the 
work of Klauder. 5 His investigations were limited to ultralo
cal models where no spatial gradient terms are present and 
the effect of translating the field by a non-L 2 c-number func
tion could be rigorously discussed. Further work on this sub
ject can be found in Hammer and DeFacio.6 

For simplicity of calculation previous works have limit
ed evaluation of the vacuum expectation value of the inter
acting field to the tree approximation,7 which becomes exact 
only in the limit that Planck's constant h tends to zero. Since 
the path integral formalism8 provides a convenient method 
for determining quantum corrections in field theory, it is 
reasonable to expect similar results for a path integral repre
sentation of the dynamical map. 

It should be noted that functional methods have been 
applied previously in this problem.9 In the context of pre
vious work they were used to examine the Ward-Takahashi 

"Work supported by the National Research Council of Canada. 
"'Current address: Department of Physics, University of Connecticut, 

Storrs, Connecticut 06268. 

identities for the Green's functions. However, the results de
veloped in Sec. II of this paper yield an explicit recipe for 
constructing the dynamical map of the field operator and its 
retarded products given in terms of a modified path integral. 
Although the final results derived from this approach must 
coincide with those previously derived, the modified path 
integral makes many results clearer in both their origin and 
application. In Sec. III the properties of the dynamical map 
are examined, including an alternative proof of the boson 
theorem and the method for generating identities of the dyn
amical map similar to the Ward-Takahashi identities. Sec
tion IV contains applications of the techniques developed in 
the previous sections. Section V contains the suggestions for 
extension of this work. 

Throughout this paper consideration will be limited to 
simple scalar field theories with at most a continuous phase 
invariance. There are several reasons for this limitation, the 
first being that the Ward-Takahashi identities derived from 
the path integral formalism fail to give any axial anomaly in 
theories where it is known to be present. As a result, rather 
than modify the path integral structure, in itself a worthy 
project, theories which would manifest this defect will be 
avoided. The second reason lies in the fact that the additional 
degrees of freedom in more complicated theories create 
problems in identifying the asymptotic spectrum of the field 
operators due to the presence of ghosts and bound states. 

A final caveat to the reader in regard to the validity of 
the path integral as a generator of field operator products 
must be made. It is still an open question whether the mea
sure over the fields exists if interactions are present. It is 
often written that evaluating the path integral is equivalent 
to solving the operator formulation of the same theory. The 
truth of this statement is not obvious to the author, but ex
amination of this problem will not be made here. 

II. THE DYNAMICAL MAP 

In the following work consideration will be limited to 
theories describing a single scalar field; the generalization of 
these results will be discussed later in this section. The inter
acting field t/J is assumed to satisfy, in the weak sense, some 
nonlinear equation of motion. 

A (ax)t/J(x) = F [t/J(x)]. (2.1) 

777 J. Math. Phys. 22 (4), April 1981 0022-2488/81/040777 -08$1.00 © 1981 American Institute of Physics 777 



                                                                                                                                    

The field tf;(x) has the weak-limit asymptotic form 

w-lim¢(x) = ¢o(x), (2.2) 

where ¢o is the asymptotic in-field which satisfies the free 
field equation 

(2.3) 

Here the usual wavefunction renormalization constants are 
being suppressed for simplicity. 

The LSZ reduction formula, 10 coupled with the as
sumed completeness of the asymptotic states, yields the usu
al form of the dynamical map2: 

G[¢] 

= nto (~!on J dxl···dxn :¢O(xl),i (ax, )···¢O(xn),i (ax) 

x (OIR ! G [¢]¢(XI)···(Xn)j 10)c:' (2.4) 

where the in-field representation has been chosen and the 
subscript c in (2.4) denotes the connected part of the Green's 
functions. I I Here G [¢] is some function for functional of the 
interacting field or its retarded products and the retarded 
form of the connected Green's functions has been employed 
to be consistent with the use of in-fields. 

It is then assumed that the connected retarded Green's 
function can be obtained from a generating function W, [J] 
by functional differentiation, i.e., 

8
n
W,[J] I 

(OIR ! ¢(xl)···¢(xn)j 10)c = (- on 8J(x
l
) ... 8J(x

n
) J~o· 

The connection to canonical field theory is made when 
W, [J] takes the form II 

(2.5) 

W, [J] = InZ, [J], (2.6) 

and the functional Z, [J] has the path integral 
representation 12 

Zr [J] = N J [d¢] expi J dx [2'(¢) + J(¢)], (2.7) 

where 2' (¢ ) is the Lagrangian density of the theory and N is 
a normalizing constant defined by 

Zr [J = 0] = 1. (2.8) 

Normally (2.6), taken with (2.7), is interpreted as the 
generating functional for the connected time-ordered 
Green's functions of the theory. 13 However, with appropri
ate boundary conditions it becomes the generator for retard
ed or advanced Green's functions. This same result is well 
known from the LSZ reduction theorem, where it is seen that 
the retarded and time-ordered product formulations of s
matrix elements differ only over a set of measure zero,14 so 
that the expansions of the S matrix elements in terms of 
either are equivalent. 

As a final note in this respect, and for future reference, 
expression (2.7) can be evaluated explicitly in the case that 
2'(¢) is a quadratic form, i.e., 

(2.9) 
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If (2.9) holds, then (2.7) becomes 

Zr[J] =exp-~i J dxdyJ(x)L1(x-y)J(y), (2.10) 

where the single restriction on L1 necessary to perform the 
path integration is 

,i (ax)L1 (x - y) = 8(x - y). (2.11) 

In order to be consistent with (2.5) it is necessary to apply the 
boundary conditions and identify L1 as the retarded Green's 
function. IS 

The development of the path integral form of the dyna
mical map begins by rewriting (2.4) as 

G [¢] = :exp [ - iJ dx ¢o(x),i (ax) _. _8_] 
/8J(x) 

XGL;J]Wr[J]IJ~o:. (2.12) 

Due to the translational nature of the first functional opera
tor appearing in (2.12), it follows that 

exp [ - i J dx ¢o(x)A (ax) -. _8_] W, [J] 
/8J(x) 

= In {exp [ - i J dx ¢o(x)A (ax) -. _D_]Zr [J]} . 
u5J(x) 

It is then assumed that 2'(¢ ) may be written 

(2.13) 

2'(¢) = !¢,i (a)¢ +2'in,(¢), (2.14) 

so that, from (2.7), it follows that 

exp [ - i J dx ¢o(x),i (ax) -. _8_]Zr [J] 
/DJ(x) 

= exp{i J dy 2'in, [i8:(x)]}N J [d¢ ] expi 

X J dx!!¢,i(ax)¢+ [J-¢oA(ax)]¢j· (2.15) 

The right-hand side of (2.15) may be evaluated using (2.10), 
(2.11), and (2.3) to obtain 

~ exp{i J dy 2'int [~)] }exp -!i 
N' /8J(x 

X J dx dz J (x)L1 (x - z)J (z) expi J dx J (x)¢o(x), 

(2.16) 

where N' is the constant necessary to normalize (2.10). How
ever, it is apparent from (2.10) that 

exp-!i J dxdyJ(x)L1(x-y)J(y)expi J dxJ(x)¢o<x) 

= N' J [d¢ ] ex pi J dxB¢,i (ax)¢ + J(¢ + ¢o)], 

(2.17) 

so that expression (2.12) becomes 

G [¢] =:G [~] Wr[J,¢o] I :, 
/8J J~O 

(2.18) 

where 

W, [J,¢o] = InZr [J,¢o] (2.19) 
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and 

Z, [J,r/Jo] = N f [dr/J ] expif dx[!r/JA. (Bx)r/J 

+ !fint (r/J + rPO) + J (rP + rPO)]· (2.20) 

Relations (2.18)-(2.20) give the path integral form of 
the dynamical map for this simple case. However, it is neces
sary to note that difficulties may arise in the formulation of 
the dynamical map when several particle types or internal 
symmetries are present in the initial Lagrangian. Bound 
states, ghosts, and Goldstone bosons may occur, and some 
or all of these must be included in the dynamical map in 
order for the asymptotic states to be complete. Therefore, 
the generalization of (2.20) is not straightforward and de
pends critically upon the form of the dynamics and upon 
whether a symmetric or broken symmetric solution is being 
sought. In general, carefully applying the Ward-Takahashi 
identities reveals the asymptotic fields which are necessary 
to achieve completeness as well as the general features of the 
dynamical map. In this way the theory is made self-consis
tent. Furthermore, more cogent examples of this may be 
found in the existing literature. I 

III. PROPERTIES OF THE DYNAMICAL MAP 

In this section certain properties of the generating func
tional (2.19) will be examined. For the purpose of making 
contact with classical field theory, it is convenient to intro
duce Planck's constant'" into the dynamical map. This is 
accomplished by multiplying the action appearing in (2.7) by 
.,,-1. Expansion of the dynamical map of an operator in pow
ers ofh is equivalent to expansion of the same operator in 
terms of multiloop graphs, each loop carrying a power of Ii. 16 

A. The Yang-Feldman equation 

If(2.18) is applied, assuming (2.14) is valid, then 

Ii oW, I t/J(x;rPo)=:--- : 
i OJ (x) J=O 

= rPo(x) - f dy..::l (x - y):Z ,- I [J,rPo] 

X!f:nt[~_O-]z,[J,rPo] I :, 
I oJ(y) J=O 

(3.1) 
where 

(3.2) 

and the commutation relation 

[ 
0"] 0"-1 ---,J =nox-M(x)" (y) (y) M(xy-1 (3.3) 

has been used. 

Relation (3.1) has the form of the usual Yang-Feldman 
equation 17 for t/J, but exact identification appears to be pre
vented by the fact that the Z, functional, rather than W" 
appears on the right-hand side. As a result, relation (2.1) does 
not seem to be generalized by (3.1). 

The solution to this problem is more conceptual than 
mathematical in nature and lies in the idea that the quan-
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tized nonlinear equation of motion should become the classi
cal nonlinear equation of motion in the event that the vacu
um expectation value is taken and Ii is taken to zero. This is 
consistent with the correspondence principle and prevents 
certain conceptual difficulties associated with the inverse 
process, i.e., quantization of a classical field theory. 

To see how this idea works vis a vis (3.1), it is easiest to 
examine a specific case. Suppose that 

ili-'2' [i!.§...] = (~)Ai!' ~ 
tnt i oj 3 oJ 3 • 

(3.4) 

Then, in terms of Wr , (3.1) becomes 

t/J(x,rPo) = rPo + A f dy..::l (x _ y): 1i
2 

02W, I 
P J(y}2 J=O 

+ [!!... oWr I ]2. 
i tSJ ( y) J = 0 " 

(3.5) 

It is possible to show that 

2 h 02w, I 
t/J (X;rPO)=""T ""J ( }2 

I u X J=O 
(3.6) 

goes to zero in the limit that h goes to zero by the following 
point-splitting argument. Any perturbative expansion for 
the equal-time operator product ¢{x + E,t )t/J(x - E,t} must 
decompose into two sets of graphs: the set which has a line 
(or lines) connecting the points x + E and x - E, and the set 
which does not. By definition, the connected set is given by 

:t/J(x + E,t Jt/J(x - E,t llconnected: 

fz2 02W, 1 

= : (i oj (x + E,t }M (x - E,t) J = 0 : • 
(3.7) 

In the limit the E tends to zero the connecting line (or lines) 
becomes a loop (or loops). Hence, in this limit the connected 
set is proportional at least to h and must vanish when h is 
zero. Noting that 

1i2 02W I 2 X' _. r • 
t/J ( ,rPO)=' "T ""J( )2 . 

I u. X J=O 

= lim : - ' : 
1

1i2 02W I 

<-.0 j2 OJ(x + £,t)M(x - E,t) J=O 
(3.8) 

the proof is complete. 
The statement generalizes to arbitrary powers of the 

functional derivative, so that 

lin O"W I lim: - __ r_ = 0 'v' n > 1. 
fi~O i" oJ(x)" J=O 

(3.9) 

The proof breaks down when n equals one since in that case 
the connected and disconnected sets coincide, so (3.5) 
becomes 

t/JO(x;rPo)=lim t/J(x,rPo) 
fi .0 

= r/Jo(x) + A. f dy..::l (x - y): [t/Jo(x;rPo) ) 2: . 

(3.10) 

Relation (3.10) generalizes to interactions involving arbi
trary powers and to functions which have well-defined pow
er series expansions. 

Form (3.1) is then seen as necessary to ensure that the 
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right-hand side of (2.1) does not vanish when'" is zero and 
thus to maintain a classical limit for the quantum theory. 
Form (3.1) is then the path integral representation of the 
usual Yang-Feldman equation and satisfies the quantized 
nonlinear equation of motion 

4 (ax )¢(x;t/Jo) = F [¢] (x;t/Jo) 

and the asymptotic limit (2.2). 

B. The boson theorem and vacuum behavior 

(3.11) 

A form of the boson theorem4 may be proved for the 
simple case being discussed here. Suppose that t/Jo appearing 
in the functional Wr is shifted by the c-number functionf(x) 
which satisfies 

4 (ax)f(x) = O. (3.12) 

Then the field operator defined by 

.I.f( .j, )=.!i. DWr [J,t/Jo + f] I . '/' X,'/'o-' . 
i OJ (x) J~O 

(3.13) 

satisfies the equation 

¢I(x;t/Jo) 

= t/Jo(x) + f(x) - f dy.1 (x - y):Z r- 1 [J,t/Jo + f] 

X 5I':n, [~_D -]Zr [J,t/Jo + f] \ : . (3.14) 
I OJ(y) J=O 

Making the obvious identification 

F I [ ¢ ](x;t/Jo) = -:Z r- 1 [J,t/Jo + f] 51' :n' [~ _15_] 
I OJ(x) 

XZr [J,t/Jo + f] \ J ~ 0: (3.15) 

shows that 

4 (ax )¢I (X;t/Jo) = F I [¢] (X;t/Jo), (3.16) 

so that ¢I satisfies the same nonlinear equation of motion as 
¢, which is the usual boson theorem. 

Result (3.16) gives a covariant method for determining 
the vacuum behavior of the theory under examination. Due 
to the normal ordering present in the dynamical map, the 
possible vacuum expectation values of the field operator and 
its retarded products are given by the formula 

(OIGf[¢]IO)=:G[~~]w,[J,t/Jo+fl\ ' 
I 8J J~4>, ~O 

(3.17) 

where the only constraint onfis that it satisfy (3.12). Using 
(3.17) and the generalization of(3.1O) shows that the c-num
ber function 

t/J f(x) (0 I ¢l(x;t/Jo) 10) 

satisfies the classical differential equation 

4 (ax)t/J f(x) = - 5I':n, [t/J I(x)], 

so that the correspondence principle is satisfied. 

c. Invariances of the dynamical map 

(3.18) 

(3.19) 

In the event that the path integral is invariant under 
some internal symmetry operation, certain constraints are 
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placed upon the form of the dynamical map. This is best 
illustrated by a case where the form for Wr [J,t/Jo] can be 
correctly generalized to one where several fields are present. 
Such a case is given by the Goldstone model18 where the 
classical equation of motion is given by 

(a 2 - m2)t/J = 4t/J *t/J 2. (3.20) 

This equation is invariant under the phase transformation 

t/J' = e ifit/J, eER, (3.21) 
where e is some arbitrary constant. 

The generalization of (2.20) for this case is 

Zr [J,J * ,t/Jo,t/J ~] 

= N f [dt/J ][dt/J *] exp ~ f dx 

X [t/J *4 (ax)t/J - yl (t/J + t/Jo)\t/J * + t/J ~)2 

+ J *(t/J + t/Jo) + J (t/J * + t/J ~)]. (3.22) 

Inserting the simultaneous phase transformations 

J'=eifiJ, t/J'=eifit/J, t/J~ =e'fit/Jo 

into (3.22) shows that 

(3.23) 

Wr[J',J*',t/J~,t/J~,] = Wr[J,J*,t/Jo,t/J~]. (3.24) 

For e infinitesimal this yields 

f [ DW, DWr dx J(x)---J*(x) --
OJ (x) OJ *(x) 

DWr DW, ] 
+ :t/Jo<x) Dt/Jo(x) : - :t/J ~(x) Dt/J ~(x) : = 0 (3.25) 

which holds for arbitrary J (x). 
Relation (3.25) serves as a generator for an infinite 

number of relations between retarded products of the field 
operators. Of course, these relations follow from the Ward
Takahashi identities for the Green's functions of the theory 
which originally appear in (2.4). For instance, differentiat
ing (3.25) once and setting J = 0 yields 

¢(x;t/Jo,t/Jt) = f dy[:t/Jo(Y) :~~x;) :_:t/J~(y)D::;) :]. 
(3.26) 

Further identities may be had from (3.26) by iterating the 
equation an arbitrary number of times. 

It is easy to see that the transformation 

t/J ~ = eifit/Jo (3.27) 

on the in-field generates the transformation 

(3.28) 

I.e., 

(3.29) 

The proof of (3.29) follows from the form (3.22) coupled 
with the invariance (3.24). It follows that 

¢'(x;t/J ~ ,t/J ~') 

=:!i. 15 W[J',J*',t/J,t/J*']\ : 
i DJ*'(x) rOO J~a 

= eifi: !i. _15_ W, p,J * ,t/Ja,t/J ~] I : 
i DJ*(x) J~a 
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= ei()t/J(x;,pO',p ~). (3.30) 
It is apparent that the transformation (3.27) is also an invari
ance of the free field equation. 

D. Broken symmetry solutions 

Broken symmetries are accommodated in the path inte
gral form (2.20) by shifting the in-field(s) by a constant and 
applying the self-consistency method to determine the mass 
associated with the asymptotic particle states. This method 
is illustrated in the following example of a hermitian scalar 
field. 

The initial Lagrangian appearing in (2.20) takes the 
form 

(3.31) 

The quadratic mass term is treated as an interaction, so that 
Zr becomes 

Zr [J,,po] = N I [d,p ] expi I dx [~,pa2,p - m~(,p + ,pO)2 

+ 2"int (,p + ,po) + J (,p + ,po)]. (3.32) 

The asymptotic field is then shifted by a constant v and the 
terms linear in (,p + ,po) are removed by making the 
identification 

m~v _ a2 
2"int(,p + v) I = o. 

a,p2 <P~O 
(3.33) 

The coefficient of the terms quadratic in (,p + ,po) is given by 

...!.. [2 a2 
2"int (,p + v) I ]_ 1 2 mo - --m 

2 a,p2 <p~o-2 
(3.34) 

So that the effective mass of the interacting field for the 
broken symmetry is m. The reader will notice that these con
ditions are identical to the usual tree approximation used in 
functional methods. 19 

As an example, suppose that (3.20) has a nonzero v 
solution. It then follows that the generating functional (3.22) 
is invariant under the following simultaneous operators. 

J" = ei()J, ,p" = ei(),p, ,p;; = ei(),po + v(ei() -1), 
(3.35) 

the double prime being used to distinguish this transforma
tion from (3.23). It then follows that 

(3.36) 

so that the transformations of (3.35) generate the usual 
phase change of the interpolating field when a broken sym
metry solution is selected. This result has been obtained be
fore by other means. 9 Of course, it is obvious that in order for 
the free field equation of motion to remain invariant under 
transformation (3.35) for nozero v, ,po must correspond to a 
massless particle, the usual Goldstone boson associated with 
the broken continuous symmetry. 

As a final note, it is necessary to examine the boson 
theorem in the case of a broken symmetry. It happens that 
two forms of the Yang-Feldman equation (3.1) can be writ
ten for the case of broken symmetry, the two forms being 
equivalent. 

The first form is derived from the generating functional 
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(considering a single Hermitian scalar field) 

Zr [J,,po + v] 

- i. I d {2" [.! _0 ] - !om 21i 2~} - exp h x int i oJ(x) oJ (X)2 

xI [d,p] expi I dy[!,p(a2-m2),p+J(,p +,po+ v)], 

(3.37) 

where 

om2 = m~ - m2. (3.38) 

Expression (3.37) gives rise to the Yang-Feldman equation 

t/J(x;,po) = ,po(x) + v - I dy ~ (x - y):Z ,.- 1 [J,,po + v] 

X 2";nt [~_o -]Zr [J,,po + v] I : 
I oJ(y) J~O 

+ om2I dy ~ (x - y)t/J(y;,po), (3.39) 

where 

(a ~ - m2)~ (x - y) = o(x - y). (3.40) 

The second form comes from rewriting the generating 
functional as 

Zr [J,,po + v] = exp - dy Qint -:---i I [Ii 0 ] 
Ii I ok(y) 

X I [d,p ] exp ~ I dx[!,p (az - m2),p 

+ J (,p + ,po + v) + k (,p + ,po)] I k ~ d 
(3.41) 

where Qint represents the cubic and higher order terms de
rived by expanding the shifted interaction appearing in 
(3.32) and cancelling the linear and quadratic terms. Expres
sion (3.41) gives 

t/J(x;,po) = ,po(x) + v + I dy ~ (x - y):Z r- I [J,,po + v] 

xQ;nt [~_o_ - v ]Zr[J,,po + v] I :. 
I oJ(y) J~O 

(3.42) 

The two forms for t/J, (3.39), and (3.42), must yield iden
tical operators and therefore both must satisfy, in the limit 
given by (3.18), the equation 

(a 2 
- m~),p f(x) = - 2"int [,p f(x)] (3.43) 

where ,po is shifted by the c-number function! 

IV. APPLICATIONS 

In this section several simple applications of the results 
derived in Secs. II and III will be given. 

A. The free field 

As an illustration of these techniques, it is formally pos
sible to expand a free field of mass m in terms of free field 
operators associated with mass mo. Of course, the field is 
then no longer free since it is defined over the incorrect Fock 
space. However, for the sake of example, such a procedure 
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can be realized by using an interaction term of the form 

Yint=~(m6-m2)¢>2. (4.1) 

The path integration may be performed exactly to obtain 

Wr [J,¢>o] 

= ~ f dx dy{ (m 2 - m~)¢>o(x)L1 (x - y)J(y) 

- ~J(x)L1 (x - y)J(Y)J + ~ J dx ¢>o(x)J(x), 

(4.2) 

where terms independent of J have been dropped and 

(a; - m 2)L1 (x - y) = !5(x - y). (4.3) 

It follows that 

o/(x;¢>o) = ¢>o(x) + (m2 - m~) f dy L1 (x - y)¢>o(y), 

(4.4) 

which clearly satisfies 

(a; - m2)t/J(x;¢>0) = O. (4.5) 

It is also clear that 

R {o/(x)t/J(y)Jconnected = in:i (x - y), (4.6) 

all other connected Green's functions vanishing. 
The boson theorem is illustrated in this case by shifting 

¢>o by the function ce ikx, where c is arbitrary, such that 

k
2 = m6· 

Then, by (3.17), 

(Olo/f(x)IO) 

(4.7) 

= ce
ikx + c(m~ - m2) J dy L1 (x - y)eikY = 0, (4.8) 

which is a trivial solution to (4.5). However, ifthe static 
solution (in one spatial dimension) 

!(x)=ce-m,lxl (4.9) 

is used, it follows that 

(01 o/f(x) 10) = mo ce~mlxl, 
m 

which is a static solution to (4.5). 

B. Interacting case 

(4.lO) 

The next case to be examined is the nontrivial example 
given in (3.4). In addition, a negative mass term will be se-

lected, allowing the nonzero v solution to (3.33) of 

m~ 
V=-

A (4.11) 

and the effective mass from (3.34) of m~. Then, in the h = 0 
limit, the field operator satisfies (3.42), which can be written 

t/Jo(x;¢>o) = ¢>o + v + A f dy L1 (x - y): [ t/Jo( y;¢>o) - v] 2:. 

Assuming the form for 0/0 

t/Jo<x;¢>o) = v + ! An :pn(x): , 
fJ=1 

(4.12) 

(4.13) 

where n refers to the power of the in-field operator, leads to 
the recurrence relation, for n > 1, 

An :pn(x): = A J dy L1 (x - y) . ~ AiA /pi +j(x): . 
j +J=" 

(4.14) 

Shifting the field operator by the static solution 

!(x)=ce~m,x (4.15) 

to the free field equation and taking the vacuum expectation 
value of (4.13) gives the recurrence relation 

A = A " n 2 L.. AiAj' (''tin> 1). 
(n -l)m~ i+j~n 

After selecting 

6m6 c= - __ em,Q A 
A-I' 

where a is arbitrary, it follows that 

m~ 6m~ 00 

¢>f(x)= -+ - I (_l)nne~m,n(x-Q), 
A A n~ 1 

which readily sums to 
2 2 

¢> fIx) = mo _ ~ mo sech2 ..!.. mo(x _ a). 
A 2 A 2 

This is a static solution to the classical equation 

(a 2 + m6)¢> fIx) = A [1,6 f(xlF, 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

in agreement with result (3.43). If the positive sign is chosen 
for c in (4.17) it follows that 

m6 3 m6 1 
¢> fIx) = - + - - csch2 

- mo(x - a), (4.21) 
A 2 A 2 

which is also a solution of (4. 20), although irregular atx = a. 

Higher order corrections to (4.20) may be obtained by performing the functional differentiation indicated in the Yang
Feldman equation (3.1). This repeated process will generate a double power series in A and fl. For this purpose it is more 
convenient to use form (3.42) for 0/. After the first differentiation, it follows that 

o/(x;¢>o) = v + ¢>o(x) + A f dy L1 (x - y) 

X:Z r~ I [J,¢>o + v] {¢>o(y) + A f dz L1 (y - z) [~_8_ - V]2}2 Z, (J,¢>o + v11 : 
1 M(z) J~O 

+ iflU 2 J dy dz L1 (x - y)L1 2( Y - Z) (t,b(x;¢>o) - v 1 - ifl ~ L1 (0). 
m~ 

(4.22) 

Since the first three terms on the right-hand side of (4.22) do not vanish in the event that fl = 0, they must contain the tree 
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approximation. It is then assumed that the vacuum expectation value of t{I may be expanded in a double power series in A. and Ii 
in the manner 

(01 t{lf(x) 10) = cp fIx) +,1.1i¢ {(x) + OW) + .... 
Expression (4.22) may be renormalized consistently by making the demand that 

t/II,x;cpo = 0) = v, 

(4.23) 

(4.24) 

and introducing counterterms to make (4.4) hold. By inserting (4.23) into the right-hand side of(4.22) and keeping terms in first 
order it follows that 

cp {(x) = i3m~ f dy dz Ll (x - y)Ll 2( Y - z) sech2~mo(z - a). (4.25) 

Correction of higher order in A and fz may be generated by continuing the expression (4.23), applying condition (4.24), and 
using the results derived at each of the previous stages of the expression. 

The form for the connected two-point operator product is 

[ 

_ 1 - ~81Zr [J,cpo + v] 
R ! t{I(x)t/II,y)j = Z r [J,tpo + v] i l 8J(x)8J(y) 

fz 8Z, [J,cpo + v] Ii 8Z, [J,cpo + v] ] I 
- Z ,- 2 [J,cpo + v] i i>J(X) i oJ(y) J=o' 

(4.26) 

For the interaction given by (3.4), expression (4.26) reduces to 

R {t{I(X)t{I( y) 1 = iliLl (x - y) + jliU f dz Ll (x - z)Ll (y - z)[ t{I(z;cpo) - vJ 

+ A. 2 f dr dz Ll (x - r)Ll (y - Z)! Wmz + 2 Wrrz(Wz - v) + 2 Wzzr(Wr - v) 

+2 W;z +4( Wr - v)W,AWz - v) 1. (4.27) 

where the notation 

fzl 82W I Wrz = - , etc., 
;Z 8J(r)8J(z) J=O 

has been introduced, and use has been made of 

Z [J,cpo] = expW[J,cpo]. 

(4.28) 

(4.29) 

I t follows that (4.27) is at least of order fz, so that the vacuum expectation value has an expansion in terms of fz of the form 

(OIR ! t{l(x)t{I(y) J 10) = ligl(X, y) + ~gix, y) + .... (4.30) 

Inserting (4.30) into (4.27) and dropping all terms of order fz2 or higher leaves 

g{(x, y)=lim [fz-1(0 IR f{ t{I(x)t{I(y) J 10) ] 
1;-0 

= iLl (x - y) + iU J dzLl (x -z)Ll (y -z)[cp f(z) - v] 

+4,1. 2 J drdzLl (x - r)Ll (y -z)[cp f(r) - v] rcp f(z) - v] g{(r,z) (4.31) 

as the equation whichg](x,y) must satisfy when constructed on the soliton vacuum. Iteration of(4.31) shows that 

g{(x,y) = i n~o (U y f dz] ... dznLl (x - z])[cp f(z]) - v]Ll (Zl - Z2)'" [cp f(zn) - v]Ll (zn - y). (4.32) 

Using the result (4.21) or (4.19) for cp f(x) shows that the 
factor (U Y is cancelled order by order, leaving g{(x, y) in
dependent of A. and expressed as a power series in m6. Thus, 
in the limit that A goes to zero the free field is not obtained. 
The two-point function so constructed is then disjoint from 
the Fock representation normally employed to perform per
turbation theory. Evaluation of (4.32) will be presented 
elsewhere. 

V. CONCLUSIONS 

In Sees. II and III the path integral form for the dyna-
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I 
mical map was developed and its properties analyzed. An 
alternate version of the boson theorem was proved and sym
metry behavior was discussed in the context of the results. 
Section IV iUustrated this technique for both a trivial and an 
interacting case. In the latter case the method for generating 
quantum corrections to the classical limit was developed and 
employed. In addition, it was shown that arbitrary operator 
products could be examined using the path integral gener
ator and the boson theorem. 

Of course, the work presented here is contingent upon 
two major assumptions. The first is that the path integral has 
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a physically and mathematically meaningful interpreation. 
The second is that the boson transformation generates uni
tarily inequivalent representations of the canonical commu
tation relations for the same theory. Both of these assump
tions are in dire need of clarification before the results 
obtained by this and other authors can be fully understood. 
The answers to these questions are as important as the exten
sion of this work to multisoliton states, statistical mechanics 
for solitons and gauge theories. 
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Bipolar expansions of tensor fields under transformations of arbitrary translation and scaling of 
coordinates are obtained. The judicious choice of a coupled representation renders the expression 
compact and transparent. The radial coefficient functions (form factors) in this expansion can be 
given as integral transforms. They are shown to satisfy four-term recurrence relations, which 
together with an appropriate exploitation of the underlying symmetry result in a significant 
simplification of the original problem. A computational scheme is also worked out with which the 
radial form factors can be constructed analytically in terms of Gauss hypergeometric functions. 

PACS numbers: 03.70. + k, 02.30.Mv, 02.30.Qy 

I. INTRODUCTION 

It is well known that physical quantities are classified 
according to their properties under coordinate transforma
tions. Such symmetry considerations not only deepen our 
understanding of nature at a fundamental level, but may of
ten lead to practical solutions to some apparently complex 
problems. 

In both structure and reaction theories of atomic and 
nuclear many-body physics, one frequently encounters the 
overlaps offunctions which are defined with respect to dif
ferent reference frames. This often necessitates expansions of 
the relevant physical quantities about relatively translated 
systems. From a pragmatic standpoint, the efficiency with 
which such expansions can be performed can often help to 
circumvent what may otherwise be an intractable math
ematical procedure. 

In this paper, we discuss the bipolar expansion of tensor 
fields under general coordinate transformations of arbitrary 
translation and scaling. 1 Our discussions are mainly con
cerned with two aspects. We derive and analyze the radial 
coefficient functions (form factors) in the expansion. The sa
lient features of these form factors can be succintly displayed 
in four-term recurrence relations. With due exploitation of 
the underlying symmetries, we are able to construct analyti
cally a subclass of form factors, from which all other form 
factors in the expansion can be generated recursively. 

The more restricted cases of bipolar expansions of sca
lar functions have been studied by various authors. 2 Special 
algorithms have been developed to calculate the coefficient 
functions in such expansions. Though they are designed to 
cater for the specific problems in mind, these methods are 
often cumbersome. Such complexities may sometimes be 
due to the fact that the symmetry properties inherent in the 
problems have not been fully used. 

A tensor field, of which a scalar field is but a special 

"'This work is supported in part through funds provided by NSF grant 
PHY73-01164. 

case, is much richer in mathematical structure. But it is 
shown here that, by a judicious choice of a coupled representa
tation which fully exploits the symmetry in the angular 
parts, the resultant bipolar expansion turns out to be simple, 
and, from a computational point of view, manageable. 

Since a tensor field is usually defined by it properties 
under rotation,3 spherical tensor fields are natural candi
dates for our studies. In practice, they are realized in the 
form of single-particle wave functions and coupled single
particle wave functions relative to some core. In Sec. II, the 
bipolar expansions of tensor fields are derived by means of a 
Fourier transform method. The radial form factors in the 
expansions emerge as integral transforms, from which, four
term recurrence relations can be obtained. A simple dia
grammatic representation is then introduced to help the enu
meration of these form factor and illustrates, in a transparent 
manner, the simplification resulting from symmetry consid
erations. In Sec. III, these form factors are explicitly con
structed. They can be expressed analytically in terms ofsim
pIe polynomials and Gauss hypergeometric functions. 
Finally, Sec. IV summarizes the main findings and briefly 
discussed the prospects of practical applications of this 
method. 

II. BIPOLAR EXPANSION AND RECURRENCE 
RELATIONS 

A. Single-particle orbitals: Definition of form factors 
FL(r,Rj 

Consider the case of a spherical tensor field of rank L, of 
which a single-particle wavefunction with good angular mo
mentum quantum numbers is a typical example, 

IJir(r) =fdr)yr(P). (1) 

Here, we adopt the usual convention that the argument P of 
the spherical harmonic Y r denotes the angular coordinates 
defined by the unit vector r/r. 

For most problems of physical interest, it is sufficient to 
consider square-integrable tensor fields, though the results 
obtained here are also valid under more general conditions.4 
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Since a general tensor field can be decomposed into compo
nents of type (1),3 attention is focused on spherical tensor 
fields. 

It is well known that the Fourier transform of a spheri
cal tensor is a tensor of the same rank in k-space, 

F[lJIr] (21T)-3/2 f d 3r e-ik'rlJlr(r) 

= ( - i)LjL(k )Y1:(k) 

= W1:(k). (2) 

To arrive at Eq. (2), the usual partial wave expansion of the 
plane wave has been invoked. The radial functionjL is given 
by the Hankel transform 

jL(k) = (2/1T)1/2 L" dr rjdkr)/dr), 

where j L is the spherical Bessel function of order L. 
The original tensor in r-space can be recovered by 

means of the standard inverse transformation 

(3) 

1J11:(r) = (21T)-3/2 f d 3ke,lr.·rW1:(k), (4) 

which provides the starting point of the present analysis. 
From Eq. (4), an expression can be obtained for 

1JI:!(r + R) in terms of tensors in coordinates rand R, 

1JI:!(r + R) = (21T)-3/ 2 S d 3k e,lr.·(r+ R).p:!(k). (5) 

After applying the plane-wave expansion for 
exp(ik·r) and exp(ik·R) on the right-hand side ofEq. (5), con
siderable reductions can be performed by means of standard 
tensor algebra and angular momentum recoupIings. After 
the angular integration in the k-space, the final expression is 
obtained, 

1JI:!(r + R) = L SiAFiA (r,R nY,dP) ® YA (R ll:!. (6) 
AA 

Here, we have used conventional notations of angular mo
mentum algebra.3 The indices A and A in Eq. (6) satisfy con
ditions due to angular momentum addition, 

1,1, -A I<L<A +A, 

as well as a parity selection rule, 

A +A = even. 

(7) 

(8) 

The origin of (8) can be traced back to the geometric factor 

(9) 

where 

i-==(2J + 1)1/2. (10) 

The double radial functions FtA' hereafter called form fac
tors, are given as integral transforms, 

FiA(r,R)-== IO dk k 2jA(kr)jA(kR )jL(k). (11) 

Steps leading to Eqs. (6)-( 11) are outlined in Appendix A. 
The judicious choice of a coupled representation in Eq. 

(6) provides a particularly economic expression for the bipo
lar expansion. The global symmetries of the tensor field 

786 J. Math. Phys .• Vol. 22, No.4, April 1981 

(which are general properties) are contained,.term by term, 
in the angular parts and the geometric factors. The full bur
den of describing further details of the field (which are specif
ic of the problem in question) is then carried by the radial 
form factors which have to be calculated for each case. 

In principle, the expansion in Eq. (6) involves an infinite 
number of terms. It is clear that questions such as the rate of 
convergence of the series are not susceptible to simple ana
lyses without specifying/L (r). We shall bypass such general 

considerations and proceed to study the properties of the 
form factor themselves. 

An exploitation of the well-known recurrence relation 
of the spherical Bessel functions 

jl+ I (z) + jl_ I (z) = [(21 + l)/z] jl(z) (12) 

and repeated applications of definition (11) result in a four
term recurrence relation for the form factors (see Appendix 
B), 

FL + I (r,R ) + Fi+2.A + I (r,R ) 

U + 3 (R)[ L L ] 
= 2A + 3 -; FA + I.A (r,R ) + FA + I.A + 2 (r,R) . 

(13) 

This recurrerice relation leads to a significant simplifi
cation as can be illustrated in the following way. Each form 
factor in the bipolar expansion (6) can be associated with a 
lattice point on a (A,A I-plane (see Fig. 1). Clearly, only the 
region A,A >0 is of interest. The inequalities (7) imposed by 
angular momentum addition imply that the form factors 
which constitute the bipolar expansion correspond to the 
lattice-points confined to a semi-infinite rectangle, bounded 
by and including the lines A + A = L, A - A = Land 
A - A = L. Furthermore, it is easy to see that, from the par
ity selection rule (8), only a subset of the points on the rectan
gle contributes to the expansion (see Fig. 1). Finally, the re
currence relation (13) provides a substantial reduction. The 
form factors associated with any two perpendicular lines, 
say, A + A = L and A - A = L (or A - A = L ), can be re
garded as the basic elements of the expansion which require 
initial computations [see Figs. I(a) and I(b)]. All other form 
factors can be easily generated recursively from the basic set. 

By way of simple illustration, consider a practical prob
lem in which it is necessary to truncate the expansion series. 
A natural scheme would be to set 

Amax = Amax = L + N - I (14) 

for some N [see Fig. lIb)). Since the global symmetry of the 
tensor field is preserved, term by term, in the angular parts, 
the adequacy of the truncated series depends only on how 
rapidly the form factors vanish at higher A and A. The ad
vantage of the recurrence relations is that we can go to larger 
values of N (and hence Amax and Amax ) without any apprecia
ble increase of computational efforts. As can be seen in Fig. 
lIb), with given values of Land N, there are (L + I)N form 
factors in the truncated series, of which, only (L + N) func
tions need to be actually computed. This is a particularly 
substantial reduction for cases with large L values. Table I 
presents some of these reduction ratios(L + N)/[(L + lIN]. 
Even for L = 1, this reduction ratio is 6/10 for N = 5. For a 

H. H. K. Tang and J. S. Vaagen 786 



                                                                                                                                    

FIG. lao Diagrammatic representation ofform factors Fr" (r, R I and their 
four-term recurrence relation. The dotted lines join the form factors which 
are related through the recursion relation. The crosses correspond to form 
factors which do not appear in the expansion due to the parity selection rule. 
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FIG. lb. Building block form factors Tr" {r, R; r'1 and truncation scheme, 
Here, the basic form factors are represented by points denoted by solid 
circles along the lines 4 + A = L, 4 -.It := L and.lt - 4 = L. The points 
denoted by open circles represent the form factors which can be obtained 
recursively from the basic form factors. 

moderate value of L = 5, the reduction is 1/3 and it consid
erably decreases further as we approach larger values of N. 

B. Two coupled single-particle orbitals 

The basic result in the previous subsection can be read
ily extended to a slightly more general case, 

tJtl,I,r(r l,r2) = [ft, (rl)YI , (i\) ®ft,(r2 )YI,(r2)W· (15) 

Such tensors frequently occur in many-body problems, for 
example, in the configuration of two single-particle states 
coupled to a total angular momentum L. 

A repeated application of the basic formula (6) and the 
subsequent reduction by angular momentum algebra results 
in the following expansion: 

tJtl,I,~(rl + RI,r2 + R2) 

{

A.I A.2 

= L L L [I~YY' AI A2 
Y Y' A,A, A,A, II 12 

XFl.,A, (rl,R 1)F1,A, (r2,R2) 

x{[YA,(rtl® YA,{r2)]Y ® [YA,(Rtl® YA,(R2)]_"'''}~' (16) 

The conventions in Eq. (16) are the same as those in Eq. (6). 
The 9 j-symbol arises from angular momentum recouplings 
and the form factors Fl.,A, and F1,A, are derived from ft, 
and ft" respectively. 

C. Bipolar expansions under general coordinate 
transformations 

Consider the more general coordinate transformation 
for the single spherical tensor field discussed in subsection 
A, 

rC'~lRl + a 2R 2, (17) 

Equation (6) is then generalized to the following form: 

tJt~(a,R, + a 2R2) 

= L (- I(A(a,I+PA(a,ISLFrA(ia,!RI',!a2!R2) 
AA 

X [YA(Rtl ® YA (R2)]f. (18) 

In arriving at Eq. (18), the parity property of spherical har
monics has been invoked, 

Y m A I r if sgna > 0 
{

ym(A) 

I (ar) = (_ 1)IY;"(r) if sgna <0 (19) 

TABLE I. Ratio of the number of basic building block form factors to the total number ofform factors in a given truncation. 

~ 5 10 50 100 150 

0 5/5 10/10 50/50 100/100 150/150 
I 6/10 11/20 51/100 101/200 151/300 
2 7/15 12/30 521150 1021300 1521450 
3 8/20 13/40 53/200 103/400 153/600 
4 9/25 14/50 54/250 104/500 154/750 
5 10/30 15/60 55/300 105/600 155/900 

10 15/55 20/110 60/550 !l 0/11 00 160/1650 
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and phase factors p;. (a) have been introduced, 

p;. (a) {O ~f sgna > 0 . (20) 
A If sgna <0 

Equipped with the results in Eqs. (16) and (18), we can 
now consider the expansion of a coupled tensor field '/I[ [ :! 
under the general (real) linear coordinate transformatio~' 

(21) 

where ai' a 2 , f31' andf32 are real. The generalized result is 

'/I[,rL(aIR I +a2R2,f3IR I +f32R2) 

=_1 I I I 
41T ,YO,YO';',A, ;',A, 

X ( - 1 r"" + ,YO' + PA,la,) + PA,la,) + PA,I (3,) + PA,I (3,) 

:£)(AI A2 :£') 
o 0 0 0 

(22) 

The recurrence relation (13) is now generalized to the 
following form: 

Ft,A + I (ar,bR ) + F~ + 2,A + I (ar,bR ) 

_ U + 3 bR [ L L 
- 2A + 3 '-;;; F;. + I,A (ar,bR ) + F;. + I,A + 2 (ar,bR )] 

for scaling factors a,b > O. 
(23) 

III. ANALYTIC CONSTRUCTION OF FORM FACTORS 

A. Definition of form factors "0A (r,R;r) 

The previous section concerns the recurrence relations 
and the global symmetries of the double radial form factors 
in the bipolar expansion. In a given problem, the practicality 
of such an expansion depends, to a considerable extent, on 
the ease with which these radial functions can be calculated. 
We now show that they can in fact be constructed as simple 
transforms involving only known functions. 

Equations (3) and (11) can be combined to give the 
following: 

F~A(r,R)=(!)1/2 1"" dr'r'fL(r')TL(r,R;r'), (24) 

where a family of auxiliary form factors [TL 1 has been 
introduced, 

TL (r,R;r')= 1"" dk k 2j;. (kr)jA (kR )jdkr'). (25) 

Obviously, these form factors also satisfy the recurrence re
lation (23). 

It is easy to see the convergence of the integral in Eq. 
(25). From the analytic properties of spherical Bessel func
tions, it is obvious that the integral is well-defined over an 
interval [O,kmax ] for any large but finite kmax • On the other 
hand, the spherical Bessel functions also have well-known 
asymptotic behavior, 
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k7;.(kr)jA(kR )jL(kr') 

~ k 2 sin(kr - 0 1T) sin(kR - ¥i1T) sin(kr' - ~1T) 

k_ 00 kr kR kr' 
(26) 

Hence, the oscillating integrand in Eq. (25) is absolutely 
bounded by (kRrr')-1 over [kmax , 00] and the integral can be 
easily shown to converge over this semi-infinite interval. 

A more rigorous proof for the convergence of integral 
(25) is as follows: It is sufficient to demonstrate the conver
gence of 

i oo 
dk k 2j;. (kr)jA (kR )jL (kr') 

k m .. 

for any nonzero kmax ' Since we have the decomposition for
mula (30), it is clear that it is sufficient to demonstrate the 
convergence of integrals of the type: 

(00 dx(Sin(x+a))x-{3 (f3>O). 
Jx. cos(x + a) \xo> 0 

Formally, this is 

(00 dx -.!!.... {( - c~s(x + a))}x-(3 
Jx. dx sm(x + a) 

= [(-c~s(x+a))x_{3]oo 
sm(x + a) x. 

+f3 (00 dx (- c~s(x + a))x-({3+ 1). 

L. sm(x +a) 

The above manipulation is formal. But the first term isfinite 
and the second integral is absolutely bounded by x - II + (3) 

and converges. Hence the original integral converges. 
There are obvious advantages for Eqs. (24) and (25). In 

Eq. (11), F ~A are given as transforms oflL (k ). But in Eq. (24), 
they are directly expressed as transforms of the original radi
al functionfL (r). From the standpoint of numerical imple
mentations, the use ofEq. (24) will bypass any loss of accura
cy that results from calculatinglL (k). Moreover, the form 
factors T~A are independent of the tensor field in question. 
They can be computed once for all and can be saved for later 
steps of the computations. This is a nontrivial saving of ef
fort, particularly in large scale calculations. Hence, such 
considerations warrant an emphasis on T ~A as the basic 
"building blocks" for the bipolar expansion. 

It may seem that there is still a drawback for TL. As 
functions of three variables, their structure may be compli
cated. From a numerical point of view, their computation 
may require a three-dimensional storage. However, such 
shortcoming is only superficial. It can be readily verified 
from definition (25) that these form factors have the scaling 
property, 

TL (ar, f3R; yr') = (af3y)-3T~A -, - ; - (27) ( r R r') 
f3y ya af3 

for a, f3, y> O. Hence, the only relevant elements which de
termine the structure of T~A are the ratios between any two 
pairs of radii. In an actual numerical calculation, we need 
only to calculate the values of the function T ~A at a selected 
set of points which require a two-dimensional storage; the 
rest can be generated by appropriate scalings. This feature 
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will be further iIIustrated later from the explicit construction 
of these form factors. 

We now develope a computational scheme by which the 
form factors rfA can be constructed analytically. This can 
be accomplished by exploiting some well-known properties 
of Bessel functions. 

The functions rXA can be rewritten in terms of Bessel 
functions of the first kind, 

TXA (r,R;r') = (~)312 1, IIZ r"" dk k 1/2/it + liZ (kr) 
2 (Rrr) Jo 

XIA + liZ (kR ).JL + 112 (kr'). (28) 

Equation (28) is directly obtained from Eq. (25) after apply
ing the relation 

jl(z) = (~) 1/211 + 1/2 (z). (29) 

Furthermore, for integral order I, II + liZ has a simple 
representation,5 

11+ 112(Z) 

= ( ~ ) 112 r sin(z - ~hT)lll(I;Z) + cos(z - ~hT)llz(I;z) J 

(30) 
for z~O, where III and llz are finite polynomials in inverse 
powers of z. That is, 

II (I' )== I [lI2J (- It(1 + 2n)! 1 (31) 
J;Z ,,= 0 (2n)!(/- 21t)! (2z)2" 

and 

ll2(1;z)= I [(/- 11/2J (- 1)"(/ + 2n + I)! 1 ,(32) 
n = 0 (2n + 1)!(/ - 21t - I)! (2z)2n + I 

where we have adopted the notation 

[ _to if K<O 
K]= integral part of K if K>O . 

(33) 

If the representation (30) is substituted into Eq. (28) for, 

say, I), + liZ andlA + 1/2' the form factor TXA can be formally 
expressed as a sum of terms with the form 

S [:l = roo dk {sin[k (r ± R)] I k - 1/2ll (A:kr) 
aP Jo cos[k (r ± R )] a , (34) 

Xllp(A;kR ).JL + III (kr'), 

where a,/3 = 1,2. After some straightforward manipula
tions, to be discussed below, the product of polynomials can 
be expressed in the form 

k - 1I2ll II = '" C (r R )k - 2n - m a (3 £",- n , , (35) 
n 

where Cn 's are k-independent algebraic functions of rand R, 
and where m's are specified below. 

Provided that the integrand is well behaved at k = 0 
and vanishes at k---+ 00 , Sap can be decomposed as 

S tl = I Cn(r,R) roo dk {Sin[k (r ± R)]} 
ap n Jo cos[k (r ± R )] (36) 

X k - In - mIL + 1/1 (kr'). 

If these integrals are convergent, they can be expressed in 
terms of Gauss hypergeometric functions. 

Before making digression into the mathematical details 
of such decomposition, it should be emphasized that in the 
present bipolar expansion, it is always possible to select an 
optimal set of form factors which can be constructed from 
terms like (36), for which the finite sum is term-by-term con
vergent. The rest of the form factors can then be generated 
exactly from the four-term recurrence relation. 

B. Product of Bessel functions 

From Eq. (30), it is straightforward to obtain the follow
ing expression for a product of two Bessel functions of half
integral orders, 

1 1 {. [ ((A. + A )17') 
lit + 112 (kr).JA + 112 (kR ) = - --1-/2 SlO(k (r + R)) cos (llJ(A.;kr)llz(A;kR) + llz(A.;kr)lll(A;kR )) 

1Tk (rR) 2 

+ sinCA. +2 A )17')1 - lll(A.;kr)lll(A;kR ) + ll2(A.;kr)ll2(A;kR lJ] 
+ cos(k (r + R))[ - sin( (A. +2 A )17' }llM;kr)llz(A;kR ) + ll2(A.;kr)lll(A;kR )) 

+ coseA. +2A 
)1T} - lll(A.;kr)llJ(A;kR ) + ll2(A.;kr)llz(A;kR lJ) 

+ sin(k (r - R ))[ cos(!A. -2
A 

)1T}llM;kr)lll(A;kR ) - llz(A.;kr)lll(A;kR )) 

+ sin(!A. -2
A 

)1T}lll(A.;kr)llI(A;kR ) + ll2(A.;kr)ll2(A;kR ))] 

+ cos(k(r - R))[ - sinCA. -2
A 

)1T}llt(A.;kr)ll2(A;kR) - ll2(A.;kr)lll(A;kR)) 

+ cosCA. -2
A 

)1T}llt(A.;kr)lll(A;kR) + ll2(A.;kr)llz(A;kR lJ]}. 
The expression in Eq. (37) encompasses two cases, namely, 
A. ± A = even and A. ± A = odd. In each case, half of the 

Considered as polynomials of k, the terms llallp 
(a,p = 1,2) fall into three types. 

terms in Eq. (37) vanish. I ( 1) The first type is 

(J./2J + [AIZJ ( l)N 
lll(A.;kr)lll(A;kR) = I ---- C(I.II(A. r,A R)k -IN 

N=O 22N N " , 
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where we have introduced coefficient functions e~,I) which are finite polynomials in inverse powers of rand R only. 
They can be given in different representations 

min (~AI2]) (A.)( A ) 1 
e~·I)(A.,r;A,R) = ~ 2' 2(N _ .) (A. + Ihj (A + Ih(N-J) r.jR 2(N-J) 

j=max (O,N-fAI2]) 'J J 

mm (~A 12]) (A)( A. ) 1 
- J= max (ltr- [A 12]) 2j 2(N - j) (A + Ib(A. + Ih(N-J) R 2Jr(N-J) , 

where we have used the standard notation 

(:) = m!(n n~ m)! 

for the binomial and furthermore, 

(x)" = xIx + 1) ... (x + n - 1). 

(40a) 

(40b) 

Equation (39) can be given in a more compact form after the 
introduction of the following notations: 

and 

r < =::=min(r,R ), 

A. ={A. 
> A if 

A. ={A. < A if 

r>R 
r<R' 

r<R 

r>R 

r> -max(r,R ), (41a) Equation (39) can then be expressed as 

where the summation is a polynomial in the dimensionless 
ratio r < /r> « 1). 

(2) By a similar analysis the second type products are 

I 

[(A - 1)121 + [(A - 1)121 ( _ I)N 
II (A.' krIll (A ·kR ) = " --e (2,2)(A. r;A R )k - 2(N + I) 
2, 2, £..J 22(N + I) N , , 

N=O 
for which the coefficient functions e ~2) are defined by 

1 min (N.[(A > - 1)/2J) lA. »( A. < ) e (2.2)(A. r;A R )= L (A. > 
N , , - r> r:'+ I j=max (O.N- [(A< -1)12]) if + 1 2(N - j) + 1 

(3) The third type includes: 

[A121 +f -1)121 ( I)N 
ll.(A.;kr)ll2(A;kR) = ---- e(I,2)(A. r;A R)k -(2N+ I) 

N = 0 22N + IN' , , 

where 

e~21(A., r; A, R) 

=[~~+' 
min(N,[A>/2]) 

(~) l(N~~)+ J (A.> + Ihj L 
j = max(O.N - [A < - I J/2) 

min(N.[(A> - 1)12]) 

(2;~ 1) l(~~j)) L (A.> + Ihj+ I 

r> r<N j=max(O,N- [A </2]) 

Similarly, 

[(A - I)/~ + [A 121 (- I)N e(2.11(A. r A R)k - (2N + I) 
ll2(A.; kr)lll(A; kR ) = ~ 22N + IN' , , , 

N=O 

where 

min(N,[(A> - 1)/2]) 

L j=max(O,N- [Aj2]) 
min(N,[A>/2]) 

L 
j = max(O.N - [A< - I JI2) 
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(A.< + Ih(N-J) c:r 

(A. < + 1 h(N - J) ( rr>< )21 

(A.< + llz(N-J)+ I (r
r>< )2j 
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(ifr>R) 

(ifr<R) 
(48) 
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c. Building block functions 

The decomposition of the form factors suggested by 
Eqs. (30) and (36) implies that it is necessary to construct a 
class of functions which may be regarded as the ultimate 
building blocks of this method. From Eq. (36), it is clear that 
these functions can be defined categorically by the 
transform: 

(49) 

where x, y > 0 and, in the present problem, v is a half integral 
order. 

Equation (49) is only a formal definition. It is necessary . I 

to find the criteria under which the integral is well defined. 
By an argument similar to that for the integral (25), it is clear 
that the sufficient conditions for the convergence ofEq. (49) 
are that the integrand is finite at t = 0 and vanishes at t- 00 . 

From the known properties of the Bessel functions, the 
integrand is finite at t = 0 if and only if 

J-l + v;;.O. (50) 

It vanishes at t_ 00 if and only if 

(51) 

Under the conditions (50) and (51), the integrand in Eq. (49) 
can be evaluated analytically:5 For 0 <y <x, 

I;Iy, x) = 2"x - (I +")[ r((l + J-l + v)l2) F( 1 + J-l + v , 1 + J-l - v ; J...; (1'-)2) 
r((v - J-l + 1)12) 2 2 2 x 

+ i(2Y) r((2 + J-l + v)/2) F(2 + J-l + v , 2 + J-l - v ; 2.; (1'-)2)], 
x r ((v - J-l)l2) 2 2 2 x 

(52a) 

andforO<x<y, 

rly, x) = (~)V -1Jl+V+ I) r(1 +J-l + v) 
" 2 Y r(v+ 1) 

X{COS[;(1 +J-l+V)]FC +~+v, 2+~+V ;v+ 1;(;Y) 

+ i sin[ ; (1 + J-l + v) ]Fe + ~ + v , 1 + ~ + v ; v + 1; (; Y)}, (52b) 

where r (z) are gamma functions and F (a, h; c; z) are Gauss 
hypergeometric functions. 

D. Analytic expressions of form factors 

With the expressions for /lu./lfJ available and the func
tions I; evaluated, the form factors TfA can be calculated 
explicitly. 

For the sake of definiteness, consider a polynomial ex
pansion for J A + I and JA + I in Eq. (28). In order that a com
ponent like (36) be well defined, it is necessary that the poly
nomial expansion is term-by-term convergent. This implies 
that the integrands in Eq. (36) must be well behaved at k-D. 
From Eqs. (37), (38), (43), (45), and (47), the most singular 
terms are 0 (k - 2IIA/2] + [A 12])) from /lu./lfJ' Then, in the 

integrals, 

k -(2([A/2]+[A/2])+!)J
L

+ (kr')_ k -[2IIAI2]+[AI2])+!i (kr')L+1 
! k-oO 2L + lr (L + 3/2) 

(53) 

Hence, all integrands are well-behaved at k-D if and only if 

L - 2([A 12] + [A 12]);;.0. (54) 

Moreover, in the asymptotic region, even the least conver
gentterm goes ask -1/2 as k_00.Fromthe(A,A )-diagramin 
Fig. la, it is clear that the form factors which satisfy condi
tion (54) correspond to points lying on theA + A = L line. 

By similar arguments, if we choose J A + I J L + I for the 
polynomial expansion, then, the convergence condition im
plies that we have to compute the form factors along the 
A - A = L line. If the polynomial expansion is performed 
for J L + I J A + I then we must calculate form factors along the 
A -A =L line. 

A previous argument shows that if the form factors as-
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I 
sociated with A. + A = LandA. - A = L (or A - A. = L ) are 
known, all others can be generated recursively. This com
pletes the demonstration that our decomposition scheme is 
valid for the bipolar expansion. 

We can now work out the detailed expressions for T fA . 
For simplicity, we consider the form factors associated with 
the A. + A = L line. With appropriate exchanges of indices 
and arguments, the form factors associated with the lines 
A - A = L and A - A. = L can be obtained from the same 
formulas. 

For the sake of clarity, we consider the cases of 
A. ± A = even and A ± A = odd separately. 

(1) IrA + A = L = even, 
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r
~1 + [(A - 1)/2) N 

TL (r R· r') = ~ (~)! ~ _ )(A+A)l2 2 ~ ..i.=L e(I.2)(A 7' A R) 
AA " 2 2r' Rr' N"20 22N+ IN" , 

Xfm[I~12~+3/2)(r + R, r') + (- )Asgn(r - R )I~12~+312)(lr - R I, r')] 
\(A-I)/~+ [AI2J (_)N 

+ Nl::O 22N+1 e~·I)(A,r;A,R) 

Xfm[I~12~+3/2)(r+ R, r') - (- )Asgn(r - R )I~12~+312)(lr - R I, r')] 
[AI2J+[AI2J (_)N 

+ N~O 22N e~·I)(A,r;A,R) 

\(A - 1)/2J + \(A - 1)/2J (_)N 

X&f'e[ - I~12~+!)(r + R, r') + ( - )AI~+(2~+ !)(lr - R I, r'] + N~O 22(N+ I) e~ 2)(A, r; A, R) 

x&f'e[I~12~+ SI2)(r + R, r) + ( - )AI~12~+ sl2,(lr - R I, r')]}' (55a) 

(2) If A + A = L = odd, 

112 { [+1 + [(A - 1)/2J N 

TfA(r,R;r')=~(~) -J-!_I)(A+A-I)12 - ~ ..i.=L e ll •2)(A r:A R) 
2 2r' Rr N"2o 22N + IN', , 

x&f'e[I~12~+3/2)(r + R, r') + (_)A I~12~+3/2)(lr _ R I, r')] _ \(A-I)/~+ [AI2J (- t e~·I)(A, r; A, R) 
N=O 22N+ 1 

/771 [ L ! A L [Al2J + [A I2J ( )N 
X.7le I -121V+3/2,(r+R,r')-(-) I -12~+3I2)(lr-RI,r')]+ l: -:N e~I)(A,r;A,R) 

N=O 2 

Xfm[ - I~12~+!)(r + R, r') + (- )Asgn(r - R )I~12~+!)(lr - R I, r')] 
[IA - 1)/2J + \(A - 1)/21 (_)N + ~ __ e I2•2)(A 7'A R) 

N"20 221N+ I) N " , 

Hence, inEqs. (55a) and (55b), the basic form factors TfA are 
expressed as finite sums of Gauss hypergeometric functions 
I; which have geen given in Eqs. (52a) and (52b). The coeffi
cients e~I), e~2), e~2) and e~·I) have also been evaluated 
explicitly in Eqs. (42), (44), (46), and (48). 

In passing, it is also noted that the Gauss hypergeome
tric functions also satisfy well-known recurrence relations 
among themselves. It is then clear that in the calculations of 
any form factor by the present decomposition method, all 
the hypergeometric functions involved can also be generated 
from a small, basic set of functions through appropriate ap
plication of these recurrence relations. 

IV. CONCLUSIONS 

We have presented the bipolar expansions of tensor 
fields in a simple but general manner. The simplicity and 
generality of our results stem from the fact that full advan
tage has been taken of the symmetry through the angular 
parts in the expansion. It has been demonstrated that, irre
spective of the tensor field in question, the radial coefficient 
functions are simple integral transform of a class of "univer
sal" form factors [TfA ]. Our key observations are charac
terized by two complementary aspects. Firstly these form 
factors satisfy recurrence relations, therefore they can be 
generated recursively from appropriately chosen subclasses 
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(55b) 

I 
of members. In addition we have developed a computational 
scheme from which such a basic set of form factors can be 
constructed analytically. 

Accordingly, our results not only exhibit the basic 
structure of such expansions, but they also provide a feasible 
computational scheme which can be easily implemented in 
practical physical problems. 
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APPENDIX A 

We now derive the basic formula for bipolar expansion. 
The starting point is Eq. (5). First consider the plane-wave 
expansion, 

e,k .• = 41T~( - irijA(kr)[YA(k)® YA(F)]g, (AI) 

where the angular parts are expressed in a coupled represen
tation. Then, 

e,k'(r+R) = (41T)2l: (- i)A. + AiAJA(kr)jA(kR ) 
AA 
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x [Y,,(k)® Y,,(P)]g [YA(k)® YA(R)]g 

= (41T)2I ('- i}H AAA.iA (kr)JA (kR) 
"A 

{
A A -:O} XI(22' + 1) A A .L 

Y 0 0 

X{[Y,,(k)®YA(k)]y ® [Y,,(r)®yA(R)]y}g. (A2) 

To arrive at the last expression in Eq. (A2), some standard 
angular momentum coupling has been invoked. It can be 
further simplified by the reduction formulas, 

{~ ~ ~}~(il2)-' (A3) 

A 

o 
2') A o Yy(k). 

Equation (A2) is then reduced to the following: 

e ik·(r+RI 

= (41T)3/2 I i,,+AiA'2' J,,(kr)JA(kR) 

x(~ 
"AY 

A 

o 
= (41T)3/2Ii"+AAA.;,,(krliA(kR) 

"A 

(A4) 

A 

o 
2') A A-o (Yy(k).[Y,,(P)® YA(R )]y). 

(A5) 

A substitution ofEq. (A5) into Eq. (5) and an integration over 
the angular parts in the k-space leads to 

AA-(A A Lo) I/If(r + R) = 23/2Ii" + A + LAA 
"A 0 0 

X 100 
dk k 2J,,(kr)jA (kR lldk )[Y,,(P) ® YA (R)W (A6) 

which is the expressions in Eqs. (6), (9) and (11). It is clear that 
the indices A and A are restricted by angular momentum 
coupling and hence the conditions (7). Also, because of the 

(
AA L) I 'b' . parity rule for , the on y contn utlOns to expansIon 
000 

(A6) come from the terms for which A + A + L = even. 

793 J. Math. Phys .• Vol. 22. No.4. April 1981 

APPENDIXB 
We now derive the basic recurrence relation. From the 

definition (11) of the form factors, 

Fi,A + 1 (r, R ) + Fi + 2,A "1 (r, R ) 

= 100 
dk k 2U,,(kr) + JH2(kr)JiA + dkR lldk) 

= (00 dk k 2 (U + 3) J" + dkr)jA + 1 (kR llL(k) 
Jo kr 

= (00 dk k 2(U + 3)(R )JH 1 (kr) JA + 1 (kR) iL(k) 
Jo r kR 

= fO dk k 2( ~ : ! )( ~ )J" + 1 (kr) 

X (jA(kR) + JA +2(kR ) I1L (k ) 

= ~: ~ (~)[FL l,A(r,R) +FL l,A+2(r,R )], 

(Bl) 

where the expressions in the second and fourth equalities 
have been obtained from the recurrence relation Eq. (12) of 
spherical Bessel functions. 
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this paper can be valid for tensor fields satisfying weaker conditions. For 
example. if the radial functionfL (r) grows asymptotically as a polynomial 
of r of finite order, our derivation still applies for a modified radial func
tion e - a''> fL (r). The final results can then be obtained by taking the limit 
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'M. Abramowitz and I. A. Stegun, Handbood of Mathematical Functions, 
(Dover, New York, 1965); I. S. Gradshteyn and I. M. Ryzhik, Table of 
Integrals, Series, and Products, 4th ed., translated by A. Jeffrey (Aca
demic, New York 1965). 

H. H. K. Tang and J. S. Vaagen 793 



                                                                                                                                    

4-space formulation of field equations for multicomponent eigenfunctions 
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Beginning with the assumptions employed in the development of the 4-space formulation (FSF) 
for spin less particles, a formalism for multicomponent eigenfunctions is constructed. The 
primary result is a general expression for the field equations of multicomponent eigenfunctions. 
The "Relativistic Dynamics" of Horwitz, Pi ron, and Reuse for spin-O and spino! particles is 
shown to be consistent with the FSF. Expectation values are defined and briefly discussed in the 
appendix. 

PACS numbers: 03.70. + k, 03.65.Ca, 11.10.Qr 

INTRODUCTION 

A probabilistic foundation for the quantum mechanical 
description of relativistic spin less particles was recently pro
vided. I

-
3 This theory, referred to as the 4-space formulation 

(FSF), is a consistent single-particle theory of relativistic 
spinless particles in the presence of an arbitrary 4-vector po
tential. As mentioned in Ref. 1, the FSF is capable of describ
ing particles with nonzero spin (such as the "Relativistic 
Dynamics" of Horwitz, Piron, and Reuse4-?) and nonelec
tromagnetic interactions. The purpose of this paper is to pre
sent the extension of the FSF to include particles with spin 
and nonelectromagnetic interactions. Given the assump
tions of Refs. 1-3, this extension becomes primarily an exer
cise in mathematics. The results reported here should be use
ful in many ways. Three of the most important are the 
following. 

First, an extension of the FSF will show the consistency 
of "Relativistic Dynamics" with the FSF. This is particular
ly significant for spino! particles because the spin-~ formal
ism of Horwitz, Piron, and Reuse5

-? differs from an earlier 
formalism suggested by Nambu. 8 

A second reason for extending the FSF is to determine 
the general form of field equations which can be considered 
candidates for muiticomponent eigenfunctions. An expres
sion of this kind will help guide the construction of accept
able Lagrangian densities for use in the generalized quantum 
field theory (GQFT) presented recently.9 

Finally, this extension will aid in devising experiments 
using particles with spin and undergoing interactions other 
than the electromagnetic interaction. One such example, rel
ativistic scattering from a step potential using leptons 
(Klein's paradox with leptons), may be particularly useful 
for testing the validity of the FSF. 

The extension of the FSF parallels the derivation of the 
spinless particle formulation which in turn, parallels Col
lins's 10 non relativistic formulation. Beginning with the same 
assumptions, a multicomponent formalism is constructed. 
From this formalism a general expression for the field equa
tions of multicomponent eigenfunctions is derived. Two sim
ple examples show that the work of Refs. 1-7 and 11 are all 
consistent with this formulation. A discussion of expectation 
values is appended. 

FORMALISM 

Define a conditional probability density p(xjr) satisfy
ing the following positive-definite, normalization, and con
servation equations, respectively: 

p(x[r»O, 

fp(X jr)d 4x = 1, d4X-==dxodxldxzdx3, 

and 

(la) 

(lb) 

(lc) 

Here x signifies the space-time coordinates (.i, ct ), r is an 
independent scalar parameter identified as proper time, the 
domain of integration of the ,uth coordinate is [xJ1 [< co, the 
nonzero metric elements are 

(2) 

and the operators aT' aJ1 signify differentiation with respect 
to rand xJ1, respectively; The 4-vector V J1 is related to the r 
rate of change of the 4-position expectation value (xJ1 >. It is 
discussed in the Appendix. 

Assume that the conditional probability p(x[r)d 4x can 
be written in terms of a sum over L independent parameters: 

p(xjr)d 4x = LL"'LP(x,l,,/2 , ••• ,IL jr)d
4x. (3) 

II l~ 1,. 

The sum is over the entire range of allowed values of 
(/I""'/L)' The parameter labels II;) represent "hidden" var
iables in the sense that Eq. (Ic) is satisfied without explicit 
reference to If; J. Experiments such as the Stern-Gerlach 
experiment indicate that the probabilities of quantum me
chanics must include discrete labels. These labels can be ex
pressed as in Eq. (3). Physically, these parameters could re
present spin, isospin, hypercharge, etc. Their physical 
interpretation will not be examined here. Rather, let us ex
amine what mathematics says aboutp(x)r)d 4x. 

Equation (3) can be written as 

p(x)r)d 4x = L P(lllr)P(lz)r) .. ·P(IL j7) 
II -It 

Xp(xl/l, ... ,lL,r)d 4X, (4) 
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where the sums l:1, l:1, ···l:I,. are denoted by l:1;_I, andP(/i 11") 
is a conditional probability satisfying 

'2'p(1; 11") = 1. (5) 
I, 

Notice that Eq. (4) is possible only if the parameters! I; } 
characterize mutually independent events. Furthermore. 
Eqs. (1b) and (5) imply the normalization condition 

Jp(x l/", .. ,lL.1")d 4x = 1. (6) 

as expected. Mathematically. the ensuing derivation does 
not need to assume ! Ii } are all independent events. It is only 
necessary to assume p(x I 'I) can be written as in Eqs. (17) and 
(18) below. The independence assumption here is motivated 
by the physical observation that the discrete variables ! Ii } 
label states of commuting observables. The notation is sim
plified by defining 

p p(x I 'I). (7a) 

p, p(xl/l.· ... h.r). U,b) 

and 

(7c) 

Observe that P depends on 'I but not ! xP }. 

The Hilbert-space formalism is now developed by in
voking the Born representation; thus write 

(8) 

or 

(9) 

where", and "'* are Lorentz-invariant scalars and t/J is an as 
yet undetermined real scalar function which is independent 
of ! I; }. It is straightforward to derive from Eq. (9) the fol
lowing useful identity: 

C!"t/J = ( - il2ps)(",*er", - ",er",*). (10) 

As in the FSF.1-Jlet us express VP in the form 

VP = E1C!"t/J + EzA p. (11) 

where EI and E2 are c-numbers and it is assumed that A p. 

hence p. are independent of ! I; }. Equations (8). (10). and 
(11) are now combined to obtain the relation 

ai' (Ps VP) = E2"'*(!A pap'" + !apA P",) 

+ E2tP<!A pap "'* +!apA p",*) 
- ~"'*iElaper", + !t/!iE1apC!""'*. (12) 

This relation will be useful in expanding the pmbability con
servation equation [Eq. (1c)]. 

Employing Eqs. (4) and (7) in (1c) yields 

arP + LPal'(Ps VP) = O. (13) 
II-I,. 

Substituting Eq. (12) into (13) gives 

I ! ar(ppJ + P k2"'*(1A pap'" + !apA Prp) 
II-I,. 

+ E2tP<!A pal' "'* + !apA 1'",*) 
- !¢*iE1al'er", + !",iE1a"au",*]} = o. (14) 
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Further physically interesting restructuring ofEq. (14) re
quires some additional definitions. 

The probability P(/,lr) can be written as 

P (Ii 1'1) = u*(/iOr)u(l;.r)-u~uli' (15) 

where uI, is a scalar that depends only on 'I and l;. Denote the 
product of ! uI, J by u. i.e .• 

U=u(lI ... ·,lL.r) = U(/I.r)u(l2.r) .. ·u(lL.r). (16) 

This is true also for u*. Then Eq. (4) now has the form 

p(xlr) = I "'~"'I,. (17) 
'.-1, 

where 

"'I, =U(/p .. ·,lL.r)"'(x.r./I ... ·.IL). (18) 

and a similar expression holds for ",~. 
These definitions are now used in Eq. (14) to yield 

0= L !",~ar"'I,+"'IA"'~ 
/1 -I,. 

+ "'~ [ - ~iEla"er"'I, + ~EZ<A pap "'Ii + al'A 1''''1)] 
+ "'d!iElal'er",~ + !Ez{A pal''''~ + al'A P"'t> ]1. (19) 

Multiplying by iEJ • where E3 is a real c-number. and then 
rearranging gives 

L ! "'~ [iE3ar"'l, + !E1E3apC!""'I, 
[I-I,. 

= I! - iE3ar"'~ + !EIE3al'er",~ 
1,-11. 

(20) 

Denote the number of allowed values of Ii as L i. Then the 
number N of terms in the sum l:1,_I, is the product oftheL/s. 
i.e .• 

(20a) 

Let us replace the L sums l: f = I with one sum over the range 
1 <,n <,N and assign a one-to-one correspondence between n 

and each term of the sum l:1,_I,. Equation (20) can be written 
now as 

N N 

I "'~Fn = L F~"'n' 
n = 1 "n = I' 

where 

Fn= iE3ar"'n + !EIE~ap"'n 
+ !iE2E'J(Al'al' "'n + al'A I''''n)· 

Equation (21) has the form 

I/I+F = F+I/I. 

(21) 

(22) 

(23) 

, where + means conjugate transpose and 1/1 is the N-column 
vector 

(24) 

The nth element of the N-vector F is given by Eq. (22). It 
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should be noted that, although a metric was specified in Eq. 
(2), the above derivation does not depend on a particular 
choice of metric. 

By decoupling Eq. (23) it is possible to obtain field equa
tions which satisfy the probabilistic constraints imposed at 
the outset of this derivation. Only these field equations will 
be considered candidates for describing physically realizable 
systems. 

FIELD EQUATIONS 

The decoupling ofEq. (23) begins by observing that '/I+F 
must be real because 

(25) 

The decoupling technique will be demonstrated by two ex
amples that make use of the reality of '/I+F. These examples 
provide a basis for the most common field equations. 

Scalar decoupling 

To assure the reality of '/I +F, let us assume F is an N
vector with the n-th element having the from UtPn where Uis 
a real scalar. This assumption yields 

F= U'/I (26) 

and 

(27) 

The product Up is real since U andp are real. An example of 
this decoupling is obtained by defining 

and 

EI = fzlm, 

E2 = - elmc, 

E3 = fz, 

U = e2A I"A 12mc2, 
I" 

with the result, 

ifuJr '/I = (1I2m)[I'pl" '/I, 

where 

(28) 

(29) 

(30) 

(31) 

Equation (30) is just the generalized Schrodinger equation of 
Refs. 1-3, 4, and 11, applied now to a multicoIJlPonent eigen
function. This result illustrates two important results. 

First, Eq. (30) was obtained by defining U as in Eq. (29). 
This definition is based on the requirements that U should be 
both Lorentz- and gauge-invariant. The gauge-invariance is 
necessary to preserve the values of VI" andp under gauge 
transformations. Lorentz-invariance is imposed in order to 
preserve the form of the equations when viewed by observers 
in different reference frames. Both of these invariance prop
erties are physically meaningful, but neither the gauge-in
variance [necessitated by the assumptions ofEqs. (8) and 
(11)] nor the covariant formulation ofthe equations is re
quired by probability theory. Probability theory does not 
provide all of the information needed to completely define 
the specific form of quantum mechanics. Additional require
ments, such as Lorentz-invariance, must also be imposed, 
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but in such a way that the probabilistic basis of the theory is 
retained. 

The second notable result is that the analysis of the 
Klein paradox in Refs. 1 and 3 should apply, to some level of 
approximation, to particles with spin. This conclusion is 
based on the fact that multicomponent eigenfunctions satis
fy Eq. (30). Thus, leptons should behave, at least to some 
approximate degree, as described in Refs. 1 and 3. This sig
nificantly lowers the magnitude of the step potential used in 
the scattering problem discussed in Refs. 1 and 3. The subse
quent step potential may be physically realizable. If so, then 
the scattering of a lepton from a step potential provides an 
experimental test of the FSF. 

Matrix Decoupllng 

Defining F as in Eq. (26) is the simplest means of assur
ing the reality of '/I+F. The reality constraint is more general
ly satisfied as follows. Suppose 

F = V'/I, (32) 

where V is an N X N matrix. Then Eq. (25) implies that 

'/I+F= '/I+V'/I=F''/I. (33) 

But the relation 

(34) 

must also be true. Comparing Eqs. (33) and (34) yields the 
result 

(35) 

i.e., the square matrix V must be self-adjoint (or Hermitian). 
The general form of the field equations represented by Eq. 
(32) is 

[iE3ar + !EIE3al"d" + !iE2E3(A I"al" + al"A 1")] '/1- V'/I 

=Q O~ 

It should be noted here that Lagrangian densities which 
yield field equations having the above form are considered 
acceptable candidates for use in generalized quantum field 
theory.9 

The simplest example of V is 

V= Ul, (37) 

where I is the identity matrix and U is the real scalar defined 
in the previous subsection. Another example is given by 
Piron and Reuse.6 ,7 The derivation ofEqs. (30) and (36) 
from a probabilistic basis shows that the "Relativistic Dyna
mics" of Horwitz, Piron, and Reuse4-7 for both spin-O and 
spin-! particles is consistent with the FSF. 
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APPENDIX: EXPECTATION VALUES 

The last topic to be considered here is the definition of 
expectation values. As usual, the expectation value of posi
tion is l -6 
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(xl') = JXJLPd 4x = f If/+xJLlf/d 4x. (At) 

The r-derivative of (xl') is 

d (xl') = fXJL ap d4x = _ fXJL apvv d 4x, (A2) 
~ ~ ~v 

by Eq. ( 1 c) and noting xJL is independent of r. The expression 
xJLav(p V, can be written as 

xl'av(pV, = av(pxl'vJL) - vvpavxl' 
= av(pxl'vJL) - VJLp. (A3) 

Equation (A3) is valid whenever the coordinate xJL is inde
pendent of x v for v=Pf-l, i.e., if 

(A3a) 

then Eq. (A3) is satisfied, where {) ~ is the Kronecker delta. 
Substituting this result into Eq. (A2), applying the diver
gence theorem, and then assuming thatp vanishes as IxJLI 
- 00, yields the result 

d~;) = JpVJLd4x= (VJL). (A4) 

Thus the expectation value of VJL gives the r-rate of change 
of (xJL). A more familiar quantum mechanical expression for 
(VJL) is obtained by employing Eqs. (4), (8), (10), and (11) to 
find 

d ~~) = I~'U*U J [ -!iEl(I/1*erl/1 - I/1erl/1*) 

+ E21/1* A JLI/1 ]d 4X. (A5) 

Substituting the relation 

erl/1*I/1 = I/1*erl/1 + I/1erl/1* (A6) 

into Eq. (A5) yields 

d (xl') = L {u*uf[ E.l I/1*ertP + E21/1*A JLtP]d 4X 
dr I,-IL I 

+ u*u J[ - ~~ ertP*I/1]d4X} . (A7) 

Applying the divergence theorem to the integral of erl/1*tP 
and evaluating the subsequent surface integral at IxJLI_oo 
(where tP*t/J-O) gives the result 
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(A8) 

since the integral of erl/1*I/1 vanishes. Equation (A5) can be 
rewritten as 

(A9) 

IfEqs. (28) are assumed here, Eq. (A9) becomes the familiar 
result 

(A 10) 

or 

(All) 

Equations (AI) and (All) suggest that the usual definition 
ofthe expectation values of an observable n be adopted; thus 

(n )= J If/+nlf/d 4x. (A12) 

This definition is employed by Piron and Reuse6 for their 
spin-! formalism. By also imposing a superselection rule 
they demonstrated that their formulation, which is a special 
case of the FSF, yields the usual results of Dirac's spin-! 
theory. 
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W,e discuss the unified reaction theory ofPolyzou and Redish [Ann. Phys. (N.Y.) 119,1(1979)] 
wIth regard to the freedom to perturb the approximate Hamiltonian by a connected operator. A 
proper treatment of this freedom is crucial for a good treatment of the dynamics. We show how to 
construct an effective N-body force so the approximate Hamiltonian is a projection of the exact 
Hamiltonian on an appropriate infinite dimensional subspace. Because this operator is connected 
it should not alter the unitarity considerations in the above paper. The methods used in 
constructing this effective interaction can also be used to reformulate the scattering integral 
equations as equivalent equations with noncom pact contractive kennels. This reduces the 
scattering problem to uniformly convergent perturbation theory. 

PACS numbers: 03.80. + r, 24.1O.Dp 

I. INTRODUCTION 

In a previous paper, I which we denote by I, E. F. Redish 
and I developed a unified connected theory of few-body reac
tion mechanisms. The goal of this work is to combine the 
best features of conventional reaction theories with new de
velopments in formal N-body scattering theory to construct 
systematic approximation schemes that go beyond the con
ventional ones. The theory proposed in I is an extension of 
the two-potential formalism of Gell-Mann and Goldberger. 2 

In the two-potential approach the N-body Hamiltonian is 
expressed as a sum of two terms: 

(1.1) 

where HI can be treated exactly and HII is a more complicat
ed, but less important perturbation. In the standard theory 
HI is usally a simple two-body effective Hamiltonian that 
accounts for most of the elastic scattering. The extension 
proposed in I allows HI to be a few-body operator that may 
include breakup and rearrangement degrees of freedom in 
addition to elastic scattering. Extensions of this type allow us 
to treat a larger part of the problem explicitly, and are com
mensurate with our extended calculational capabilities. 

In I the choice of HI is partially dictated by unitarity 
conderations. What this means is that the part of the dyna
mics determined by HI requires that all of the scattered flux 
comes out in a chosen set of asymptotic channels. Thus, in 
the lowest order approximation, the coupling to all of the 
residual channels is turned off. This unitarity constraint does 
not uniquely determine the operator HI' In I it is argued that 
the unitarity constraint on the decomposition (1.1) is un
changed if we perturb the decomposition by an effective Her
mitian N-body potential. By an N-body potential we mean 
one that falls off sufficiently fast as any of the interparticle 
coordinates are asymptotically separated. The main purpose 
of this paper is to provide a prescription for dealing with this 
additional degree offreedom in the decomposition given in I. 
We refer to this as the interior dynamics problem. 

Our solution to the interior dynamics problem has sev-

eral desirable features that confront some of the criticisms 
levied at truncated few-body theories. What we find is that 
by solving an appropriate nonorthogonality problem we can 
construct an effective Hermitian N-body potential U that 
leads to a decomposition satisfying 

(1.2) 

for an appropriate orthogonal projector fl. This suggests, at 
least in the context of I, that (i) one can express truncated 
few-body theories as projected Hamiltonian theories, (ii) 
there are clearly no overcounting problems with the decom
position associated with (1.2), and (iii) one does not avoid the 
nonorthogonality problem by starting with a well posed N
body equation and truncating. 

These comments should clarify some aspects of the un
derlying structure of the approximations presented in I. The 
fl constructed in this paper depends on the choice of domi
nant reaction mechanism. I The important asymptotic chan
nels live on different nonorthogonal subspaces and in the 
approximation (1.2) are coupled through the overlap be
tween these subs paces and the range of fl. On the other 
hand, the range of fl is constrained by the condition that (1.2) 
only allows scattering in the set of asymptotic channels asso
ciated with the dominant reaction mechanism. It is our hope 
that the construction presented here emphasizes the most 
important aspects of these couplings consistent with the 
limitations imposed by the optical theorem. 

Our method of dealing with the non orthogonality prob
lem suggests alternate fomulations of the scattering integral 
equations with contractive kennels. Because this may have 
use beyond the applications suggested in this paper we give a 
discussion of these techniques in Sec. III. 

This paper is divided into seven sections. In Sec. II we 
introduce our notation. In Sec. III we introduce the notion of 
the Moore-Penrose generalized inverse for operators. 3-5 

This will be one of our main tools in the paper. In Sec. IV we 
show how to formally construct the connected potential in 
(1.2). This construction uses the Moore-Penrose generalized 
inverse. In Sec. V we discuss the construction of this effective 
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potential from a practical point of view. We give a conver
gent iterative method for the construction of the operators 
used in this effective potential. Section VI is a discussion of 
how the Moore-Penrose techniques required to solve the 
nonorthogonality problem may be applied to the scattering 
problem. The result is that one may replace the scatering 
integral equation by an equivalent equation with a contrac
tive kennel. (Assuming the scattering equation can be formu
lated as a compact kennel equation and has a unique solu
tion). The last section contains a summary and conclusion. 

II. NOTATION 

The notation utilized in this paper conforms with the 
notation used in Ref. 6. N-body operators are indexed by 
partitions, a,b,c ... ofthe N particles into na ,nb ,nc '" disjoint 
groups or clusters. We reserve the symboll to denote the 
unique I-cluster partition. We use upper case Latin letters 
A,B,C ... to denote N-body operators. For an operator A we 
let A a denote the operator obtained from A by turning off all 
interactions between the particles in different clusters of a. 
Residual operators, A a, are defined by A a = A - Aa' 

Additional classifications of the N-body operators uti
lize the lattice structure6-8 on the set of partitions. We say 
b"da if a can be obtained by breaking up some of the clusters 
of b. The Zeta and Mobius function for the partition lattice 
are defined by Ref. 9, 

{
I, 

Oa"db = 0, 

and 

if a"db, 

otherwise, 
(2.1) 

(2.2) 

respectively. The Mobius function,o a-;~' has been calculat-
ed elsewhere. 8 -

In graph theoretical language the a-connected part, 
[A L, of an operator A is the sum of all graphs in perturba
tion theory with interactions between every particle in the 
same cluster of a and no interaction between particles in 
different clusters of a. We may construct [Ala in terms of 
the Ab's using the Mobius function: 

[A la = Io a-"d~Ab' (2.3) 
b 

The origin of this expansion is easy to see if we invert the 
Mobius function in (2.3). This leads to an expression for Ab as 
a simple sum of those [A la with connectivity b"da. The 
operators under consideration admit cluster expansions of 
the form 

(2.4) 

Ifwe insert this in (2.3) we obtain the expansion 

(2.5) 

where [A ]\ is the completely connected part of A and Refs. 
6,8, 
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0" =",,'jI - 1 _ ( _ )na( _ 1)' 
19 a - L ub"da - na .. (2.6) 

b 

The prime on the sum indicates the unique I-cluster parti
tion is eliminated from the sum. We use this notation in all 
that follows. 

This partition labelling convention is used throughout. 
The operators of interest are the full N-body Hamiltonian, 
H; the resolvent of H, G (z); the interaction potential, V; and 
the kinetic energy operator, K. We also introduce projection 
operators P a+ (.J:Ji") which are the orthogonal projectors on 
the invariant subspace of Ha associated with the scattering 
channels (.J:Ji") and outgoing wave boundary conditions. The 
notation P .+ (.J:Ji") also conforms with the above partition la
belling conventions. P a+ ("if) is what one obtains from the 
corresponding projector on the invariant subspace of the full 
Hamiltonian by turning off the appropriate interactions. JO 

In terms of the operators discussed above the general 
form of the Hamiltonian decomposition introduced in I for a 
choice of channels .J:Ji" is 

HI = I' (6' aHa P a+ (ow) + U, (2.7) 
a 

HII = I''ff aHa(l- P a+ (oW)) - U + VN , 

a 

where U is an arbitrary connected Hermitian operator and 
VN is a possible N-body force. The only connected terms in 
this decomposition are U and VN • 

The construction of dynamical equations for the de
composition (2.7) has been thoroughly discussed in I. Our 
interest in Secs. IV and V is in how to choose and construct a 
suitable U that best represents the dynamics of the 
approximation. 

III. THE MOORE-PENROSE GENERALIZED INVERSE 

In this section we want to introduce a tool that will be 
utilized in the next three sections. This tool, the Moore
Penrose generalized inverse, is useful in solving the various 
kinds of non orthogonality problems that arise in scattering 
theory. I I 

For finite dimensional matrix the Moore-Penrose gen
eralized inverse is the unique solution, X, to the four Penrose 
equations 12: 

X=XAX, A = AXA, 

XA = (XA)t AX = (AXr (3.1) 

IfthematrixA has an inverse,A -I,X = A -I clearly satisfies 
(3.1) and is necessarily the unique solution ofthis system. If A 
does not have an inverse, the system (3.1) still has a unique 
solution which we denote by A # and call the Moore-Pen
rose generalized inverse of A. It is this case that is really 
interesting for the applications to be discussed. The property 
of interest is that A # A is the orthogonal projector on the 
orthogonal complement of the null space of A.L' 

To proceed further we must extend (3.1) from finite de
mensional matrices to linear operators on Hilbert space. For 
densely defined, closed linear operators the generalization is 
that there is a unique solution, X = A #, to the system: 
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XAX = X on!fl (X), 

AXA =A on !fl(A), 

AX = P .'ii'(A ) on !fl (X), 

XA = P 1(A )' on !fl (A ), 

(3.2) 

where!fl (B) is the domain of the operator B,f31i(B) is the 
closure of the range of the operator Band .A/(B )1 is the or
thogonal complement of the null space of B. 13 The operators 
P i3f(A) and P .A/'(A)' are orthogonal projectors on the subspaces 
f31i(A ) and.A/(A )1 respectively. The second of these equations 
is redundant as it follows from the last. 13 

In the applications to the interior dynamics problem, 
the II in equation (1.2) will arise as the orthogonal projector 
on the orthogonal complement of the null space of a given 
bounded operator. From the above considerations we see 
that the problem is reduced to computing A # A for the ap
propriate operator A. For bounded A, !fl(A ) is the full Hil
bert space, JY, so there are no problems with domains. By 
the closed graph theorem 14 bounded operators, A, with 
!fl(A) = JYareclosed so the conditions of(3.2) areautomati
cally met. 

The only question remaining is whether we can actually 
construct this projector. An immediate corollary of Theo
rem 10 of Ref. 3(pp. 354-5) is that if we define the iteration: 

Xo=aAtA, 

XI = (1 - aAtA ).Xo 

X N = aA tA + (1 - aAtA)XN_I' 

where a is a real constant satisfying 

O<a<2!IIA 112 

(3.3) 

(3.4) 

thenXN converges strongly to P J(A)" This corollary follows 
from the quoted theorem if we takey = Ax and observe that 
this means y E Range (A ). If in addition A has closed range 
this convergence is uniform. IS 

From (3.3) we determine that the exact P I(A)' has the 
representation 

P J(A)' = ! (1 - aA tA )kaA tA, 
k~O 

(3.5) 

which converges strongly. This gives a constructive algo
rithm for computing P I(A)' given a bounded operator A. 

IV. H, AS A PROJECTED HAMILTONIAN 

The strategy for choosing an important set of channels 
s1' in the decomposition (2.7) is that the channels s1' are 
strongly coupled to one another, and not strongly coupled to 
the residual channels. Physically two systems approach each 
other, collide, and come out with a substantial probability of 
being found in one of the channels s1'. The collision occurs 
when allN-particles of the system are close together, and the 
time evolution of the collision is governed by the full Hamil
tonian. This suggests that we use the freedom in choosing the 
connected effective N-body interaction, U, so that the time 
evolution of the system during the collision is generated by 
the full Hamiltonian for states strongly coupled to the as
ymptotic channels. The unitarity requirement, i.e., that Ube 
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connected and Hermitian, poses some restrictions on how 
this can be done. 

One choice of U that reflects these properties to a rea
sonable extent arises naturally in the formalism of I. We 
define the operator: 

(4.1) 
a 

This operator is clearly 

bounded, since it is a finite sum of orthogonal projectors, and 
hence is closed. 14 Thus the machinery concerning the 
Moore-Penrose operator inverse discussed in the previous 
section is applicable. In particular Y#(s1') exists as a possible 
unbounded operator and 

II(s1') = Y#(s1') Y(s1'), (4.2) 

is the orthogonal projector on the orthogonal complement of 
the null space of Y(s1'). In particular, it projects on the space 
of all vectors of the form Y (s1') Ix > . Since Y (s1') has a piece of 
each P a+ (s1') in its expansion, it is hoped that a large part of 
the range of the various P a+ 's will be contained in the range 
of Y(s1'). The fact that the coefficients CtJ a come in is to 
ensure the connectivity of U, which is required for 
unitarity.16 

The projector II (s1') has been constructed to have some 
very important properties regarding its connectivity struc
ture. These properties follow from the connectivity structure 
of the P / (s1')'s. The relevent property is that if the interac
tion between the clusters of b are turned off then P a+ ( s1') 
becomes P a~b ( s1'). Where anb is the partition obtained from 
a by separating the particles in the same cluster of a that 
become mutually noninteracting when the interactions be
tween the clusters of b are turned off. This property follows 
from the integral representation of P a+ (s1')3.10 

From (4.1) it follows that as the clusters of b are separat
ed beyond the range of the interactions Y(s1') becomes 

We may evaluate this sum using (2.6) and the result 

Oanb-;Jc = Oa-;JcOb-;Jc' (4.4) 

to obtain 

Y(s1')_ I 0 e~~Oa-;JcOb-;JcOc~~P / ( s1') 
a,c,d,e 

(4.5) 

= P b+ (s1'). 

Ifwe use P a+ (s1') = P a+ (s1')t; Y(s1') = Y(s1')t and insert the 
limiting form (4.5) in the representation (3.5) for II(s1') we 
obtain for sufficiently small a 

II (s1')--+ ! (1 - aP b+ (s1'))kaP b+ (eW) 
k~O 

=P b+(s1')·a! (l-a)k =Pb+(s1'). (4.6) 
k~O 

This means, in the notation of Sec. II, that 
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lla(.sf) = P: (.sf). 

If we consider the projected Hamiltonian 

HI = ll(.sf) Hll(.sf), 

and use the internal-external decompositions 

H=Ha + va, 

II (.sf) = P a+ (.sf) + lla(.sf), 

it follows that HI has the structure 

(4.7) 

(4.8) 

HI = P a+ (.sf)HaP a+ (.sf) + (terms with connectivities 

external to a). (4.9) 

This means that 

(4.10) 

Since P a+ (.sf) projects on an invariant subspace of H a, it 
follows that 

[Ha,P a+ (.sf)]_ = 0, 

and P a+ (.sf)HaP a+ (.sf) = HaP a+ (.sf). Equation (4.10) may 
be combined with (2.5) to yield the main result of this paper: 

a 

which is the result promised in (2.7) if we identify the con
nected part of HI' [HI h, with the N-body force U I [HI Jl' is 
the most simply expressed as 

[HI Jl=ll(.sf)Hll(.sf) - I'C{;aHaPa+(.sf), (4.12) 
a 

and is clearly connected by (2.5). Equations (4.11) and (4.12) 
exhibit a proper choice of connected potential that puts the 
theory proposed in I in a projected Hamiltonian form. 

We remark that if .sf includes all scattering channels 
each P a+ (.sf) becomes the identity operator, Y(.sf) becomes 
the identity because of the relation:I'C{; a = 1,6·8 II (.sf) be
comes the identity by uniqueness of the Moore-Penrose gen
eralized inverse, and HI becomes full Hamiltonian by (4.8). 
Thus the fuIl theory emerges if we inel ude alI channels in HI' 
We remark that if Q is a finite rank projector satisfying 

ll(.sf)Q= 0, 

(ll(.sf) + Q)2 = (ll(.sf) + Q), (4.13) 

then 

(Q + II (.sf))H(Q + II (.sf)), (4.14) 

defines a projected Hamiltonian approximation that also 
satisfies (2.7). Because Q is finite rank, the corresponding U is 
still connected and the unitarity considerations of I remain 
unchanged. As Q begins to fill out the null space of II (.sf) one 
begins to build up singularities associated with the eliminat
ed channels. This will inevitably lead to continuum poles in 
the resolvent of HI' Since these poles contain some effects of 
the eliminated channels they are not necessarily undesirable. 
The existence of continuum poles associated with (4.11) can
not be ruled out either. 
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V. CONSTRUCTION OF THE CONNECTED POTENTIAL 

All of the formalism introduced in the previous section 
is of little value if we cannot construct U or equivalently 
II (.sf) in practical applications. Fortunately there are meth
ods for constructing the Moore-Penrose generalized inverse 
in practice. The obvious approach is to use the strongly con
vergent iteration associated with the series 

ll(.sf) = ! (1_aY(.sf)2)k.aY(.sf)2, (5.1) 
k=O 

where we have used Y(.sf) = Y(.sf)t in (3.5). To utilize this 
expansion one must be able to find a suitable a. Since in any 
numerical calculation the operator Y(.sf)2 will be put on a 
mesh and (5.1) will be reduced to a matrix equation it turns 
out that by the Gershgorin theorem l9 

(5.2) 

where N is the dimension of the matrix Y (.sf). In numerical 
applications it is enough to choose a so that 

0<a<2Iy. (5.3) 

The best choice of a for these iterations has been considered 
elsewhere20 and is 

2 
(5.4) aoptimal = A A . 

max + mm 

where Amax and Amin are the largest and smallest nonzero 
eigenvalues of the matrix y2(.sf). A lower bound on thenum
ber ofiterations required for convergence has been estimated 
to be21 

N min = 210g2 (Ama.lAmin)' (5.5) 

Other higher order iterative methods have been discussed 
eleswhere.3 

The size of the matrix that must be inverted will clearly 
depend on the number of continuous degrees of freedom in 
the operators P a+ (.sf). Since this is the same constraint that 
fixes the size of the matrices for the scattering integral equa
tions, we expect that the construction of II (.sf) will be nu
merically tractable in exactly the same situations that the 
approximate scattering equations discussed in I are tracta
ble. In particular, this will be when (.sf) contains only two
and three-body asymptotic channels. 

In general the iterative methods discussed above may 
not be the most efficient way to construct II (.sf). Once Y (.sf) 
has been put on a mesh there exist many methods for com
puting its Moore-Penrose generalized inverse. These meth
ods are discussed extensively in Refs. 3,4 and the references 
cited therein. 

VI. APPLICATION OF MOORE-PENROSE TECHNIQUES 
TO DYNAMICS 

The techniques used to solve our nonorthogonality 
problem in the last two sections have several desirable fea
tures. Because of this it is natural to ask if the scattering 
problem itself can be better handled in this framework. It 
turns out that for Faddeev-Iike formalisms the situation is 
actually better than discussed previously. This is because 
(1 - K ) has closed range for compact operators. 22 
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To consider the applications of the Moore-Penrose 
techniques we assume that we have a scattering integral 
equation of the form 

X=D+KX, (6.1) 

where Xis unknown andK is compact on theN-body Hilbert 
space. The solution is formally given by 

X=(l-K)-'D. (6.2) 

We will make the assumption that (1 - K ) - I exists in all that 
follows so that (1 - K ) - I coincides with the unique Moore
Penrose generalized inverse of (1 - K). The problem is then 
reduced to finding this generalized inverse. The solution is 
given by the iteration23 

Wo = a(l - K t ), 

W N = a( 1 - K t) + (1 - a( 1 - K t)( 1 - K )) W N _ I , 

(6.3) 

for 

(6.4) 

By a theorem of Petryshyn 15 this iteration converges uni
formly in the closed range case. Since we have also assumed 
(1 - K) is invertible, its range is the entire Hilbert space. In 
this case we may consider the integral equation 

X=a(l)Kt(D+ 1-a(1-Kt)(I-K))X, (6.5) 

which is derived from the iteration (6.4). This has a unique 
solution because 

(1-1 +a(l- Kt)(l-K)), 

has the inverse 

(6.6) 

(6.7) 

The unique solution to (6.5) is clearly (1 - K )-'D. By refor
mulating the scattering problem in this way we have re
placed a compact noncontractive kernel equation by a non
compact contractive kernel equation. In addition, the new 
kernel is Hermitian while the kernel of (6.1) is not. Whether 
(6.5) is better starting point then (6.1) for treating the scatter
ing problem is an open question. 

VII. CONCLUSION AND DISCUSSION 

In this paper we have given a more complete discussion 
of the theory presented in I. Our attention focused primarily 
on the short ranged degrees of freedom involved in making 
the decomposition (2.7). We have shown that it is possible to 
construct an effective N-body force, U, that puts the HI of 
(2.7) in the form (1.2). The operator n (d) is the orthogonal 
projector on the orthogonal complement to the null space of 
the operator Y(c#) defined by (4.1). From the structure of 
Y(.#) we hope that for an appropriate choice of c# this sub
space will be sufficiently large to treat all of the important 
couplings. As discussed in Sec. IV this subspace can be en
larged by finite dimensional extensions of n (d). The ap
pearance of the CG a coefficients in (4.1) turns out to be crucial 
for maintaining the unitarity constraint for arbitrary d's. 
This result of Sec. IV shows quite conclusively tht the ap
proximation discussed in I, if treated properly, have no over
counting. One may have anticipated some overcounting by 
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the appearance of the coefficient CG a = ( - tolna - I)! in 
(2.7). The reason that there is no overcounting is easily seen 
in equation (2.4) and (2.5) from which it follows that (2.7) is 
an alternate way of writing a cluster expansion. The pro
posed treatment of the interior region requires the solution 
of a nonorthogonality equation to obtain the projected form 
(4.11). If one chooses U by another method one cannot be 
assured that there is no overcounting in the interior region. 

The appearance of a nonorthogonality problem in our 
truncated Hamiltonian indicates that one cannot necessarily 
avoid these problems by truncating Faddeev-type theories, 
even though these problems do not arise in the untruncated 
forms. 

The methods used to deal with the nonorthogonality 
problem in this paper involve new techniques which have not 
been previously used in the few-body physics. These meth
ods lead to alternate formulations of the few-body integral 
equations where compact kernels are replaced by noncom
pact contractive kernels. This allows us to treat the few-body 
problem by perturbation theory, even for the case of strong 
potentials. 
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~or an asymptotically flat space-time in general relativity there exist certain integrals, called 
lInkages, over cross sections of null infinity, which represent the energy, momentum, or angular 
momentum of the s~stem. A new form~lation of the linkages is introduced and applied. It is 
shown ~hat there ex~sts a flux, representmg the contribution of gravitational and matter radiation 
to th~ hnkage. A umqueness conjecture for the linkages is formulated. The ambiguities due to the 
poss~ble presence of supertranslations in asymptotic rotations are studied using the behavior of 
the l~nk~~es ~nder firs~-order perturbations in the metric. While in certain situations these 
ambigUIties ~Isappear 10 the first-order. t~eatme~t, an example is given which suggests that they 
are an essential feature of general relativity and Its asymptotic structure. 

PACS numbers: 04.20. - q 

1. INTRODUCTION 

There is available, for space-times in general relativity, 
a definition of asymptotic flatness at null infinity. 1-4 Phys
ically, asymptotically flat space-times represent isolated 
systems. This definition has turned out to be a particularly 
fruitful one. For example, it leads naturally to the peeling 
property of asymptotic fields I and to the Bondi-Metzner
Sachs (BMS) asymptotic symmetry group5,6; and it underlies 
much of the discussion of such topics as black holes,7 quan·· 
tum fields in curved space-times,8 and cosmic censorship.9 

In flat space-time, symmetries give rise to conserved 
integrals. One might expect, therefore, that, in asymptotical .. 
ly flat space-times, the asymptotic symmetries would give 
rise to similar integrals. This turns out to be the case. For the 
case of asymptotic translations, these integrals, taken over 
cross sections of null infinity, yield the Bondi energy-mo
mentum. 5.10,11 For a stationary space-time, the Bondi energy 
reduces to the usual energy. Furthermore, there is a formula 
giving the change in the Bondi energy-momentum for two 
cross sections in terms of the total gravitational energy-mo
mentum radiated during the intervening time. For other 
asymptotic symmetries the situtation is somewhat more 
complicated. There does exist a formula for an asymptotic 
integral, the linkage, over any cross section for any asymp
totic symmetry in the asymptotically flat space-time. 12.13 
These linkages reduce to the Bondi energy-momentum for 
translational symmetries, and to the usual angular momen
tum for axi-symmetric space-times (in which we know what 
"angular momentum" means). Finding any reasonable gen
eralization of the Bondi energy-momentum is a delicate busi
ness, for one must achieve two distinct types of gauge-invari
ance: one under conformal transformations, and one under 
alternative representations of a single asymptotic symmetry. 
The complications inherent in achieving the second type of 

"'Supported in part by the NSF, under Contract Nos. PHY 78-24275 and 
PHY 78-l3926-AOl, respectively. 

gauge invariance, in particular, make it difficult to settle 
such questions as the existence of a flux, an expression, in 
terms of the asymptotic gravitational radiation, which gives 
the change in the linkage from one cross section to the next. 
Further, even aside from these technical difficulties, there 
arise problems of physical interpretation.6,14,15 The cause of 
these is the presence of supertranslations: an infinite-dimen
sional collection of asymptotic symmetries, "distorted trans
lations," which are extraneous to--and so have no physical 
interpretation in-special relativity. Since "a translation 
without any supertranslation" makes sense, the supertrans
lations can be ignored in dealing with Bondi energy-momen
tum. But "a rotation without any supertranslation" does not 
make sense. The problem, then, is to identify the "pure rota
tional symmetries" for which the linkage is to be computed. 
The severity of this problem is illustrated by the following 
fact: even in Minkowski space-time, the linkage of certain 
supertranslations is nonzero. It is not even clear whether 
these various difficulties-technical and interpretive-are 
inherent in the structure of general relativity itself, or are 
merely features of the particular linkage integral which has 
been written down. There is, for example, an alternative gen
eralization-butjust to the supertranslations-ofBondi en
ergy-momentum, which avoids the problem of a nonzero 
linkage in Minkowski space-time.3 Might there be an alter
native, and more easily interpreted, generalization to all the 
asymptotic symmetries? 

We here obtain a number of properties of the linkages, 
and discuss their impact on the issues above. 

In Sec. 2, we introduce an alternative formulation of the 
linkagt'i' .egral. This new version achieves gauge-in variance 
in a simpler and more natural way. It is well-suited to the 
treatment of such issues as the dependence of the linkage on 
the cross section and its behavior under perturbations. The 
price paid is that now the integrand itself, as opposed to the 
numerical value of the integral, becomes gauge-dependent. 

A striking open question involving the linkage is wheth
er or not there exists a flux, which describes the rate of 
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change of the linkage integral due to radiation. In Sec. 3 we 
answer this question: Such a flux exists. This flux is then 
generalized to include the presence of matter, such as elec
tromagnetic fields, which can radiate to infinity. It is found, 
further, that there is no single, natural decomposition of the 
total flux, in the presence of matter, into a "matter part" and 
a "gravitational part"; the two seem unavoidably mixed. 
This feature reflects the well-known "factor of two anom
aly:,,15 The conserved integrals over the matter for symme
tries in flat space-time and the Komar l6 gravitational inte
grals for symmetries in curved space-time agree for 
rotations, but differ by a factor of two for time translations. 
(This anomaly is not due to some convention in a choice of 
factor, for there are no "pure rotations" in the Poincare 
group.) Finally, it is suggested in Sec. 3 that the linkages may 
be the only asymptotic integrals satisfying a list of physical 
requirements. 

Section 4 deals with linear perturbations, which pre
serve asymptotic flatness, of the gravitational fields. 17 The 
purpose is to understand better the ambiguities, inherent in 
the linkages, associated with hiding an extra supertransla
tion in a rotational symmetry. It turns out that one can shift 
this ambiguity between the gauge in which the perturbation 
is expressed, the choice of asymptotic symmetry, and the 
choice of cross section over which the integral is performed. 
Under certain restrictions---on the background space-time, 
the perturbation, the asymptotic symmetry, or the cross-sec
tion-these ambiguities can be made to disappear. When
ever the answer is unambiguous, the linkage seems to yield 
what one would expect physically. Finally, an example is 
given which suggests that the ambiguities associated with 
supertranslations are an essential feature of general relativity 
and its asymptotic structure. 
2. LINKAGES 

Let ii, gab be a space-time which is asymptotically flat 
at null infinity. T~at is, we have a manifold with boundary, 
M, consisting of M with boundary attached, a function il 
(the conformal factor) on M with il = 0 on the boundary, 
and a metric gab = il 2gab on M (called the unphysical met
ric, as distinguished from the physical metric gab on if). 
Throughout, let I denote the boundary at either future or 
past null infinity. Asymptotic flatness requires that this I 
have topology S 2 X R, with the R's the null geodesics tangent 
to the vector field na = ~mv mil, and that na v~nish nowhere 
on I. Further, letil be chosen to be a Bondi conformal factor, 
i.e., to satisfy Va V bil = 0 on 1. In this section, we shall deal 
with the exterior vacuum case, for which Einstein's equation 
takes the form 

il 2(Rab - ~Rgob) = nmnrngab - 2ilVanb. (1) 

Consider next the Bondi-Metzner-Sachs (BMS) 
asymptotic symmetry group. Its generators are given by vec
tor fields S a on M such that the right side of 

il 2 5t' sgab = 5t'sgab - 2il -IS rnnrngab' (2) 

is smooth and vanishes on I. It follows immediately that 
S ana vanishes on I, and so that Sana = ilK for some smooth 
function K on M. The vanishing of (2) on I now takes the 
form 
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(3) 

where X ab is some smooth tensor field on M. Since its vanish
ing is precisely Killing's equation in the physical space-time, 
we may interpretXab as a measure of the extent to which the 
BMS generator fails to arise from a physical symmetry. Note 
in particular that every Killing field in the physical space
time gives rise to a BMS generator. ThisXab is automatically 
transverse to n°, in the sense thatXa = il -IXomnm must 
remain finite at I. To see this, set X = X m m' and expand the 
identity (5t' s 5t' n - 5t' n 5t's - 5t' .if n )gab = 0, using (1) and 
(3), to obtain ' 

- Va VbK + 4n(aX b) + 2ilVla X b) - nmXrngab 

- i5t's(Rab -I;Rgab ) - 5t'nXab = O. (4) 

We call two BMS generators equivalent if they are equal 
on 1.18 The BMS generators form a Lie algebra-where the 
bracket is the Lie bracket-as do the equivalence classes. 
Those generators which, on I, are multiples of na are called 
supertranslations. 

The present description of asymptotic symmetries is 
subject to two distinct types of gauge freedom. 

The first corresponds to the choice between equivalent 
BMS generators. By definition, the difference between two 
equivalent generators must vanish on I, i.e., it must be of the 
form ilw a for some vector field w a on M. But, substituting 
into (3), we find that ilwa is a BMS generator if and only if wa 

vanishes on I, i.e., if and only if ilwa = il 2uo for some 
smooth field UO on M. Thus, the gauge freedom to choose 
between equivalent generators is given by Os a = il 2uo. Un
der this change, we have from (3) 

oK = iluana, 

oXab = 2n(aub) - nmurngab + ilV1aub). (5) 

The second type of gauge freedom corresponds to a 
change in the conformal factor. Setting il' = O)il, for 0) a 
smooth function on M, we obtain, since the physical metric 
must remain fixed, g' ab = 0)2gob . Invertibility of g' ab requires 
that 0) vanish nowhere, while the condition that il ' also be a 
Bondi conformal factor requires that naVa 0) = 0 at points of 
I. This, then, is the conformal gauge freedom. Now let S a be 
a BMS generator with respect togob ' Then, from (3), 
S '0 = SO is again a generator with respect to g' ob' Equation 
(3) now yields 

K'=K+O)-ISmvmO), 

(6) 

To summarize, we have the generators of asymptotic 
symmetries, a tensor field X ob ' for each generator, which 
measures the extent to which that generator fails to represent 
a physical symmetry, and two types of gauge freedom. 

We now wish to introduce "asymptotic quantities" as
sociated with these asymptotic symmetries. That is, we seek 
real-valued, multilinear, gauge-invariant functions on BMS 
generators, possibly also depending on cross sections of I. 
The value of the function represents some property of the 
system: the cross section, the "time" at which that property 
is determined. Gauge-invariance guarantees that we are 
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dealing with a physical property, and multilinearity guaran
tees that this property fits into a representation 19 of the BMS 
group. 

Let us, in order to get an idea of the possibilities, consid
er first the case of a BMS generator which arises from a 
Killing field in the physical spac~time. For i a a Killing 
field, the Komar integral, f Siab"''' (V"'t ")dS ab, where Sis 
anY'topological 2-sphere in the physical spa~time sur
rounding the sources, is independent of the choice of sphere. 
This integral represents the energy, momentum, angular 
momentum, etc., of the system, depending on what type of 
symmetry is represented by t a. Rewriting in terms ofunphy
sical fields, with sa = t a, we have 

(7) 

This suggests the following generalization of the Komar in
tegral to the case in which S a does not arise from a physical 
symmetry: use (7), where S a is any BMS generator, and S any 
cross section of I. 

Unfortunately, there appear to be two difficultities with 
such a definition. The first is that, because of the presence of 
inverse powers of ll, the integrand in (7) is, in general, infinite 
at I. But this is easily remedied. We claim: for sa any BMS 
generator, the limit of the right side of(7), asS, a 2-sphere in 
the physical spa~time ii, approaches a fixed cross section 
of I, always exists, and furthermore is independent of the 
details of the limit. To see this, first rewrite (7) as the integral 
over some fixed 2-sphere So in the physical spa~time 
(which integral is always finite) plus the integral of the curl of 
the integrand over a three-dimensional surface joining So to 
S. It suffices, then, to show that this curl remains finite at I. 
From(3) and the identity 
V"'V[a v", 1= Ra",v'" + Va(V",v"') - V"'V(avmp we obtain 

V"'V[a(ll -2S",j) =ll -I( - V"'Xa", + VaX + 3Xa)' (8) 

But the field in brackets on the right in (8) vanishes on I, as 
one sees by expanding the term if s (Rab - 1I6Rgab ) in (4) in 
terms of !f sgab and then using (3)-a straightforward but 
tedious calculation. So, the curl is indeed finite. We conclude 
that (7), regarded as a limit at a cross section S of I, always 
makes sense. 

The second-and more serious--difficuIty involves 
gauge dependence. First note that the Q given by (7) is indeed 
unchanged under further conformal transformations. The 
problem is with changes in choice of generator within an 
equivalence class. In fact, under the change 8S a = II 2Ua in 
the generator, the integrand in (7) changes by Eab",,, V"'u". 
Clearly, by a suitable choice of ua the value of Q itself can 
cha~ge .. Thus, gauge invariance does not hold. A naive gen
erahzatlon of the Komar integral, from genuine symmetries 
to asymptotic symmetries, does not yield physically accept
able asymptotic properties of systems. 

A method for avoiding this difficulty-for obtaining 
gauge-independent functions ofBMS generators-would be 
to use some combination of the following two strategies: (i) 
Add to the integrand in (7) some additional expression linear 
in the generator, this expression so chosen that the resulting 
integral continues to reduce to the Komar integral for a real 
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symmetry; or (ii) impose on the generator some additional 
gauge conditions, so chosen that they can always be achieved 
via (5). 

The linkages 12. 13. IS provide one example of the employ-
ment of these strategies. The definition, in this language, is 
the following. Fix a cross section S of I. Let Nbe the outgoing 
null surface in M which meets I at S, and let I a be a null, 
geodesic vector field which is tangent to N at points of N. We 
now demand, as the gauge condition, that, at points of N, 

(Xam - ~gam )1 m = 0, (9) 

or, in terms of physical variables, that 
(V(aib) - !iab V mtm)/b = O. Let the asymptotic integral be 

L = ikabmn V"'(ll -2S") + II -IXEab ]dS ab, (10) 

where Eab = EabcdnC[d(n",lm)-1 is the induced surface ele
ment on the cross section S. In terms of the physical varia
bles, this integrand is i ab",,, v"'t" + iab(V ",t "'). The integral 
(10) is to be understood in the sense of a limit at the cross 
section S. We first note that this limit always exists. For the 
first term on the right in (10), existence of the limit has al
ready been shown. For the second, contract (9) with na to 
obtain 

(11) 

Thus, the integrand for this second term, II -lX, remains 
finite at l. So, the integral (10), under (9), makes sense. 

We next consider gauge dependence. It is immediate 
from (6) that the linkage integral, (10), is invariant under 
changes in the conformal factor. To show invariance under 
passage to an equivalent generator is more difficult. We first 
obtain a preliminary result. Consider a change to an equiv
alent generator, 8s a = II 2ua, such that (9) is preserved, i.e., 
by (5), consider any vector field ua satisfying 

[2n(aUb) + llV(aUb) - ~llgab V mum]lb = 0, (12) 

on N. We show that this implies ua = 0 on N near the cross 
section S. First, contract (12) with la to obtain 
.Y I(ll 2[ bUb) = O. But this equation, together with the fact 
that II 2[ bUb vanishes on S, implies that I bUb vanishes on N. 
Next, antisymmetrize (12) with Ie> using the vanishing of 
[bUb on N, to obtain !fl(ll 2[[cua j) = 0 on N. But this equa
tion, together with the fact that II 2[[cua j vanishes on S, im
plies that ua is a mUltiple of [a on N. Finally, substituting that 
uQ = al Qon N into (12), we obtain a(21 mnm - nv m ["') = 0 
on N. It follows, since the field in parentheses is nonzero on 
N near S, that a = 0 on N near S. We conclude, then, that 
two equivalent generators, both satisfying (9), must coincide 
on N near S. [We remark that essentially this same argument 
also shows that the gauge condition (9) can always be 
achieved.] The proof that linkages are gauge-invariant now 
proceeds as follows. Since the limit implicit in (10) can be 
taken in any way we choose, consider that through cross 
sections of N. For such cross sections the integrand, as one 
verifies, depends only on the value of the generator S Q on N 
and its derivative within N. But since, as we have just seen, 
the gauge condition (9) fixes S a uniquely on N, it fixes these 
integrals over cross sections of N uniquely, and so fixes the 
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linkage integral (10) uniquely. 
Thus, the linkage, given by the integral (10) under the 

gauge condition (9), yields, for a given cross section S of I, a 
gauge-invariant linear function on BMS generators. It re
duces, in the case of a physical symmetry, to the Komar 
integral. 

Our basic result is an alternative-and, for many appli
cations, a more convenient-definition of the linkage. Let 
the gauge condition be, instead of (9), simply 

X=O, (13) 

and let the asymptotic integral be, instead of (10), 

i = lEabmn vm(n -2t n)ds ab, (14) 

i.e., what (10) reduces to with X = O. 
We prove the equivalence of (13), (14) and (9), (10). Fix a 

cross section S of I, a corresponding field / a, and a BMS 
generator t a subject to the gauge condition (9). Let Xab refer 
to this t a. Now consider an equivalent generator, 
t a + n 2ua, so chosen to satisfy the gauge condition (13). 
That is, by (5), ua must satisfy 

(15) 

everywhere. We shall show that, under these conditions, the 
linkage integral of t a and the integral (14) of t a + n 2U

a 

coincide, i.e., that the right side of 

i (t + n 2U) - L (t) = {(Eabmn vmun - n -IXEab)dS ab, Js (16) 

vanishes. Setting qab = gab - 2(/ mnm )-I/(anb)' we have 

= qab Vaub + 2(/mnm)-I/anb Vaub - Va ua 

= qab Vaub + (/mnm)-I/avax, (17) 

on I-the first equality is an identity, and the second uses 
(15) and the fact that Vanb = OonI. Now substitute (17) into 
the first term in the integrand on the right in (16). The 
term"qah Vaub," as an intrinsic divergence in S, integrates to 
zero by Gauss's law, and so we are left with 

i (t + n 2U) - L (t) 

= lWmnm)-I/CVcX - n -IX ]EabdS
ab

. (18) 

But (9) implies X = 0 on I, and so that the integrand in (18) 
vanishes on 1.20 

We conclude, then, that these two formulations of the 
linkage integrals are equivalent. In the original version, (9), 
(10), the gauge condition removes essentially all gauge free
dom, once a cross section is selected. The result is that not 
only the linkage integral, but even the integrand itself, is 
gauge invariant. Even the "local (on S) asymptotic contribu
tion" to the integral makes physical sense. Furthermore, 
both the gauge condition and the integral itself are intrinsic 
to a null surface in the space-time. This version is thus well
suited, e.g., to the characteristic initial-value formulation. 
But there are also some disadvantages. First, the collection 
of BMS generators satisfying the gauge condition (9), for a 
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fixed cross section, does not form a Lie algebra, for the Lie 
bracket of two need not be another. [Of course, given two 
generators satisfying (9), there always exists a third, equiv
alent to their Lie bracket and satisfying (9).] Consequently, it 
can become necessary to repeatedly solve (9) in passing to 
equivalent generators. More serious is the delicate depen
dence of the generator on the choice of cross section. Consid
er, for example, a slicing of I by cross sections, and a gener
ator t a satisfying the gauge condition (9) for these cross 
sections. Now choose a new family of cross sections. Then, 
while there will of course be a BMS generator equivalent to 
t a and satisfying (9) for these new cross sections, this new 
generator will in general be different from t a. Thus, this 
version is not well-suited to such questions as the depen
dence of the linkage integral on cross section. The present 
alternative version, (13), (14), has quite different strengths 
and weaknesses. The gauge condition (13) makes no refer
ence to any cross-section; it fixes, once and for all, a class of 
allowed generators. These generators do form a Lie algebra. 
However, this gauge condition does permit some limited 
gauge freedom. While the integral (14) is invariant under 
passage to an equivalent generator subject to (13), the inte
grand itself is not. In this verSion, there is no physically 
meaningful "local asymptotic contribution" to the integral. 

3. FLUX 

Consider any asymptotic integral, A (S), which assigns, 
for fixed BMS generator, a number to each cross section S. Is 
there an "asymptotic flux" for this integral, which deter
mines its dependence on cross section? In more detail, does 
there exist a function F on I, independent of any cross sec
tions, such that the difference, A (S2)-A (St!, for any two cross 
sections, is precisely the integral ofF over the region on I 
between the cross sections? Clearly, such an Fis unique ifit 
exists, and F alone determines the asymptotic integral 
uniquely up to an overall additive constant. But such a flux 
need not necessarily exist. As a simple example, consider the 
Euclidean cylinder, S I X JR, let "cross sections" be curves 
which go once around the cylinder, and let the integral be the 
length of the curve. There exists in this example no function 
F on the cylinder such that the difference in length of two 
cross sections is the integral of F between them. 

Do the linkages possess an asymptotic flux? From the 
original formulation, (9) and (10), the answer is by no means 
clear, for /a in the gauge-condition (9) and Eab in the integral 
(10) both involve explicitly the choice of cross section. Con
sequently, the difference between (10) for two cross sections 
might appear to depend on those cross sections in a way too 
delicate to permit an asymptotic flux. In fact, there is a flux 
in this case. 

Proof Consider the alternative version (13) and (14). 
Here, the cross section enters only via the region of integra
tion in (14). Indeed, not only must a flux exist, but it must be 
precisely the curl of the integrand, at I: 

F = naVmVla(n -2tml)' 

= nan -I [ - vmXam + VaX + 3Xa ], 

- VaVbXab + V 2X + 3Vax a. (19) 
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In the first step, we have taken the dual and a contraction 
with n°, to obtain a scalar flux; in the second, we have used 
(8); in the third, we have used the divergence of (8). A more 
convenient expression for the flux, obtained by virtue of the 
gauge conditon X = 0, is 

F = - VaVbXab + 3vaXa + (3/4)V2X + (1/24)RX. (20) 

This, then, is the general formula for the asymptotic flux for 
the linkages. It of course has the proper weight under 
changes of Bondi conformal factor. Furthermore, the ex
pression (20), as a consequence of the changes from (19), is 
completely gauge-invariant, i.e., it has the same value for all 
equivalent generators, whether or not they satisfy X = O. 
Note that the flux possesses all the advantages-and none of 
the disadvantages-ofboth versions of the linkage integral. 
It is locally defined, requires no gauge conditions, and makes 
no reference to cross sections. 

As an example, let us consider the case of the supertans
lation. On I, the BMS generator must be ofthe form '1' n°, 
where '1' is a scalar field on I satisying naVa '1' = 0 there. 
Choose any extension of '1' to a scalar field on M, and consid
er the vector field '1' n°, defined everywhere. This field is not 
in general a BMS generator, for it need not satisfy (3). What is 
a solution of (3) is the combination 

Sa = 'Tna - nVa'T. (21) 

We compute the flux for this generator. Define a, which 
depends on our generator, by na = naVa '1', and p, which 
does not, by n 2p = nana. [Finiteness of p, for a Bondi con
formal factor, follows from (1).] The field Xaband K [Eq. (3)] 
for this S a follow immediately: 

Xab = - Jj3'Tgab + agab - ~r(Rab - iRgab) - Va Vb '1', 

K = n (f3r - a). (22) 

Note that the generator (21) does not in general satisfy the 
gauge condition X = O. Thus, if we wished to compute the 
linkage via (14), it would be necessary to add to the right side 
of (21) a term n 2ua, so adjusted to achieve this gauge condi
tion. The flux (20), however, can be computed in any gauge. 
Substituting (22) into (20), we obtain 

F= lr- I(V2 
- 2n -lnaVa)H - 2r-lxabXab + 'T- 1X 2, (23) 

where we have set 

H = 'TV2r + (iR + p)r - (var)(Va '1') - 2ar. (24) 

Note that Eq. (23) for the flux makes manifest neither its 
finiteness nor its linearity in the generator. 

We now specialize still further, to the case in which S a is 
actually a translation. In terms of'T, this means that r on I is a 
linear combination of I = 0 and I = 1 spherical harmonics; 
in terms of H, it means that H is constant on I. In the case of a 
translation, Xab reduces to essentially the news 
Xab - !Xhab = rNab' where Nab is the news field and hab the 
induced metric on 1. Substituting into (23), using the con
stancy of H on I, we obtain 

(25) 

This will be recognized as the familiar expression for the flux 
of the Bondi energy-momentum. 
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So far, we have dealt entirely with the vacuum case, i.e., 
that in which the stress--energy vanishes in a neighborhood 
of 1. We now include asymptotic matter. Consider, then, an 
asymptotically flat space-time, but now demand that 
Tab = n -2Tab have a smooth extension to I. In essence, we 
are demanding that the physical stress--energy vanish 
asymptotically as 1/,-2, which turns out to be the physically 
correct condition on the matter. 

What would one expect physically to be the matter flux 
at infinity? One might think that, since TamS m would repre
sent the energy-momentum or angular momentum current 
of the matter when S a is a Killing field, and since na is the 
normal to I, the correct flux, when S a is any BMS generator, 
should be Tab nas b. However, there is a complication, involv
ing the numerical factor for this expression. We illustrate it 
by the following two examples. 

Consider first an exact asymptotically flat solution, 
with axial symmetry given by physical Killing field q; a. As
sign, to each cross section S of 1, the Komar integral, 
S SEabmn frq; nds ab. Then the total flux, which determines 
the difference between this integral for two cross sections, 
must be just the curl of this integrand. Evaluating this curl 
on I, we obtain Tab naq; b. Since the space-time is axisymmet
ric, we would expect no gravitational flux of angular mo
mentum. So, this total flux should also be the flux of matter 
alone. In this example, then, we are able to argue physically 
for a particular expression for the matter flux. 

Now consider, as the second example, an exact solution 
of Einstein's equation which is at all times spherically sym
metric. Let the solution, at early times, be that of a static 
fluid ball. At some point in time, however, let the matter of 
the ball suddenly tum into a null fluid without pressure, 
which will then radiate away to infinity. At late epochs, then, 
the space-time is flat (Fig. 1). Let [a be a time-translational 
BMS generator which equals the static Killing field at both 
early and late times. In the intermediate regime, during the 
radiation of the null fluid, [a will not of course be a Killing 
field. Let Si and Sf be respective cross sections of I at early 
and late times, and assign to each its Komar integral using 

;- -fluid 
ball 

FIG. I. A spherically symmetric, asymptotically flat space-time represent
ing a fluid ball which becomes a null fluid. The region to the future of the 
null fluid is flat. The spaceJike 3-surface I cuts the ball. and meets I at Si' 
The surface I ' joins S, to Sf along I, and then cuts across the flat space-time. 
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r. Then the latter must be zero, while the former, by Gauss's 
theorem, must be m = fI(Tab - 1!2Tgab )fbdS a, where I is 
any three-dimensional spacelike slice, with boundary Sj, in 
the initial region. Since spherical symmetry should preclude 
the radiation of gravitational energy, the difference between 
these two, m, should be just the matter flux at I, integrated 
between Si and Sf' To compute this flux, restrict to the weak
field limit, i.e., work to first order in the mass m. The virial 
theorem then gives 

r - b
m = !JITabf dS

a
. (26) 

But, to the present order in m, Tab is conserved and fa is a 
Killing field, at all times. So, the integral on the right in (26) 
can be performed over any surface I ' with boundary Si' We 
now choose for I ' a surface which coincides with I from Si to 
Sf' and then cuts across the space-time in the flat region, as 
shown in the figure. Then the only contribution to the inte
gral in (26) will be from I, and so we obtain 
m = !fITabtbdsa. Thus, we expect, for the matter flux in 
this example, !Tabnat b. 

These examples suggest, then, that for any asymptotic 
integral which reduces to the Komar integral in the Killing 
case the matter contribution to the flux should be Tab not b 
for a rotational BMS generator, and ~Tabnat b for a transla
tional generator. But this conclusion would seem to contra
dict the linear dependence of the flux on the generator. Two 
rotations, for example, could differ by a translation. 

With this dicussion as background, we now tum to the 
generalization, to the presence of asymptotic matter, of the 
linkage and its flux, We retain X = 0 as the gauge condition 
on the generator, and (14) as the definition ofthe linkage 
integral. Again compute the flux as in (20), but now, instead 
of using Einstein's vacuum equation (1), use that equation 
with its source term. There results 

(27) 

Thus, the general formula for the flux of the linkage in the 
presence of radiating matter is just (20) with an additional 
matter term, Tab nat b . Now consider the special case of a 
supertranslation. Einstein's equation was also used in deriv
ing (23) from (19). Again including the source terms, we ob
tain, for the flux for a supertranslation, just (23), but with an 
additional term, !Tobnotb, on the right. 

Thus, the anomaly of the numerical factor before the 
matter term which arose in our example is reflected, in the 
case of the linkages, by the alternative forms in which the 
total flux may be expressed. The general formula (20) for the 
flux vanishes when the generator is a Killing field (i.e., when 
Xob = O. In this form, the matter contribution is Tab nat h. 

The reduced formula (23) for the flux in the case of a super
translation reduces to the square of the news for a transla
tion. In this form, the matter contribution is !Tab not b. There 
is no general expression for the flux of the form "gravitation
al field contribution plus matter contribution," where the 
first term vanishes both for a Killing field and for a transla
tion in the absence of news, and the second term is some 
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multiple of TabnaS b. 
These considerations rather suggest that there may be a 

theorem to the effect that the linkage integral is the unique 
physically reasonable candidate for the asymptotic energy
momentum-angular momentum. The linkage integral has 
all the following properties: (i) it is defined for any BMS 
generator and any cross section, and is linear in the former; 
(ii) it is invariant under conformal changes and passage to an 
equivalent generator; (iii) it is "local" in the sense that the 
value ofthe integral depends only on the geometry and gen
erator in a neighborhood of the cross section; (iv) it reduces 
to the Komar value for a Killing field, and tothe Bondi value 
for a translation; (v) it possesses a flux; and (vi) it applies also 
in the presence of radiating matter. We conjecture that these 
properties characterize the linkage uniquely. 

Consider, for instance, the following possibility for an 
alternative candidate. Let the flux be, instead of (20), simply 

F = - 2Nabxab. (28) 

This flux expression reduces to the Bondi formula, (25), in 
the case ofa translation (Xab - !Xhab = 1'Nab ), and to zero in 
the case of a Killing field (Xab = 0). Furthermore, this ex
pression has the attractive feature that it always vanishes in 
Minkowski space-time, since Nab = a there, whereas, by 
(23) neither the linkage nor its flux vanish in general in Min
kowski space-time. But more must be done in order to have a 
candidate satisfying the six properties above. Of what local 
integral, over cross sections, will this be the flux? It seems 
very likely that there exists none. Further, how is the flux 
expression (28) to be modified in the presence of radiating 
matter? Our examples show that the adition to (28) of neither 
Tab nat b nor half this will do. 

4. LINEAR PERTURBATIONS 

In this section we consider the effects, on generators 
and their linkages, of first-order perturbations of the gravita
tional field. The consideration of such perturbations illumi
nates not only the physical meaning of the linkages, but also 
the role of super translations. For simplicity, we restrict the 
discussion to the case with all sources-both in the back
ground and for the perturbation-vanishing in a neighbor
hood of I. 

Let M,gab be an asymptotically flat space-time, with 
unphysical metric gob = n 2gab . Let Yab be a first-order per
turbation of the physical metric. We wish to impose on this 
y ob the condition that "asymptotic flatness be preserved to 
first order." In more detail, we require that there exist some 
perturbation, on, of the conformal factor such that the var
ious conditions for asymptotic flatness, which of course al
ready hold in the background, continue to hold to first order 
in the perturbation. The condition that n vanish at I requires 
that on also vanish at I, i.e., that on = nO) for some smooth 
function 0) onM. Then the perturbation, rab' ofthe unphysi
cal metric becomes 

rab = n 2Yob + 2OJgab . (29) 

The condition that gob be smooth at I requires that this rab 
also be smooth at I. Finally, the condition tht n be a Bondi 
conformal factor requires, from (1), that the combination 
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Yabnanb - 2navaCt) vanish at f to second order in n. 
Let Yab be any perturbation of the physical metric 

which preserves aysmptotic flatness to first order, as charac
terized above. This Yab is of course subject to the freedom of 
gauge transformations: Yab-Yab + 2V(aibl' wherei aisany 
vector field on M. We exploit this gauge freedom to set Yab 
equal to zero at f, and Ct) equal to zero everywhere in a neigh
borhood of f. That this may be achieved follows immediately 
from the fact that, given two asymptotically flat space
times, one can find a diffeomorphism between them, in 
neighborhoods of f, which preserves n everywhere in these 
neighborhoods and gab at l. In this gauge, the perturbation 
of the conformal factor is zero, while the perturbation of the 
unphysical metric is given by Yab = W Yab , for some smooth 
field Yab on M with, by the remarks following (29), 
Yab nanb vanishing on f. 

A particularly convenient feature of this gauge is that it 
yields the following property: under any perturbation in the 
present gauge, any BMS generator 5 a remains a generator to 
first order. This property is immediate, taking the perturba
tion of (3) and setting ogab = 2n Yab . In fact, it follows from 
this that, for 5 a a generator, with K and Xab given by (3), the 
first order change in K under this perturbation of the metric 
vanishes, while that of Xab is given by 

oXab = .!f s Yab - KYab . (30) 
The present gauge still permits the following, more restrict
ed, gauge freedom: Yab-Yab + 2V(aibi' where now 
i a = A a must itself be a BMS generator. That is, the gener
ators of the remaining gauge group are exactly the BMS gen
erators. Under such a gauge transformation, the change in 
Yab is particularly simple; Yab - Yab + Xab (A ), where 
Xab(A) is the field obtained from the generator A a via (3). 

This remaining gauge freedom, unfortunately, is 
enough to yield ambiguities in the perturbation of the link
age integrals. Fix an asymptotically flat space-time, with gab 
and n, a generator 5 a, and a cross section S. WriteL (5,S) for 
the linkage integral over the cross section S for the generator 
5 a. Consider now a first-order perturbation of the metric 
which is in the present gauge and which itself is pure gauge, 
i.e., which is given by Yab = Xab (A ) for some BMS generator 
A a. Then, since the linkage integral L (5,S) must be un
changed under applying simultaneously to gab' 5 a, and S 
the diffeomorphism generated by A a, we have 

ogL (5,S) = - osL (5,S) - L ([A,s ],S), (31) 

where ogL (5,S) is the change in the linkage, keeping 5 a and 
Sfixed, under our gauge perturbation in gab , and osL (5,S) is 
the change in the linkage integral, keeping 5 a and gab fixed, 
under the displacement of the cross section S along A a. This 
last term is of course expressible in terms of the flux. In short, 
a gauge-change in the background geometry is equivalent to 
moving the cross section slightly and changing the generator 
slightly. In particular, the change in the linkage under a per
turbation in the geometry, keeping the generator and cross
section fixed is not gauge-invariant. Note from (31) however 
that, for the case in which the gauge generator A a is equiv
alent to the zero generator, no linkages are changed to first 
order. That is, as far as the values oflinkages are concerned, 
the asymptotic gauge group on metric perturbations is the 
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BMS group. 
Under certain special conditions on 5 a and S the gauge 

ambiguities of the previous paragraph can be avoided. When 
they can, "the first order change under a metric perturbation 
of the 5 -linkage over S " will be physically meaningful. One 
such set of conditions is 5 a is a translation generator having 
zero flux at points of S and such that all translations orthogo
nal to 5 a have vanishing linkage integral over S. The vanish
ing of the flux ensures that the first term on the right in (31) 
vanishes for all gauge-generators A a, while, since the most 
general generator of the form [A,5]a is a translation orthog
onal to 5 a, the vanishing of the linkages of these ensures that 
the second term on the right in (31) also vanishes. These 
conditions are satisfied, for example, for 5 a, the Killing time
translation generator in the Schwarzschild solution, and S, 
any cross section. Thus, the first-order change in the mass of 
the Schwarzschild solution under any perturbation preserv
ing asymptotic flatness makes physical sense. Note, howev
er, that the analogous first-order change in the momentum 
does not. A second set of conditions is 5 a is a (rotational) 
Killing field tangent to S. That 5 a be a Killing field ensures 
that its flux vanishes, and so that the first term on the right in 
(31) always vanishes. That the second term also vanishes fol
lows from rewriting (31) with the roles of 5 a and A a reversed 
and using the fact that 5 a is tangent to S. These conditions 
are satisfied, for example, for 5 a, any rotational Killing field 
in the Schwarzschild solution, and the cross section S, an 
orbit of the spherical symmetry. Thus, the first-order change 
in the angular momentum of the Schwarzschild solution 
(measured on a spherically symmetric cross section) under 
any perturbation preserving asymptotic flatness makes 
physical sense. 

Another way of avoiding these gauge ambiguities is by 
imposing conditions on the perturbation Yab , rather than on 
the generator or the cross section. Consider, as one example, 
perturbations which are"internally generated" in the space
time, in the following sense: prior to some retarded time, Yab 
vanishes in a neighborhood of f. We show that, in most back
ground space-times, the first-order change in any linkage 
under such an internally generated perturbation is unam
biguous. The gauge transformations which preserve the 
property of being internally generated are those which 
change Yab by Xab (A ), where A a is any BMS generator for 
which Xab (A ) vanishes in a neighborhood of f prior to some 
retarded time. But this implies that, near f at early times, A a 

is a Killing field of the background space-time. We now 
demand of the background that it not "spontaneously break 
symmetries" in the following sense: any Killing field in a 
neighborhood of f prior to some retarded time must extend 
to a Killing field in a neighborhood of f for all times. Under 
this condition, there exists a Killing field i a of the back
ground in a neighborhood of f, such that i a = A a at early 
times. By the Killing character of i a, Xab (A ) = Xab (A - i ), 
and so we may take as the gauge vector A a - i a rather than 
A a. By the vanishing of A a - ,t a at early times, this BMS 
generator is equivalent to the zero generator. Thus, all gauge 
transformations which preserve the property of being inter
nally generated21 are via generators equivalent to zero. But, 
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by (31), such gauge transformations do not change the values 
of any linkages. The additional condition that the back
ground not spontaneously break symmetries holds in most 
cases of interest, e.g., for stationary space-times, and for 
space-times having no Killing fields anywhere. It appears 
that the conclusion of the argument actually fails without 
this condition. It seems peculiar that the breaking of an in
ternal symmetry in the background-so small as to produce 
no physical effects-can nonetheless destroy the gauge-in
variance of the first-order change in a linkage under an inter
nally generated perturbation. 

In order to discuss the actual changes in the linkages 
under various perturbations, it is convenient to have the fol
lowing formula. Consider any asymptotically flat space
time, with gab' n, and consider any perturbation r ab of the 
physical metric which preserves asymptotic flatness, is in the 
present gauge, and satisfies the linearized Einstein equation. 
Contracting the latter with nanh

, substituting 
r ab = 2n - I Yab , and evaluating on I, we obtain, after some 
manipulation, 

(32) 

whereF (Y) is the flux expression (20) with Yab substituted for 
X ab , and Cabcd is the background Weyl tensor. It follows 
from asymptotic flatness that n - I Cabcd remains finite on I, 
essentially a reflection of the peeling property. So, the right 
side of(32) is well defined. 22 In general, theFt Y) in (32) is not 
the flux of any linkage. However, this equation holds in par
ticular when it is, i.e., with Yab pure gauge (Yab = Xab(A ) 
with A a any BMS generator). 

The following are examples of the simplifications which 
arise from restricting consideration to internally generated 
perturbations. One would expect physically that, to first or
der, energy cannot be radiated away in a stationary space
time, nor angular momentum in an axisymmetric one. What 
precise results are available which reflect these expectations? 

An appropriate result in the stationary case is easy: for 
ta, a timelike Killing field in the background, no internally 
generated perturbation can change the linkage of 5 a, for any 
cross section, to first order. This follows immediately from 
the flux expression for a translation, Eq. (25). Applied to the 
background, this equation implies that the news vanishes in 
the background. But now, because of the quadratic depen
dence on the news, this equation also implies that the first
order change in the flux of 5 a vanishes. This implies, finally, 
that the first-order change in any linkage of 5 a must vanish 
(since this necessarily holds at early times, when Yah = 0.) 

A similar, but apparently somewhat weaker, result is 
available for other Killing fields. Let t a be a Killing field of 
the background, so Xab (5 ) = 0, while the perturbation of Xab 
is given by (30). Replacing Yab by Xab in (32), and taking its 
first-order perturbation, we obtain 

naVaoF(X) = -n-ICabcdnbndoxac. (33) 
We now suppose that the background space-time is noora
diative, in the sense that n - I Cabcd nbnd is a multiple of na nc 
on I. Then, by transversality of X ab , the right side of (33) 
vanishes, and so of (X) = O. Thus, the flux of 5 a is unchanged 
to first order under the perturbation, and so, therefore, are 
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its linkages. We have shown that, in a nonradiative space
time, no linkage for a Killing field is changed to first order by 
an internally generated perturbation. So, for example, inter
nally generated perturbations in the Schwarzschild or Kerr 
space-times cannot radiate angular momentum to first 
order. 

Finally, we show that even for a radiating background, 
an internally generated perturbation cannot change the link
age for a rotational Killing field, provided the linkage is tak
en over a cross section S to which that field is tangent. This 
also follows from (33). For simplicity, choose n so that 
5 aVan = O. Since 5 a is a Killing field, we have 
.5t' 5 Cabcd = O. So, by (30), the right side of (33) is 
5 mv m ( - n - ICabcdnbndyac). Now integrate (33) over the 
region of I between the initial time and any cross section S' to 
which 5 a is everywhere tangent. Then, since the integral of 
the right side vanishes, we conclude that the integral of bF 
over S' must vanish. But this is true for every such S '. So, the 
in tegral of bF over the region off between the initial time and 
our given cross section S must vanish. Hence, the first-order 
change in the linkage of 5 a over S must vanish. 

The examples above can be regarded as part of a larger 
question. Fix an asymptotically fiat space-time, and a per
turbation Yab which preserves asymptotic flatness to first 
order and is in the present gauge. Fix a cross section S of I in 
the midst of the Y-radiation. What should we take as the 
physical energy, momentum, or angular momentum of the 
perturbed system at the time represented by S? That is, what 
are the appropriate generators to use in computing the link
age integrals over S? Physically, one would expect that the 
appropriate generators would be those somehow adapted to 
the geometry near S. But no such local criterion is known in 
the presence of radiation. This is the essence of the fact that 
the asymptotic symmetry group in general relativity is the 
BMS and not the Poincare group. Above, the generators 
were selected according to the following criterion. Assume 
that the perturbation is internally generated, select gener
ators adapted to (e.g., Killing fields of) the now unperturbed 
background geometry at early times, and use these gener
ators to compute linkages at all times. One can ask whether 
this choice is at all physically appropriate, and whether oth
er, better choices might be available. 

There is one arrangement in which one can obtain evi
dence on these issues. Consider an asymptotically flat space
time, with internally generated perturbation Yab in a gauge 
such that it vanishes in a neighborhood of I prior to some 
retarded time. Suppose now that this perturbation "dies 
out" in the limit oflate times in the following sense: in this 
limit, Yab = Xab (A) on I, for some BMS generator A a. That 
is, we require that, up to gauge, the perturbation vanish on I 
at late times. The generator A a is of course uniquely deter
mined up to a generator which is a Killing field of the back
ground at early times. By a gauge transformation, we could 
alternatively have Yab vanish on I at late times, and then can 
be - Xah (A ) at early times. Now suppose that some local 
geometrical criterion has been used to select a physically 
appropriate generator 5 a at early times. Apply the same cri
terion locally to select a generator in the limit of late times. 
Then, since Yah differs from zero on I at late times only by 

Robert Geroch and Jeffrey Winicour 810 



                                                                                                                                    

the gauge action of A a, the selected generator will differ from 
5 a, to first order, by [A ,5 ] a. That is, this perturbation in the 
geometry induces a shift in the locally determinedgener~ 
ators which, to first order, changes sa by [,1,5 ]a. In short, 
there would be an inner automorphism, determined by A a, 

on the BMS Lie algebra, which sends each generator at early 
times to that generator selected by the same criterion at late 
times. 

Can such a shift actually take place? We give an exam
ple to show that it can. Let the background be Minkowski 
space-time, in standard spherical coordinates t, r, f), ¢J. This 
space-time is of course asymptotically flat, with conformal 
factor n = r- I. Introduce in this space-time a conserved 
stress--energy field, Tab, with the following features. Initial
ly, Tab represents a static, spherically symmetric fluid ball of 
mass m, at rest and centered at the origin. At late times, Tab 
represents two fluid balls, each static and spherically sym
metric and of mass (m/2)( 1 - V2)1 /2 in its own rest frame, but 
moving from the center in opposite directions (along f) = 0 
and f) = 11") with speed v. The v factor ensures total mass 
conservation, as required by conservation of tab.) Now con
sider an exterior solution rab of the linearized Einstein equa
tion with this Tab as source. Initially, we may set 

(34) 

the first-order perturbation to Schwarzschild offMinkowski 
space-time. This form of the perturbation at early times pre
serves asymptotic flatness to first order. Indeed, setting 
Yab = !J1r ab' not only is Yab finite at I, it even vanishes there 
to second order in n. Similarly, at late retarded times, let rab 
be the sum of two terms of the form (34), appropriatelyad
justed for the motion of each ball. Again, the corresponding 
Yab will vanish at I to second order in n. During intermedi
ate times, when the first-order radiation is reaching I, rab 
will be more complicated. In fact, Yab = !J1rab will not nec
essarily even remain finite at I then. Now perform on this rab 
a gauge transformation which vanishes at early times and 
which leads to a transformed perturbation, r'ab' with finite 
Y / ab = !J1r/ ab everywhere on I. Then at early times 
Y'ab = Yab' while at late times Y'ab = Yab + Xab(A), for 
some BMS generator A a. Clearly, A a is unique up to a gener
ator which is a Killing field in Minkowski space-time at 
early times, and so we may assume without loss of generality 
thatA a is a supertranslation generator. ThisA a generates the 
shift in the generators from early to late times. 

We may determine this supertranslation A a for our ex
ample using (32). Here, the Weyl tensor of the background, 
and so the right side of (32), vanishes. Applying this equation 
to Y'ab' we conclude that F(Y') is constant along each n
integral curve on I. Initially, Y' ab = Yab , and so we may 
calculateF(Y')explicitlyfrom(34). ThereresultsF(Y') = m. 
So, by (32), we must haveF(Y') = m everywhere on I. Simi
larly, at late times Y' ab = Yab + Xab (A ), and so F (Y') 
= F(Y) + F(X(A j).Theleftsideism, whileF(Y)atlatetimes 

is again calculated explicitly. In this way, we obtain 

F(X(A)) = m - !m(l - V2)2[(I - vcosf))-3 

+ (1 + vcostJj-3]. 

611 J. Math. Phys .. Vol. 22. No.4. April 1981 

This, then, is the formula for the flux of the supertranslation 
A a. We see in particular that A a is not, in this example, equiv
alent to a translation, and so there is indeed a nontrivial 
supertranslation shift in the generators. [The perturbation of 
this example can be made to vanish near I at early times by 
subtracting (34) from Y' ab for all times.] 

This particular example has, in addition, the following 
curious feature. At initial times, the background is Min
kowski and the pertubation Y / ab vanishes on I. Thus, at 
early times one can distinguish an entire preferred Poincare 
subalgebra of the BMS Lie algebra, namely that consisting of 
equivalence classes containing a generator 5 a with 
Xab (5) = 0 on I. Similarly, at late times the background is 
again Minkowski and the perturbation Y / ab differs only by 
gauge from vanishing on I. So, the same criterion again 
yields an entire preferred Poincare subalgebra at late times. 
That is, in this example one would regard all the Poincare 
quantities, energy, momentum, and angular momentum, as 
making physical sense at both early and late times. 

In this example, the shift between the initial preferred 
Poincare subalgebra and the final one (initial generator 5 a 

sent to final generator 5 a changed to first order by [,1,5 ] a) is 
via a supertranslation A a. Thus, translations, since they 
commute with A a, are not shifted. That is, energy and mo
mentum would be calculated at initial and final times using 
the same generators. But for 5 a a rotation, [,1,5 ] a is a super
translation, and in general not a translation. Thus, there 
arise nontrivial shifts in the rotation generators. Quite differ
ent generators would be used to determine the physical "an
gular momentum" at initial and final times, and, since they 
differ by supertranslations, these different generators would 
yield different linkages. The conclusion seems to be that 
there are two mechanisms by which a system can change its 
physical angular momentum. One is by simply radiating an
gular momentum, i.e., changing, as described by the flux, the 
linkage for a fixed generator between two cross sections. The 
other is by catalyzing a shift in the physical choice of gener
ator to be used in determining the angular momentum. The 
example above shows that the second mechanism can be op
erative. Can it be physically important? 

There is a further complication. In this example, the 
supertranslation A a is determined only up to the addition of 
an arbitrary translation. Thus, even the correspondence be
tween the preferred initial and final Poincare subalgebras is 
not unique. (In the case of no perturbation, the correspon
dence is made unique by adding an appropriate translation 
to achieve A a = O. But, when A a is a nontrivial supertransla
tion, there is no natural way to "remove its translation 
part.") This lack of uniqueness means that we do not know 
precisely what the "same rotation" at early and late times 
means. The "directions" of the rotations can be compared 
unambiguously. The problem is in comparing their "ori
gins." Thus, not only is there a second mechanism for a sys
tem to change its angular momentum, but even the compari
son between initial and final angular momenta is subject to 
an ambiguity. 

These observations suggest that it may be inappropriate 
to think of isolated systems in general relativity in terms of 
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the familiar "angular momentum," i.e., in terms of the Poin
care group. Perhaps the BMS group must be faced squarely. 
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Positive energy density tends to limit the size of space. This effect is stu~ied. within s~vera1 
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Also, we show that static or rotating universes with 11 = 0 require that the denSIty along some 
spatial geodesic must fall off rapidly with distance from a point. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

The energy density of space-time is related to the cur
vature of a spatial hypersurface via the Einstein field equa
tions and the Gauss equations. Energy density, being inher
ently positive, contributes a positive term to the Ricci 
curvature of a spatial hypersurface. Positive Ricci curvature 
tends to limit the size of the spatial hypersurface. This effect 
was studied for general Riemannian manifolds in a classical 
paper of Myers. I In this paper we make use of two refine
ments of Myers' results (due to Ambrose2 and one of the 
authors3

) to demonstrate within several different contexts 
the relationship between energy density and the "size of 
space." 

A number of theorems (including some of the singular
ity theorems) of general relativity assume a closed space
time, i.e., a space-time which admits a compact spatial hy
persurface. It is, therefore, of interest to establish some suffi
cient conditions for the compactness of spatial hypersur
faces. In Sec. II we present several such compactness results 
for spatial hypersurfaces of various types. (These results 
modify and generalize some earlier results of one of the au
thors.4

) 

In Sec. III we obtain generalized versions of two classi
cal results in general relativity involving static space-times 
which we now briefly recall. The Schwarzschild solution 
puts an upper bound on the size of a static, spherically sym
metric fluid ball. This bound may be expressed in terms of 
the average density of the ball. As Eddington5 has said, "The 
limit exists because the presence of dense matter increases 
the curvature of space, and makes the total volume of space 
smaller. Clearly the volume of the material sphere cannot be 
larger than the volume of space. " We obtain a bound of 
roughly the same nature on the size of an arbitrary fluid mass 
in a general stationary space-time. Our result requires no 
spherical symmetry and allows for rotation. 

It is well known that a static fluid filled space-time can
not be a solution to the Einstein equations (with cosmologi
cal constant 11 = 0) provided the time lines along which the 

gra·,itational field is constant are geodesics.6 Maitra7 has 
constructed a dust filled stationary space-time (the time lines 
along which the gravitational field is constant rotate) which 
satisfies the Einstein equations (with 11 = 0). In his model, 
which is cylindrically symmetric, the density falls off rapidly 
with distance from the axis of rotation. We prove for a gener
al static or stationary space-time which is a solution to the 
Einstein equations (with 11 = 0) that the density along some 
spatial geodesic must fall off rapidly (in a precise sense) with 
distance from a point. 

II. SUFFICIENT CONDITIONS FOR THE COMPACTNESS 
OF SPATIAL HYPERSURFACES 

Let M 4 be a space-time, i.e., a smooth four-dimensional 
manifold equipped with a Lorentzian metric ( , ) (with sig
nature: - + + +). Assume, in addition, that M4 is time 
orientable. Let V3 beaspatialhyperslirfaceinM 4 • Then V 3 in 
the induced metric has the structure of a Riemannian mani
fold. The following result of Ambrose8 gives a useful crite
rion for the compactness of a complete Riemannian 
manifold. 

Lemma (Ambrose): Let MN be a complete Riemannian 
manifold. If there is a point q of Mn such that along each 
geodesic r emanating from q the Ricci curvature satisfies 

f" Ric(X,x) d)" = + 00, (I) 

where),. is arc length along r and X is the unit tangent to r, 
then MN is compact. [Ric(X,x) = ~ RijXiXjwhere Rij are 
the components of the Ricci tensor and X i are the compo
nents of X.] 

We shall apply Ambrose's result to the case of a spatial 
hypersurface V 3 in space-timeM4. The unit tangent vectors 
to the future directed geodesics orthogonal to V 3 define a 
smooth unit timelike vector field Tat least in a neighborhood 
of V 3. This vector field may be thought of as defining a distin
guished geodesic reference frame, where the normal geode
sies, which are the integral curves of T, represent the world-
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lines of a distinguished class of geodesic observers. 
LetXbe a vector tangent to V 3 atq. Extend X along the 

normal geodesic r through q by making it invariant under 
the flow generated by T: 

[X, T] = V x T - V TX = 0, 

where V is the Levi-Civita connection and [ , ] is the Lie 
bracket. Because the flow is geodesic, X remains perpendicu
lar to T, i.e., remains in the "rest space" of the geodesic 
observer. The vector field X along r may be thought of as a 
position vector tracking nearby geodesic observers. The vec
tor fields v(X) = V TX and a(X) = V T V TX along r are called 
the 3-velocity and 3-acceleration of X, respectively.9 The in
equality (v(X),x ) ;;;,0 indicates a recession of nearby geodesic 
observers in the direction of X, and the inequality 
(a(X),x ) .;;0 indicates a deceleration of the recession in the 
direction of X. Introduce the scalar: e = divT, where div is 
the space-time divergence operator. Let B be the unit "2-
sphere," i.e., the set of unit vectors in the tangent space of V 3 

at q. A computation shows 

8 (q)=divT(q) = _1_ ( (v(X),x) dn, 
41T )XEB 

where dn is the area element of B. Thus, e is a measure of 
the average rate of expansion of the normal geodesics. (Note: 
if X is a unit vector tangent to V 3 which is made invariant 
under the normal geodesic flow, then 

~\ IIXII = (v(X),x), 
ds g 

where s is proper time and IIX II = (X,x) 1/2 is the length of 
X). Geometrically, e (q) is minus the trace of the second fun
damental form of V 3 at q. 10 

Theorem 1: Let V 3 be a spatial hypersurface in M 4. As
sume V 3 is complete in the induced metric. If there is a point 
q in V 3 such that along each geodesic r of V 3 emanating from 
q the condition 

fC [Ric(X,X) - (a(X),x) - (v(X),x)e 

+ (V(X),x)2] d)' = + 00 (2) 

is satisfied, where)' is arc length along r and X is the unit 
tangent to r, then V 3 is compact. 

Proof A computation shows l 
1 that, for unit vectors X 

tangent to V\ 
Ricv(X,X) = Ric(X,X) - (a(X),x) - (v(X),x)e 

+ (v(X),X)2 + (v(X),ez)2 + (v(X),e3)2, 

where Ric v is the Ricci tensor of V 3 in the induced metric 
and X,e 2,e3 are orthonormal. Combining this equation with 
Ambrose's result yields the desired conclusion. 

If space-time is filled with a perfect fluid having four
velocity u, density p and pressure p then the Einstein equa
tions imply, 

Ric(X,X) = 41TK(p - p) + 81TK(p + p)(X,U)2 

;>41TK(p - p) (3) 

(assumingp + p;;;,O) for any unit spacelike vector X. (Here K 

is the gravitational constant.) Cosmologically, we expect 
(a(X ),X ) .;;0. (In fact a computation shows 

814 J. Math. Phys., Vol. 22, No.4, April 1981 

- jRic(T,T) = _1_ ( (a(X),x) dn, 
41T )XEB 

where, for ordinary matter, Ric(T,T);;;,O. So there must at 
least be deceleration on the average.) Thus, roughly ~peak
ing, Theorem 1 says that if the mass-energy density on V 3 is 
sufficiently large relative to expansion then V 3 must be 
compact. 

We present several corollaries to Theorem 1, corre
sponding to several different types of spatial hypersurfaces. 
First, consider the special case in which V 3 is a maximal 
hypersurface. A hypersurface V 3 is maximal if and only if the 
trace of its second fundamental form is identically zero, or, 
equivalently, if and only if e vanishes on V 3

• A maximal 
hypersurface is an extremal of the 3-volume functional on 
space-time. This class of hyper surfaces has been investigated 
by a number of authors. 12 

Corollary 2. Consider a perfect fluid filled space-time 
M 4 in which the Einstein equations are satisfied. Suppose M 4 

admits a maximal spatial hypersurface V 3 which is complete 
in the induced metric. If 

(i) the 3-acceleration (in any direction) relative to each 
geodesic orthogonal to V 3 is nonpositive on V\ i.e., 
(a(X),X ).;;0 for all X tangent to V 3

, and 

(ii) there is a point q in V 3 such that along each geodesic 
r of V J emanating from q the condition 

(OO(p _ p) d)' = + 00 

)0 

is satisfied then V 3 is compact. 

(4) 

Proof The vanishing of 8, (3), and condition (i) imply 
that the integrand in (2) is greater than or equal to 
41TK( p - pl. Thus, (4) implies (2) and V 3 is compact. 

The next result applies to hypersurfaces whose normal 
geodesics diverge in all directions. 

Corollary 3: Consider a perfect fluid filled space-time 
M 4 in which the Einstein equations are satisfied. Suppose M 4 

admits a spatial hypersurface V 3 which is complete in the 
induced metric. If 

(i) condition (i) of Corollary 2 holds and 

(ii) the 3-velocity (in any direction) relative to each geo
desicorthogonal to V 3 is nonnegative; i.e., (v(X ),X );;;,0 for all 
X tangent to V 3 and 

(iii) there is a point q in V 3 such that along each geodesic 
r of V 3 emanating from q the condition 

(5) 

is satisfied, where h = *8 and e is the expansion of the nor
mal geodesics, then V j is compact. 

Proof Let X = e 1 ,e2,e3 be an orthonormal basis of V' at 
some point along one of the geodesics emanating from q. 
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Introduce the notation: 

Va = (v(ea),ea), a = 1,2,3. 

By (ii), Va ;>0. A simple computation shows 

so that 

(v(X),x)8 - (V(X),x)2 = VIV2 + VIV3 

Now by Schwarz's inequality, 

~[q:Va)2 - ~v; J <![ (~va)2 -1(2)a)2] 

=le 2 
3 

= 3h 2
• (7) 

Therefore, (3), condition (i), (6), and (7) imply that the inte
grand in (2) is greater than or equal to 417'K(p - p) _ 3h 2. 

Thus, (5) implies (2) and V 3 is compact. 
We emphasize that the expansion term h = 18 appear

ing in (5) refers to the expansion of the normal geodesics. It 
refers to the expansion of the fluid (even if the fluid flow is 
not geodesic) if and only if the fluid flow is orthogonal to V 3. 

Also, Corollary 3 is stilI true if instead of requiring all 3-
velocities to be nonnegative, we require all 3-velocities to be 
nonpositive. 

The final corollary refers to an arbitrary spatial hyper
surface on which the acceleration condition holds. At each 
point of V 3

, let 

1/ = max I (v(X ),x ) I· 
XEB 

Then we have the following. 
Corollary 4: Consider a perfect fluid filled space-time 

M 4 in which the Einstein equations are satisfied. Suppose M 4 

admits a spatial hypersurface V 3 which is complete in the 
induced metric. If 

(i) condition (i) of Corollary 2 holds and 
(ii) there is a point q in V 3 such that along each geodesic 

yof V 3 emanating from q the condition 

is satisfied then V 3 is compact. 
Proof Using the notation introduced in the proof of 

Corollary 3, we have 

(v(X),X)8 - (V(X),x)2 = VIV2 + VIV3 

<lvll/v21 + /v l llv31 

(8) 

<21/2
• (9) 

The inequality (3), condition (i), and (9) imply that the inte
grand in (2) is greater than or equal to 417'K( p - p) - 21/2

• 
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Thus, (8) implies (2) and V 3 is compact. 
These corollaries clearly demonstrate the role of energy 

density in "closing up" the universe. 

III. FLUID MASSES IN STATIONARY SPACE-TIMES 

We assume in this section thatM 4 is a stationary space
time, i.e., that M4 admits a future timelike Killing vector 
field X (which, hence, generates isometries in time). If, in 
addition X is an irrotational vector field then M4 is a static 
space-time. We also assume that M4 is perfect fluid filled 
and (unless otherwise stated) that the fluid flow is rigidly 
rotating, i.e., that the fluid 4-velocity u is parallel to X. Let V 3 

be a spatial hypersurface inM 4. (If M 4 is static we are assured 
ofthe existence of such global spatial sections. Indeed, if X is 
irrotational then through each point of M4 there passes a 
maximal spatial hypersurface orthogonal to X. 13 However, 
even if X is not irrotational, it has been shown by Hawking 14 

that unless a space-time is on the verge of causality violation, 
it must admit global spatial sections.) 

The geometry of stationary space-times is developed in 
Lichnerowicz 15 and Landau and Lifschitz. 16 Our notation is 
quite close to that of Landau and Lifschitz but there are 
minor differences. Assume local coordinates t = xO, X I, x

2
, 

x 3 have been chosen so that the Killing field X = a/at and V 3 

is defined by t = O. The metric of M4 is of the form 

ds2 = - h dt 2 + 2gopdt dxP + gap dxa dxP (10) 

where h = - goo, all metric coefficients (gij ) are independent 
of t, Greek indices run from 1 to 3, and the summation con
vention is used. The coefficient h = - g(X) is globally defined 
since goo = (X,x). 

The metric on V 3 is chosen to be, not the induced metric 
gaP dx" dxfl, but rather the metric orthogonal to the world 
lines of the fluid: 

{
d/ 2 = YaP dx" dxP, 

YaP = gaP + hga gp, 

where 
go =goa 1h . 

(11) 

All metric considerations on V 3 refer to the metric d1 2
• Phys

ically, this metric corresponds to the metric that would be 
used by observers co-moving with the fluid and is more natu
rally associated with the kinematics of the fluid. 

On V 3 we can consider the local I-form 7' = gel dx" and 
its exterior derivative 

The 2-form /' has global character since it can be shown that 

n = - (V7l12)/ 

has the property that n (Y,Z ), for each pair of vectors Y,Z 
tangent to W 3

, is the vorticity form evaluated on the projec
tions of Yand Z into u \ the subspaces orthogonal to the 
world lines. 

The angular velocity vector Cl) on V 3 is the pseudovector 
associated in the usual way with the exterior form n on V 3• 

The angular speed (J) is then determined from 17 

II Cl) 112 = {J)2 = ~h fa~ap. 
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The following theorem shows that the quantity p - p 
must decrease rather rapidly along some geodesic in V 3

• 

Theorem S: If the spatial hypersurface V 3 is geodesically 
complete and if the acceleration of the fluid world lines is 
bounded on V\ 

IIVuul1 <b, 
then one cannot have that, along all geodesics emanating 
from a given point q of V 3

, 

1"0 [41T1c(p - p) - 2lli1 dl = + 00. (12) 

We remark that the condition that the 4-acceleration 
V u. u be bounded is automatically satisfied if the fluid is pres
sureless Ip = 0), for the equations of motion then imply that 
V u u vanishes. 

Proof of Theorem 5: The proof consists of showing that 
if(12) does hold along all geodesics of V 3 emanating from q 
then V 3 must be compact (by, again, invoking Ambrose's 
result). However, Aufenkamp has shown that there can be 
no compact spatial hypersurfaces in a stationary fluid filled 
space-time. 18 

The Ricci tensor (R ii) for M4 and the Ricci tensor (PI-tv) 
for V 3 are related byl9 

R!<V = P!<v _ (lIv'h)(v7if!<v + !hfw7f:. 

For our fluid R !<v = 41TK( P - p)Y'v. Let a be a d1 2 geodesic 
of V 3 with unit tangent v = uO! al axa

• Then we get from the 
above 

Ricv(v,v)=:Papvavp = 41TK(p - p) 

h" a 1 d
2V11 - 1: f a fpu v uP + v7i ----;Ji2' (13) 

where 1 is arclength along a. Thus, 

d 2 

Ricv(v.v) = 41TK(p - p) - 211vxroW + dZ210gvn 

+ (:ZIOgV1lY. (14) 

From (14) we have 

LRRiC V (v,v) dl > LR[ 41TK( p - p) - 2m2
] dl 

+-logvn . d ]K 
dZ 0 

(IS) 

The geodesic curvature of the world line through a point can 
be written as V uU = (Vuu)v + T, where(Vuu)v is tangent to 
V 3 and T is along the world line. One can show thaeo 

(Vuu)v = gradv 10gYh. 

Thus by definition of the d[2 metric on V 3 

IIVuul1 = IHVuulvllr> \ :llogVF\, 

(where II II r is length in the dl 2 metric) and so by hypoth
esis d/dllog.Jh1 ~ is bounded by 2b on V3

• If, for each geo
desic, the integral on the right-hand side of (15) tends to 
infinity as R-oo we would conclude from Ambrose's result 
that V 3 is compact. But by Aufenkamp's result, this is 
impossible. 
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The same analysis, in particular inequality (15), holds 
when the fluid is not rigidly rotating, i.e., when the 4-velocity 
is not necessarily along the Killing field a lat. This follows 
from the Einstein equations, which now show that 
R !<vVJiVv >41TK(p - p) for the unit vector v tangent to a spa
tial geodesic. However, Q) still represents the vorticity of the 
Killing vector orbits, i.e., the time lines. Maitra's cylindrical
ly symmetric, stationary model mentioned in the introduc
tion is an example of a model in which the fluid is not rotat
ing rigidly. In this model the density falls off more rapidly 
than the inverse cube of the distance from the axis of rota
tion, yielding a nice illustration of Theorem 5. 

A static universe is a stationary universe with vorticity 
zero, Q) = O. One then chooses the spatial sections to be or
thogonal to the time lines, i.e., goP = 0 for f3 = 1,2,3. If one 
adopts the usual restrictionp<:!p, we then have 

Corollary 6: In a static universe with bounded accelera
tion of world lines, one cannot have 

Sa'" pdl= + 00 

along all V-geodesics emanating from a given point q in V 3. 

(The fact that there are no compact spatial sections in a static 
universe follows from Green's theorem and Levi-Civita's 
equation: Vhlh = 41TK~ + 3p)v'h for a static universe.) 

We now tum our attention to finite mass distributions. 
A static spherically symmetric ball of fluid, of mass m, in an 
otherwise empty universe, gives rise to an exterior Schwarzs
child solution that can be joined to an interior solution only if 
2mlro < 1, where ro is the "coordinate radius" ofthe ball. If 
one assumes that the density p of the fluid is a nonincreasing 
function of r then we must have the slightly stronger restric
tion 2ml r 0 < & if we are to avoid an infinite central pres
sure.21 If we define the average density p by m = 11T~KP then 
we get an upper bound for the coordinate radius of the ball, 

ro < (31TKP)-I/2. 

We wish.to investigate the relationship between the size 
of an arbitrary fluid mass and its density in a general station
ary space-time. Let the setting be just as in the previous theo
rem. Thus, M 4 is a stationary fluid filled space-time and V 3 is 
a spatial hypersurface in M4. By an arbitrary fluid mass in 
M4 we shall simply mean a bounded connected open subset 
9J of V 3

• We do not assume that the density vanishes on (or 
in the vicinity of) the boundary of 9J, i.e., 9J may be a por
tion of an even larger fluid mass. A nonzero vorticity (Q) =I-0) 
on 9J suggests that 9J is rotating with respect to distant 
matter in the universe. 

Recall that a ball ofradiusR in V 3 is the set ofall points 
in V 3 whose distance from some given point in V 3 is less than 
or equal to R. The following theorem puts a bound on the 
size ofthe largest ball which a fluid mass 9J can contain. 

Theorem 7: Let V 3 be a complete spatial hypersurface 
and let 9J c be a bounded connected open subset of V 3 on 
which the inequality 

41TK(p - p) - 2m2>C (16) 

holds for some positive constant c. Suppose that 

IIVuull<b 
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on !P c' Then !P c contain no ball of radius greater than 

lo=1T[b + (b 2 + 2C)1/2]1C. 

Before proceeding to the proof, we would like to make a few 
comments. One expects (16) to be satisfied for some c> 0 
provided the rotation is not too great or vanishes altogether 
(the static case). The inequality (16) is reminiscent of a condi
tion that has arisen in classical physics. Poincare22 had 
shown that a classical fluid body rotating with constant an
gular velocity ro must satisfy 

21TKp - 0/>0, 

wherepis the average density of matter. A general relativis
tic version of this condition may be easily derived via the 
generalized Levi-Civita equation for a stationary space
time,23 

v~v1l = Ric(u,u)Vh- 2w2v11: 
If!P is a compact mass of fluid whose boundary alP is a 
surface across which the pressure is nonincreasing as one 
leaves!P, then since Ric(u,u) = 41TK~ + 3p), 

L [41TK(p + 3p) - 2w2](vIli) dvol v = iDgradvVh dS. 

The general relativistic equation of hydrodynamic equilibri
um gives 

(p + p)grad v 10gy1l = - gradvp. 

Since gradvp points inward along a!p, we have 

L, [ 41TK( P + 3p) - 2UJ2] (vIli) dvoI;;;.O, 

an analogue of the Poincare condition. However, for the 
proof of Theorem 7 we require the stronger condition (16). 

ProofofTheorem 7: Letqbeany point in !P c' and letBq 

be a ball in V 3 centered at q having radius larger than 10 , Letcr 
be a minimizing geodesic from q to a point on the boundary 
of Bq; u is necessarily contained in Bq. Along this geodesic, 
from (14), 

Ric v( du, du ) > 41TK( p _ p) -.21 du X ro 12 + .£.....logVh. 
dl dl dl dl 2 

(17) 

NotethattheCunctionf(l) = d logy h I dl definedalongusat
isfies, as we have already seen, I f(1 ) I <b. We now invoke the 
following refinement of Myer's lemma. 

Lemma (Gal/oway24): Ifalong a geodesic uofa Rieman
nian vn there is aconstantc > 0 and a smooth functionfsuch 
that Ifl<band 

Ric(du, dU»c + df, 
dl dl dl 

then u cannot be minimizing if the length of u is greater than 
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1T!b + [b 2 + (n - l)c],/2J/c. 

If u were contained in !iJ c then by (16), 

41TK(p -p) - 21 ~~ xrol2>C 
along u, and so by (17) and the preceding lemma u would not 
be minimizing. Thus u and, hence, Bq are not contained in 

!P c' 

Note that, roughly speaking, IIduldl X roW<W2 allows 
the rotating body to "bulge out" in directions orthogonal to 
the "axis of rotation". Also note that if the gravitational
centrifugal acceleration in the radial direction increases as 
one moves out from q, i.e., if d 210gVll!dl 2>0, then we may 
apply the above argument with b = 0 to conclude that 
1TV(2/C} is an upper bound for the radius ofa ball contained 
in !iJ c' 

Note added in proof Recently one of the authors 
(G.J.G.) has obtained a generalization of the Ambrose theo
rem which can be used to improve some of the results pre
sented here. 
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A definition of an asymptotically flat JY'-space is given. Using a technique for solving for all null 
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I. INTRODUCTION 

The theory of complex space-times has received a great 
deal of study in recent years for a variety of reasons. An 
important class of these space-times are those with a metric 
tensor which is hoI om orphic (in some domain) in the com
plex space-time coordinates z a such that they satisfy the 
vacuum Einstein equations with a Weyl tensor that is self-tor 
anti-self) dual. These space-times are referred to as left (right) 
flat. An important subset of the left flat space-times, called 
JY-spaces, arises naturally in the study of the asymptotic 
shear of null surfaces in real asymptotically flat space-times. 
More specifically, an JY'-space is the space of asymptotically 
shear free complex null cones of an asymptotically flat 
space-time. Several natural questions arise in the study of 
,JY-spaces, namely, what is the meaning of an asymptotically 
flat JY-space, what relationship does an asymptotically flat 
JY'-space have with the original real space it was obtained 
from, and finally what conditions must be imposed on the 
original real space so that the associated JY'-space is asymp
totically flat? 

This paper is devoted to answering the first two ques
tions. Though we have what seems like reasonable conjec
tures the last question is as yet unanswered. 

In Sec. II we review the basic ideas behind JY'-space 
theory and discuss the general theory of null geodesics in an 
JY'-space. In Sec. III we give the definition of an asymptoti
cally fiat JY'-space and prove that the asymptotic shear of the 
asymptotically flat JY'-space is identical of that of the origi
nal real space. 

II. JY'-SPACE 

Let (M,gab) be an asymptotically flat solution 1,2 of Ein
stein's equations, with future null infinity f+. In the neigh
borhood of f+ we will use a Bondi coordinate system 
(u,r,;l) and a conformal factor [J such that the rescaled 
metric on f+ has the (degenerate) form 

d§2 = d;df 
2p2 ' 

(2.1) 

with 

P=~(l +;f). (2.2) 

If 0-° (u,;';) is the asymptotic shear of the u = const.null 

surfaces then the asymptotic shear 0-'0 of an arbitrary null 
surface which intersects f+ on the cut 

u =Z(;';) 

is given3 by 

0-'0 = o-°(Z,;';) - d2Z, 

(2.3) 

(2.4) 

where 0-° and Z are respectively spin-weight 2 and 0 quanti
ties. The condition for the new surface to have vanishing 
asymptotic shear is therefore 

d2Z = uD(z,;';). (2.5) 

However, since 0-° is complex and Z is real (2.5) in general 
has no solutions and hence, in general, there are no (asymp
totically) shear free cuts (good cuts) of f+ . 

If, however, we make f+ complex (C/+) by allowing 
u to assume complex values and by releasing f from being the 
complex conjugate of; (and calling it t), the situation is 
different. If o-°((Z,;';)) is real analytic in u, Re;, and 1m;, 
and is sufficiently small, it can be shown4 that there exists a 
four-complex parameter set of complex solutions to (2.5),i.e., 
a four-complex dimensional set of good cuts given by 

u = Z(za,;i), (2.6~ 

which is holomorphic in the four complex parameters z a and 
; and t (near t = f). In other words the solution space of(2.5) 
defines (locally) a four-complex-dimensional manifold with 
local coordinates za which is referred to as an JY'-space. 

Though o-°(u,;,t) is (by assumption) well behaved on 
f+, it will inevitably develop singularities in Cf+ when 
continued too far into the complex. To avoid such difficul
ties, we restrict our attention to a finite complex "thicken
ing" C '.f+ of Cf+, i.e., to a region of Cf+ where Imu is 
bounded and t is close to f The details of this region will 
emerge later. 

For fixed but arbitrary valuesof(;,t) in C 'f+ thefunc
tions Z, dZ, dZ, and ddZ are scalar fields on JY' and hence 
their gradients Z.o' dZ,a ,dZ.a, and odZ.a are covector fields 
on:Jr. In Refs. 4 and 5 it has been shown that:Jr is naturally 
endowed with a non degenerate (complex) holomorphic 
metric 

(2.7) 
which satisfies (and can actually be uniquely defined by) the 
two conditions 
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Z.aZ.bg"b=Za za = ° 
aZ.aiJZ.bg"b=aZaZa = - 1 

(2.8) 

(2.9) 

for ~ and t in C'f+ and for eachza. Condition (2.8) deter
mines gab up to conformal factor and (2.9) determines the 
factor. Eqs. (2.8) and (2.9) immediately imply 

(2.10) 

and 

(2.11) 

From the metric (2.7) it can be shown4
•
5 that the Jr"'

space has the following curvature properties: 

Rab = 0, 

Wabcd = 0, 

and in general 

Wabcd 1=0, 

(2.12) 

(2.13) 

where Wabedand W obed are the anti-self-dual and self-dual 
parts of the Weyl tensor Cabed . Associated with the vanish
ing of Wabed is the fact that the anti-self-dual bivector 
Z[a aZb [ is covariantly constant, i.e., 

Ve(Z[a aZb)) = 0, 

from which it follows that VaZb has the form 

VbZa = aZaZb + 2/3Z(aaZbI + yaZaaZb 
Using (2.8) and (2.10), we have from (2.15) 

zaVaZb = ° and 

which will be needed later. 
As mentioned earlier, for fixed but arbitrary ~.t, 

u = Z(z",~.t), r = aiJz, 
w=az, W= iJz, 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

are four independent scalar functions on Jr'" and thus could 
be though of as forming a natural coordinate system (para
metrized by the ~,t) on Jr"'. Since the system of scalars will 
form an important element in our study of asymptotic flat
ness, we now investigate its properties.6,7 

Since, from (2.8), Zaza = 0, the points of Y1' defined by 
u = const form a null hypersurface whose generators are 
null geodesics and whose tangent vectors are given by 
Z a = gabZa . Either directly from (2.16) or from the fact that 
Za = Z,a it follows that za is affinely parametrized and can 
be written 

with A. affine. Calculating dr/dA. from (2.17), we have 

~ = (jiJz . dz" = adZ . Z a 
dA. a dA. a' 

(2.18) 

(2.19) 

and from (2.11) drldA. = 1. Thus r is an affine parameter. 
Furthermore, from (2.10) it is immediately seen that llJ and w 
are constant along the generators and hence (on a u = const 
surface) can be used to label them. 

What we have just shown is that the equations for any 
null geodesic z" = z"(r) can be written implicitly (with ~.t 
constant) as 

819 J. Math. Phys .. Vol. 22, No.4, April 1981 

Z (za.s,~) = U = const, 

iJz (z",~.t) = ~ = const, 

az (z",~.t) = llJ = const, 

r = aiJz (z",~t). 
By introducing the special null tetrad system 

(/ a,na,ma,ma), with I·n = - m·m = 1 and all other products 
vanishing, with 

and (2.20) 

the (complexified) optical scalars 

a -bV I - -a bV I p = m m a b' P = m m a b (2.21) 

associated with the u = Z = const surfaces are seen, from 
(2.16) and the fact that Za is a gradient, to vanish. The 
Z = const. surfaces are therefore divergence free and resem
ble null hyperplanes. 

In order to gain further insight into the nature of the 
scalars (u,r,llJ,iJ) we consider the trivial case of an Jr"'-space 
arising from a aD which vanishes, e.g., the Jr"'-space of flat 
space-time. In this case the general solution of(2.5) is 

(2.22) 

where z a = (t,x,y,z) are four-complex parameters and the 
four functions La are given by 

L = _1_ (1 ~ + ( i (~- t1, - 1 + ft). (2.23) 
a 1/2 ' 1 + ~{ 1 + ~~ 1 + ~~ 

The metric in this case is flat, and the z a form a Minkowski 
coordinate system. For an arbitrary but fixed ~ = ~o and 
t = to (note we are now restricting ourselves to the real 
sphere t = t) we have 

u =z"La(~o,(o)' 
r = z"iJ(jLa (~o,(o), 

llJ = z"aLa (~o,(o), 

iii = z"iJLa (~o,(o). 

(2.24) 

Slightly abusing the term, we will refer to "real" values of the 
set (u,r,llJ,iJ) when u and r are real and iii = w. It is not hard to 
show that "real" values for (u,r,llJ,iJ) in (2.24) imply real val
ues for z a as well as the converse, real values for z a imply 
"real" values for (u,r,llJ,iJ). [In particular for ~o = to = 0, 
(2.24) yields 

u = (1/1/2) (t - z), 

r = (1/2)z, (2.25) 

llJ = (1/1/2) (x - iy), 

iii = (1/1/2) (x + iy), 

which is seen to be the conventional null plane coordinates. 
For other values of (~o,;o) we would simply have rotated 
versions of (2.25).] Note that in this case the good cut func
tion Z (z a ,~,() for real values of z a remains entirely in the real 
J+. 

It appears likely that a similar (though slightly more 
general) situation to the (To = ° case occurs for a wide class of 
Jr"'-spaces, i.e., for a wide class of (To: Namely for (To in this 
class there is defined a subset Jr"" of Jr'" that is a finite com
plex thickening of a reaI4-manifold, R 4. Jr"" is defined as 
those points of Jr'" for which the set (u,r,llJ,iJ) is "real" for 
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some (;l). (For other values of ;l at the same point, the set 
would not in general be real. The UO = 0 case is the excep
tion.) From this it would follow that the good cut function 
Z (za,;l) for za in JY" defines a finite complex thickening 
C'foff. 

III. ASYMPTOTICALLY FLAT JY'-SPACE 

In this section we first give a definition of asymptotic 
flatness appropriate to JY'-space and then show that, if JY' is 
asymptotically flat and JY'* is the JY'-space constructed 
from the asymptotic shear of JY', then JY' and JY'* are natu
rally isometric. 

Definition: JY' will be said to be asymptotically flat if: 
( 1) On the region JY", defined above, the functions 

u = Z(~,;l), UJ = dZ(~,;l) 
r = d3Z (~,;l), w = 3Z (~,;l) 

are holomorphic in z a for each; and have the following 
properties; 

(a) IImul, IImrl, and 10; - wi are uniformly bounded for 
all points z a in JY" and all (;l), and in addition vanish for 
some (;0';0) which depends on the point z a. 

(b) Asza ranges over the whole of JY", Reu, and Rer 
range over the whole of the real line and UJ ranges over the 
complex plane. 

(2) A "real" null geodesic is one with "real" tangent 
vector dzaldA. = za(i',;l) for some; and real increments 
in r [see Eq. (2.17) et seq.]. We define JY''' as the set of points 
of JY' reached by real null geodesics from JY" and we de
mand that the functions u,r,UJ, and w be holomorphic at a 
point in JY''' for all ;,t (It should be noted that since on null 
geodesics u,UJ,w are constant the points of JY''' are deter
mined by the range of u,UJ,w on JY" as ;,; varies.) 

(3) There exists a nonzero holomorphic function n on 
JY''' such that: 

(a) There is a larger space (JY" ,gab) such that JY''' is 
diffeomorphic to a region U of JY", with 
gab = n 2 gabon U and n = 0 on JY" - U =Cf (JY). On 
Cf (dY), Van #0, gabv anV bn = 0, and gab is holomor
phic. 

(b) If ZU = za(r) is the equation of a null geodesic in JY''' 
affinely parametrized by r and given by u, UJ, and w constant, 
then limn [z a(r)].r exists and is nonvanishing as Rer~ 00 • 

The limits in the positive and negative r = oaz directions 
define Cf+ and Cf-. 

Condition 1 says that JY" is a complex thickening of R 4. 

Condition 2 says that the null geodesic ~ = ~(r) specified by 

u = Uo = Z(~,;,;), 

UJ = UJo = JY'Z (~,;,;), 

w = Wo = ~Z (~,;';), 

[i.e., the null geodesic through some fixed point z~ in JY" 
with direction Z a(~ ,;l) remains entirely within JY''' if r is 
sufficiently close to the real line. Thus through each point of 
,~' there ex"ists at least a spheres worth (as;l varies) of null 
geodesics which escape to Cf+(JZ1. 

Condition 3, which is essentially a complex version of 
Penrose's conformal asymptotic condition, states that com-
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pie x (future) null infinity (Cf+ JY) exists for JY". 
That these conditions are not empty is shown by the 

example of the Sparling-Tod JY'-spaces.~ 
We now investigate some of the consequences of these 

conditions. 
We wish to first show that the (;l) in the scalar u = 

Z(za,;';) can be used to parametrize the null generators of 
Cf+(JZ1 and that the u parametrizes the points on each 
generator. We now state the basic lemma which is proved in 
Appendix A. 

Lemma 1: If Nu is a one parameter set of divergence free 
(p = p = 0) null hypersurfaces in JY" given by 
u = const = Z (z a,;(),~) (fixed ;0)' then, when viewed from 
JY", the null generators of each Nu converge to distinct 
points (parametrized by u) which all lie on the same null 
generator of Cf+(J.z). (See Fig. 1.) 

Due to the analyticity of Z we can slightly generalize 
this by allowing pairs (;,;) instead off;';) where tis close to 
t 

The importance of this lemma lies in its use in defining a 
natural coordinate system (u,;';) constructed on Cf+(JZ1. 
Eventually we will show that it is a Bondi system. 

An important property of spaces satisfying 
Wabcd = Rab = 0 is that for any null surface which has a 
vanishing left-shear U 9

,1O at any point of a generator, the 
shear must vanish along the entire generator. This can be 
seen from the spin coefficient equation 

du 
-=2pu+¢0, 
dA. 

(3.1) 

where A. is a affine parameter along the generator and ¢o is a 
component of the anti-self-dual Weyl tensor and hence van
ishes when Wabcd = O. Thus, if a = 0 for some value of A. 
then by (3.1) u = 0 for all A.. In particular the complex null 
cone C (P), whose vertex is some point pin JY", will be left
shear free for all points of C (P) since u vanishes at the vertex 
on all generators. (In general if will be nonzero apart from its 
zero valueatp.) Thus C (P) will intersect Cf+(JY) in a shear
free or good cut of Cf + (JY). Conversely, using (3.1) and 

: = p2 + uif, (3.2) 

a second spin-coefficient equation, 10 one can easily see that a 
good cut ofCf+(JY) gives rise to a null hypersurface in JY" 

FIG. 1. The hypersurfaces Uo = Z (za,~o'~ol and U I = Z (z",~o.tol in dY' are 
null cones whose vertices lie on the same generator of c...F+(JY). 

M. LudVigsen, E. T. Newman, and K. P. Tod 820 



                                                                                                                                    

which converges to a unique point of cW'" and is hence a C (P). 
Thus we have 
Lemma 2: On an asymptotically flat cW'" -space there 

exists a natural one to one mapping between the set of good 
cuts on Cf+(K) (i.e., the points of cW"*) and points of cW"', 
the mapping being defined by the intersections of C (P) and 
Cf+(K). 

We now state and prove our main result: 
Theorem: 
(1) The (natural) coordinates on Cf+(K) introduced 

in Lemma I are Bondi coordinates. 
(2) The asymptotic shear of the cW"-space associated 

with these Bondi coordinates is the same as the asymptotic 
shear of the original real asymptotically flafspace. 

(3) The cW"* space constructed from the asymptotic 
shear ofthe cW" space is isometric to the cW"-space, i.e., cW" of 
cW"=cW". 

Part (3) follow immediately from (2) since an cW"-space is 
uniquely defined from the asymptotic shear in (2.5). 

Assuming for the moment that part (I) is correct, part 
(2) follows immediately from Lemma 2; U = Z (z a,tot) is the 
asymptotically shear-free cut of Cf+, and by inverting the 
argument which led to (2.5) we have that the asymptotic 
shear of the U = const cuts of Cf+ (dr') is aD = IPZ. The 
basic idea for the proof of ( I ) is to take a world line in K', i.e., 
x a = X a(1"), and construct the null cones centered on the line 
and then use the directions (tot) of the null lines, the affine 
length R along the null lines, and 1" as the coordinates of a 
null (NU) coordinate system. One then calculates the confor
mally rescaled metric and easily finds the transformation on 
Cf+(~ to the Bondi coordinates. The actual construction 
is as follows 

We assume that Z(za,t.t) and hencegab(zO) are know. 
We wish to find the coordinate transformation 

zO = zO(1",R,ti). (3.3) 

From the results of Sec. II, we have the following four im
plicit relationships which are equivalent to (3.3): 

Z(zO,ti) = Z(xa(1"),t.t)=Zo, 

dZ(zO,ti) = dZo, 

dZ(zO,ti) = dZo, 

ddZ (zO,t.?) = R + ddZ 0. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

By differentiating implicitly each of (3.4) with respect to 
R,ti and 1", sixteen equations are obtained from which 
azO / aR, azO / at, azO / at, and azO / a1" can be explicitly found. 
For example, if each of (3.4) is differentiated with respect to 
R, we have 

Z azO =0 
,a aR ' 

dZ azO = 0 
,a aR ' 

dZ azO =0 
,a aR ' 
- azO 

MZ,a aR = 1. 

(3.5) 

Using the known scalar products (Appendix B) between 
Z,a ,lJZ,a, and dlJZ,a, we have 

(3.6) 
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Continuing this process we obtain 

aZ:=RdZap-I, (3.7) 
at 

az: = [( - 3X + R3Y)za 
at 

+ (X - 2YR )dZ a +R3Z a]P-l (3.8) 

azO = (3dV _ dVClY + V~)Za 
a1" 

where 

+ (2dVY - VdY - dV)dZ a 

- dvdZ a + VCldZ a, 

V_ az o -Zo dx
a 

- a1" - ,a d1" 

and (see Appendix B) 

Y=ld2Z za=l ax 
2 ,a 2 aR' 

If = ddZaddZ a, 

X = d2 (Z - Z 0). 

(3.9) 

(3.10) 

(3.11a) 

(3. lIb) 

(3.IIc) 

Equations (3.6H3.9) are essentially the transformation ma
trix between the coordinates zOand z,a = (1",R,t.?) and hence 
in the new coordinates the metric becomes 

, azC art 
gab = az,a az,b ged' (3.12) 

In Appendix B this is written out explicity. The new radial 
coordinate r = VR puts the metric into the NU form. Alter
natively, we may conformally rescale the metric with confor
mal factor n = R - 1 and substitute; = R -1 to obtain near 
Cf+(K), 

dr = n 2dr = - 2Vd1"d; - (l/2P2) dtdt + O(f), 
(3.13) 

provided the following quantities are 0 (f): 

fX, PdX, P, fdP, and Pd 2P. (3,14) 

(These are necessary consequences of condition 2a and pre
sumably result from appropriate conditions on ero.) Finally, 
to put (3,13) in Bondi coordinates, we introduce ll U B by 

dUB = VdT at CF+(JY), 

so thatd§ 2 = - 2duBdr - (l/2P2) dtd(at Cf+(JY). This 
integrates to give 

(3.15) 

where a is an arbitrary additive function (supertranslation) 
which we may set to zero, Thus the U coordinate of Lemma I 
is indeed a Bondi coordinate on Cf+ (JY) and we may drop 
the subscript B. This proves part 1 of the theorem. 

To investigate Cf- (JY), we repeat the whole proce
dure but with past-pointing null geodesics. That is, we re
place (3.6) by 

azO -
7.:-(R ) = ya(zb(R ),to,tol, 
aR 

where yo = _ za. 
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This will lead to 

d§2 = 2V'drdP - (1/2p2) d;dt 

where V' = (dxa/dr) Ya(xb(r),;,t). 

Introducing a Bondi v coordinate by 

dv = V'dr 

or 

v = Y(xb(r),;,tl, 

we find the asymptotic shear of the Bondi system on 
Cy- pntobe 

.,r°(v,;.t) = (}2Y(xb(r),;,tl 

- (}2Z(xb(r),;,t) 

- (l°(Z [xb(r),;,t L;,t) 

- (l0( - y [xb (r),;,t L;,t), 
i.e., 

(3.16) 

Thus there is a very simple relation between the Bondi 
shears at Cf- and Cf+ . We may interpret this as the state
ment that the classical S matrix for the self-dual Einstein 
equations is the identity. This is also a reflection ofHuygh
en's Principle and demonstrates the solitonlike behavior of 
the self-dual Einstein equations. 

However, Cf+ and Cf- are not identical in all re
spects. Denote the right asymptotic shear in a Bondi frame 
on Cf+ (respectively Cf-) by 00+ (respectively ijo_ ). 

Then in a self-dual space-time these are independent of u, 
i.e., are functions of; and t only) but the two functions are 
different in general. To see this, we remark that it can be 
shown that, with the conditions of Sec. 3, ¢~ -0 as u- 00 on 
Cf+, ¢~-o as u_ - 00 on Cf-, and &°_0 and ~ has 
finite limitsasu- ± 00. Now one of the Bianchi identities at 
f gives 

.p~ = (fijo _ d2(l0 _ ijo&o. 

Thus 00+ is determined by the limit of ~ as U-oo: 

(}2ijO+ = lim d2(l0 
u __ + 00 

while 00_ is determined by the limit of (l0 as u- - 00: 

1.1 __ 00 

and these two limits will be different for a (l0 which comes 
from a generic radiating space-time. 

Cf+ and Cf- are therefore distinguished by having 
identical (l0 but different ijo. 

IV. DISCUSSION 
From the results in the last section we saw that the as

ymptotic shear (l0 of the JY'-space Bondi cones is identical to 
that of the original space. This implies that the radiation 
parts (,-1 and ,-2) of the self-dual part of the original Weyl 
tensor agree exactly with the ,-1 and ,-2 parts of the JY'
space Weyl tensor. In other words the JY'-space construction 
reproduces (in the radiation zone) the self-dual part of the 
original Weyl tensor and factors out the anti-self-dual part. 
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The longitudinal parts are also factored out. 
From the general theory of asymptotically flat spaces 

and the fact that JY'-spaces are self-dual, one has immediate
ly that the right asymptotic shear 00 of the Bondi cuts must 
have the property that aifG /au = 0, and hence by an appro
priate supertranslation we can have ijo = O. Thus if one con
S!!ucts the JY-space from the right shear of an JY'-space, i.e., 
JY' of JY', the result would be to factor out the other part 
(self-dual) of the Weyl tensor and produce Minkowski space. 

The main remaining question about asymptotically flat 
JY'-spaces is, What a~e the conditions on ~ in (2.5) so that 
the solutions Z (z a,;,;) determine an asymptotically flat JY'
space? Though there are several reasonable approaches to 
this question it has largely remained intractable. Arguments, 
however, from linear theory indicate that (mod supertransla
tion freedom) minimum conditions should be (l0 = 0 (u - 3) as 
U-oo. 

APPENDIX A 

We will here prove the lemma: If Nu is a one parameter 
set of divergence-free (i.e., p = p = 0) null hypersurfaces in 
JY" (which is asymptotically flat) given by u = const 
= Z (z a,;(lo), (for fixed ;0) then, when viewed from ~', the 

null generators of each Nu converge to distinct points (para
metrized by u) which all lie on the same null generator of 
Cf+(eW'). 

Suppose some null generator of Nu (fixed u) intersects 
Cf + (eW') at p. In the neighborhood of p a null tetrad system 
in~' ([a, fia, rna, mal can be formed so that [a are the affinely 
parametrized tangent vectors to Nu and fia = Van. Since 
gab = n 2gab with n - ,-1 (from Condition 2b), a corre
sponding null tetrad system can be defined in JY" by 

ma =nma, 

la = fa' 

(AI) 

From tl),e relationship between the covariant derivatives 
Va and Va we have 

and 

Valb = VJb + 2n -I ~a Vbln - ngab [cvcn. 

Since p = p = mambVa lb = 0, we have in the neighborhood 
ofp 

O=mafiib(V [+2n- l [ V El_n-1g' l'cVA, El) 
a b la bl·" ab c ... 

" ""0 '!:.b n I"",.. 1'" ft " =p + m m (2 ... - llanbl - n - gab/nc)' 

=p+n- I
• 

Therefore,p = - 1/n and if we use n = 1/, [which makes 
n an affine parameter for (JY" ,gab)] then we have the condi
tion for p to be the vertex of a null cone and hence the null 
generators of Nu in~' converge to p. 

Two surfaces of the setNu , i.e.,Nu" and NUl (uo#ud, do 
not intersect in JY" (since u,',UJ,iJ form a covering of JY") 
hence the connnecting vector between two neighboring ones 
has the form 

k a = ana + Sma + (3ma + yl a, 
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where a#O. (If a = ° the surfaces would intersect since 
la, ma, rna are tangentto a surface.) From (A.l) we thus have 
in'w" near C..r+(J¥') 

k a = alia + pilma + pilrna + ril 2f a, 

and hence as il---->D 

Since n a points along the null generators of C..r+(JY), Nuo 
and N u , intersect the same generator at distinct points. 

APPENDIXB 

We give for completeness the scalar products between 
the four gradients Z,a' dZ,a, 3Z,a' and' d3Z,a : 

zaZa = 0, dZadZa = 0, 3Z a3Za = - 2ff, 

ZadZa =0, 

Z a3Za =0, 

dZadZa = - 1, 

dZ ad3Za = 0, 

3Z ad3Za = - dff, 

d3Z ad3Za = r;, 

Z ad3Za = 1, 

where ff is obtained from 

Z a32Z = 2ff a 

and 

(B 1) 

(B2) 

r; = - d2ff + 2ff aO 
- 2. (B3) 

Knowledge of the metric determines (Bl) and knowledge of 
(Bl) determines the metric. ff (in B2) can be determined5 

algebraically from Z (z a,{;t) and its derivatives. 
The metric expressed in the coordinates (r,R,{;i) of 

(3.4) is 

di2 = Adr + 2 VdrdR + 2R V,;drd{; + 2B drdt 

- (R 2/2P2)d{;dt - (R /2P2)(X - Rff)dt2,(B4) 

where 

A = 2[V2 + nt3V - dvdV + 2F(dV)2 - ntntff 

(B5) 

823 J. Math. Phys., Vol. 22, No.4, April 1981 

B = (l/2P)[XdV - ntx - R (2ffoV - VOff - dV)]. (B6) 

The substitution r = VR puts the metric into the NU form: 

V u --.2 r3V -
ds2 = (A - 2r -' )dr + 2drdr + 2(B - -)drd{; 

V 2P 
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For static charged perfect fluid in a spacetime where gJlV = e2<7Tj JlV and a = a(x,y,z), assuming a 
functionally related to the electrostatic potential, we prove that such solutions must be spherically 
symmetric. We consider two special cases. The first one is for an equation of state p = ap, with a 
being a constant. We arrive at exact solutions which have singularities. These include the case of a 
charged dust where a = 0, but the solution in this case is singular and is not included in those 
discussed previously by Das [A. Das, Proc. R. Soc. London, Ser. A 267, 1 (1962)] and also by De 
and Raychaudhuri [U. K. De and A. K. Raychaudhuri, Proc. R. Soc. London Ser. A 303, 97 
(1968)]. The second case is for a constant mass density, where we prove that although the 
Schwarzschild interior solution is regular everywhere, the corresponding analog in the charged 
fluid case is not everywhere free from singularity. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In view of the existence of a conformally flat solution of 
Einstein's field equations corresponding to a perfect fluid, 
which is the well-known Schwarzschild interior solution,l it 
may be interesting to extend such solutions in the case of 
charged perfect fluid. There are some static solutions in the 
literature,2-4 which depend on a priori restrictions of differ
ent characters on the distributions but are not conformally 
flat. We have started in our paper with a metric depending 
only on space coordinates and conformal to a Minkowskian 
metric. In other words, the metric has the form 

ds2 = e2<7(dt 2 _ dx2 - dy2 - dz2), where a = a(x,y,z). 

There is, however, an assumption that the conformal factor 
is functionally related to the electrostatic potential, but there 
is no assumption at the beginning about the symmetry of the 
distribution. Eventually we arrive at the result that such so
lutions must be spherically symmetric. 

In the next section we consider two special cases. In one 
we assume an equation of state such that the mass density is 
linearly related to the pressure Ip = ap), which includes the 
case of charged dust in the limit when the proportionality 
constant is zero. We find that all such solutions are singular 
at the origin. In the absence of matter the solution reduces to 
that of static electrovac obtained previously by Das.5 In the 
second case we attempt to find solutions for constant mass 
density. Complete solutions for this case are presented and 
one of the classes includes the special case of Schwarzschild 
interior solution. It is found that, although the special form 
of Schwarzschild interior solution is regular everwhere, the 
corresponding charged fluid solution is not free from 
singularity. 

It may be remarked that the form of the metric we have 
chosen for simplicity in our discussions is not the most gen
eral conformally flat form of the metric. In the most general 
form the conformal factor should be a function of time co-

alOn leave from the Department of Physics, Jadavpur University, Calcutta· 
700032, India. 

ordinate also, which, however, could be reduced to a static 
form by a suitable coordinate transformation. This is the 
reason why we get only a special case of Schwarz schild inte
rior solution for constant mass density and vanishing elec
tromagnetic field. Thus one can conclude that with a static 
metric conformal to Minkowski metric, there are no phys
ically reasonable solutions for charged perfect fluid with ei
ther p = ap or p = const and with a metric being functional
ly related to the electrostatic potential. 

In the last section we have considered the most general 
static spherically symmetric metric and have found exact 
conformally flat solutions for charged perfect fluid with con
stant mass density. It is observed that the solutions in this 
case contain singularities within the distribution. So we can
not have an analog of Schwarz schild interior solution with a 
physically reasonable distribution of charged perfect fluid. 

2. THE FIELD EQUATIONS 

Einstein's field equations when both matter and electric 
charge are present assume the form 

GJlV =RJlv -!gJlVR = -k(TJlv +EJlv)· (2.1) 

TJlv is the energy-momentum tensor for the matter which we 
consider as a perfect fluid, so that 

T",v = Ip + p)uJlUV - pgJlV' (2.2) 

wherep is the mass density,p is the pressure, and uJl is the 4-
velocity satisfying 

uJl uJl = 1. (2.3) 

EJlv is the energy-momentum tensor for the electromagnetic 
field and is given by 

EJlv = (1/417-)( - FJlaFv a + ~JlvFa/3Fa/3), (2.4) 

where FJlv is the electromagnetic field tensor. Maxwell's 
equations may be written 

FJlv = AJl,v - Av,Jl' (2.5) 

FJlV;v = 417-J Jl , (2.6) 

where AJl is the 4-potential and JJl the 4-current tensor. In 
this paper we want to study static conformally flat solutions 
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of (2.1), given in the form, 

gl'v = e2"TJI'V' u = O"(X I,x2'X3 ), (2.7) 

where TJI'V is the flat metric having signature - 2. The Weyl 
tensor,6 

Cl'vaP 
= R I'vap + !(<51' aRvp - <51' pRva + gvpR I' a - gva R I' p) 

(2.8) 

for such a spacetime (2.7) vanishes. The Einstein tensor for 
(2.7) assumes the form6 

GI'V = 2ul'v - TJl'v [20u +.:l *u], (2.9) 

where 

.:l *u=~vu.l'u.v' (2.10) 

Ou = ~v u.l'v' 

In the rest frame of the charge distribution the 4-potential 
becomes 

AI' = [(,6 (X I,X2,X3),0,0,0], (2.11) 

and the non vanishing components of Fl'v are only 

FOi = -FiO = (,6.i· (2.12) 

The Latin indices assume the values 1,2, and 3. 
Assuming that the conformal factor u is functionally 

related to the electrostatic potential 

u=O"((,6), (2.13) 

the field Equations (2.1) with (2.2), (2.4), and (2.9) become: 
forf-l = v= 0, 

(2u" + cl2 + e ~ 2(1).:l *(,6 + 2u'0(,6 = kpe2<1; (2.14) 

for f-l = i and v = j, where i=/=j, 

(u" - U,2 - e ~ 2<7\..1. . ..1. . + cI..I. . = 0' 
J~~,Y'.) 'f'~J) , 

for i =j, 

2(u" - U'2 - e ~ 21(,6 ~ + 2u'(,6 ..... 

(2.15) 

+ 2(u" + U,2 - e ~ 2J.:l *(,6 + 2u'0(,6 = - kpe2<1; (2.16) 

by contraction of (2.1) we obtain R = kT, giving 

6 [(u" + u,2).:l *(,6 + u'O(,6 ] = k (p - 3p)e2<1. (2.17) 

The prime indicates differentiation with respect to (,6. 

Defining 

A ((,6 ) = u" - U,2 - e ~ 2<1, 

B((,6)=u', 

we obtain from Eqs. (2.14), (2.16), and (2.17) 

(2.18) 

A ((,6 )((,6 ... )2 + B ((,6 )(,6 ..... = - 1.4 ((,6 ).:l *(,6 + iB ((,6 )0(,6. 
(2.19a) 

We observe that the right-hand side of(2.19a) is always nega
tive and nonnull because with Eq. (2.14) we can write 

1.4 ((,6 ).:l *(,6 + jB ((,6 )0(,6 = !kpe2<1 - ~(U'2 + e ~ 2J.:l *(,6 

= V 2 >0. (2.19b) 

Now the system of equations (2.14)-(2.17) in view of (2.19b) 
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reduces to 

A ((,6)(,6,i(,6J +B((,6)(,6,ij =0, 

where i=/=j, and 

A ((,6 )(,6 2,i + B ((,6 )(,6, .... = - V 2
• 

Integrating Eq. (2.20) we obtain 

In(,6,i = t((,6) + Ai (Xi), 

(2.20) 

(2.21) 

(2.22) 

where t is a function of (,6 and Ai is a function of Xi alone. 
Again (2.22) on further integration yields 

fexp[ - t((,6)] d(,6 =X + Y + Z, (2.23) 

where X = X(XI), Y = Y(X2), and Z = Z(x3
). In other 

words, the electrostatic potential (,6 must be a function of u, 
where u = X + Y + Z. In view of the above discussions we 

can write explicitly Eq. (2.21) as 

(A(,62,u +B(,6,uu)X2,1 +B(,6,uX,11 = - V 2, 

(A(,6 2.u + B(,6,uu)y 2,2 + B(,6,u Y,22 = - v2, (2.24) 

(A(,6 2,u + B(,6,uu )Z2,3 + B(,6,uZ,33 = - V 2
. 

Equations (2.24) lead us to conclude that none of 
X,I' Y,2' and Z,3 can be zero, because if anyone of them is 
zero V 2 = 0, which is contrary to our case unless we have a 
trivial solution for flat space. Again from (2.20), writing ex
plicitly, we have 

(A(,6 \ + B(,6,uu)X,1 Y,2 = 0, 

(A(,6 2,u + B(,6,uu )1',2Z,3 = 0, (2.25) 

(A(,6 2,u + B(,6,uu)Z,3X,1 = 0, 

and sinceX,1 =/=0, 1',2 =/=0, and Z,3 =/=0 the only conclusion is 
that 

A(,6 2,u + B(,6,uu = 0. (2.26) 

Equations (2.24) and (2.26) lead us to 

X. II = Y,22 = Z,33 = a. (2.27) 

It can be shown by elementary arguments that a must be a 
constant and u is therefore given by 

u = X + Y + Z = !a[(xl)2 + (X2)2 + (X3)2] 

+ blx l + b2x2 + b3X3 + c, (2.28) 

where hi' h2' h3' and c are other constants of integration. It is 
evident that one can write u as 

u = !a[(xl + t 1)2 + (x2 + t 2 )2 + (x3 + t 3n (2.29) 

t I, t 2, and t 3 being constants, and by a suitable coordinate 

transformation u can be interpreted as a radial coordinate; 
thus (,6 is dependent only on a radial coordinate. One can 
therefore conclude that a static charged perfect fluid with 
metric given in the formgl'v = e2CITJl'v' which is functionally 
related to the electrostatic potential, must be spherically 
symmetric. 

3. SOLUTIONS OF THE FIELD EQUATIONS 

The most general static spherically symmetric line ele
ment can be written in the isotropic form 

ds2 = eV dt 2 _ e"'(d"z + "zdf1 2), (3.1) 

The field equations for such a metric are 
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kp - 1> ,Ze-lv+,"1 = e-W[(v' + Ii/)Ir + ~cu'(v' + ~cu')], 
kp + 1> ,ze -Iv + wi = ~e - W[cu" + v" + ~v'z + (cu' + v')!r] , 

(3.2) 

kp + 1> ,2e - lv +'"1 = - e-W[cu" + aCU'Z + 2cu'lr]. 

The conformally flat metric we have used in Sec. 2 can be 
written without the loss of generality in the form (3.1) when 
v = cu = 2u. The functional relationship between u and the 
electrostatic potential 1> is trivially satisfied in the spherically 
symmetric case. We have two special cases of the charged 
fluid. 
Case I 

Assuming the equation of state p = aw, where 
a = const, the general solution of the field equations for the 

• lu' metnc g/LV = e 17 /LV IS 

e2u = [h 1,z(3 _ I] 1//3, 

where h and I are constants of integration and 
(J = 1/(1 + 3a). 
The matter density is 

6hl/3r-2(f3+ 11 
kp - --:....---

(h 1,z/3 -1)(1//3 + 2) 

(3.3) 

(3.4) 

It is clear that in order to have p > 0 both h and I must be 
greater than zero. But we see that when,z/3 = h I/;p-+oo 
and so the density increases indefinitely at a point where the 
area of the spherical surface given by 41Tr = 41T,ze lu vanish
es, or in other words, we get a singularity within the distribu
tion. It can be shown that the charge density is also singular 
within the distribution. 

The case of charged dust is obtained by putting a = O. 
The solution is singular in this case also and the results pre
viously obtained for static charged dust in 7.8 are not applica
ble in this case, because in obtaining regularity everywhere 
they excluded the solution obtained here. It can be further 
seen that in our case (/lu4p)21 1 everywhere, unlike the 
case discussed by Das, De, and Raychaudhuri. 

One can conclude, therfore, that it is not possible to 
obtain nonsingular solutions for either charged perfect fluid 
with p = ap or for charged dust having the metric 

lu 
g/Lv = e 17/Lv, 

where u is independent of t and functionally related to the 
electrostatic potential. When we put / = 0, it implies 
p = p = 0, which is the electrovac solution given by Das5 in 
the form 

elu = h l[(x1 + slf + (x2 + s2f + (x3 + e)2], (3.5) 

where h, S 1, S 2, and S 3 are constants. 

Case It 

In this case we assume p = const. The field equations 
(3.2) for a metric g/L" = elu17/Lv give 

~kpelU + 2u" + 2u'lr = O. (3.6) 

The alternative solutions of (3.6) are given by 

elu = [yl + D, + C1r1 - D,] -2, (3.7) 

e2u = r- 2 [cos(D2Inr) + C1sin(D2Inr)] -2, (3.8) 
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and 

(3.9) 

where D 1, D2, and C1 are constants and the density p is relat
ed with them in three different solutions. All these solutions 
are singular within the distribution except for Dl = 1 in the 
solution (3.7). This gives us a special case of the Schwarzs
child interior solution for perfect fluid with constant density 
in isotropic coordinates (see Ref. 8). 

We can thus make one more conclusion that one can 
not get a physically reasonable solution for a charged perfect 
fluid with constant mass density and having a metric confor
mal to Minkowski metric, the metric being functionally re
lated with the electric potential. 

4. GENERAL SPHERICALLY SYMMETRIC AND 
CONFORMALLY FLAT STATIC CHARGED PERFECT 
FLUID 

In order to get a general static spherically symmetric 
solution we can use the line element (3.1). Applying the COn
dition of conformal flatness (Ref. 5) C /L va/3 = 0 one gets a 
relation like 

(4.1) 

In view of the field equations (3.2) one can obtain in a straight 
forward manner 

~(cu" + cu'lr) = - kpew
, (4.2) 

which is the same differential equation as (3.6). For 
p = const one obtains the same solutions for e W as those giv
en in (3.7)-(3.9) for e2U

• Once e W is known e" is obtained from 
(4.1). Here again the first solution for eW with D 1 = 1 gives 
exactly the general Schwarzschild interior solution in iso
tropic coordinates. All other solutions with Dl 0:/= 1 have sin
gularities at r = O. We can therefore conclude that there is no 
physically reasonable solution, which may be said to be an 
analog of the Schwarzschild interior solution, for a confor
mally flat, static, and charged perfect fluid sphere having 
constant mass density. 
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The general solution to Einstein's equations coupled to an anisotropic fluid described by two 
perfect-fluid components is obtained in the case that (1) the space-time is plane-symmetric, (2) 
each fluid component is irrotational, and (3) each one obeys the equation of state 
pressure = energy density. The method used consists of solving the equivalent problem of the 
Einstein's equations coupled to a complex massless-scalar field. The space-time singularities are 
studied using the concept of velocity-dominated singularity. Comoving systems of coordinates 
are also studied. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In a recent paperl it was found that Einstein's field 
equations for a self-graviting anisotropic fluid described by 
two irrotational perfect-fluid components with a stiff equa
tion of state (pressure = energy density) are equivalent to 
Einstein's field equations coupled to a complex massless
scalar field, A, i.e., 

R ILv = - !(A.ILA,v + A'ILA,V)' 

aIL(~ - gg"vA,v) = 0, 

A ifJ + it/!, A -ifJ - it/!, 

(1.1) 

(1.2) 

(1.3) 

The units are so chosen that we have for the velocity oflight 
c = 1 and Newton's constant of gravitation G = 1/817. 

The 4-velocity of the perfect-fluid components are re
lated to the real and imaginary part of A by 

U = A. I(A. A. ,u)1/2 
J.l 'f'.{L Y',a'f' , 

V = t/! I(A. ,/.,U)I12. IL ,IL 'I',u'I' 

The anisotropic fluid variables are connected to A by 

(1.4a) 

(l.4b) 

TILv = pUlL Uv + (0- - l7)XILXv - 17IgILv - UIL Uv)' (1.5) 

P = 0- = ! IA ,IL A I 2 .jl , (1.6) 

17 = 0'ILA 'IL, (1.7) 

UIL = Re(eiUA'IL)I[Re(eiUA",)Re(eiUA ',r/2
, (1.8) 

XIL = - Im(eiUA,IL)I[ - Im(eiUA,v)Im(eiaA',1/2], (1.9) 

(yl2)eiu = [1 + Re(A'ILA 'IL) ]112 
IA,fJA ,/31 

+ll- ,IL .[ Re(A A 'IL). ] 112 

IA ,/3A ,/31 ' 
(1.10) 

where UIL is the anisotropic fluid flux velocity, ~ is a space
like unit 4-vector that points in the direction of anisotropy, p 
is the usual rest energy density of the fluid, 17 is the pressure 
on a plane perpendicular to the anisotropy direction, and 0- is 
the pressure along the anisotropy direction. 

The purpose of this paper is to study Einstein's equa
tions (1.1) or better its anisotropic fluid interpretation, for 
the space-time that admits the three-parameter groups of 

alPartially supported by CNPq, Brazil. 

motions that characterize plane symmetry. 
In Sec, 2 we present the general solution to Eq. (1.1) for 

a plane symmetric space-time, and we compute the anisotro
pic fluid variables for this case. In Sec, 3 different comoving 
systems of coordinates are studied. In Sec. 4 the concept of 
velocity-dominated singularity2,3 is used to study the fluid 
and space-time singular behavior. The rather surprising re
sult is found that near the singularity the anisotropic fluid 
becomes isotropic. 

2. THE SOLUTION 

The most general plane-symmetric metric can be writ
ten as4 

(2.1) 

where (J) and,u are functions of u and v 
The field equations (1.1) and (1.2) for the metrics (2.1) 

reduce to 

,u+++!,u2+ -{J)+,u+= _ifJ2+ -~+, (2.2a) 

,u- _ + !,u2+ - (J)-,u- = - ifJ 2_ - ~_ , (2.2b) 

(J)+_ +,u+- + !jl+,u- = -ifJ+ifJ- -t/!+t/!-, (2.2c) 

(elL) + _ = 0, (2.2d) 

- 2ifJ+- =,u-ifJ+ +,u+ifJ-, (2.3a) 

- 2t/!+_ =,u-t/!+ +,u+t/!-, (2.3b) 

where we have introduced the notation,u+=(a,ulav), 
,u- = (a,ulau), etc. 

The general solution (2.2d) is 

elL = t flu) + h (v), (2.4) 

where/and h are functions of their arguments. From (2.4), 
(2.2a), and (2.2b) we find 

(J)+ =/++1/+ -/+/2t+t(ifJ2+ +~+ )1/+, (2.5a) 

(J)_ = h_ jh_ - hj2t + t (ifJ 2_ + t/!2_ )Ih_. (2.5b) 

Note that from (2.3) and either (2.5a) or (2.5b) we recover 
(2.2c) and that (2.3) and (2.5) imply (J)+ _ = (J)_ +. So the 
integral 

(J) = In(4t 1/z.t+h_) + n [ifJ, t/!J. 
n [ifJ, t/!J-M [ifJ J + M [t/!J + {J)o, 

(2.6a) 

(2.6b) 

(2.6c) 

827 J, Math. Phys, 22 (4). April 1981 0022-2488/81/040827 -03$1,00 @ 1981 American Insi;tute of Physics 827 



                                                                                                                                    

is exact and W o is an integration constant. Now defining 
Z h (v) - flu) we can cast the metric (2.1) as 

ds2 = (en I v' t )(dt 2 - dz2) - t (dx 2 + dy2). (2.7) 

In the system of coordinates (t, z, x,y) the relations (2.6c) and 
(2.3) can be written as 

M [1,6 ] = Jt [(1,6 ~ + 1,6 ;)dt + 2tP,tPzdz ], (2.8) 

1,6" + tP,It - tPzz = 0, (2.9a) 

tP" + tP,It - tPzz = 0, (2.9b) 

where we have introduced the notation 
tP,=(JtPIJt), tPz = (JtPIJz), etc. Thus, the general solution 
to the system of equations (2.2) and (2.3) can be found com
putingM [1,6] andM [tP], where 1,6 and tP are general solutions 
of the linear equation (2.9). The general solution to (2.9) is 
well known. 

From (2.7) and (1.6)-(1.9) we find that the anisotropic 
fluid variables can be expressed as 

p=u=!(v't)e~nrl' (2.10) 

(2.11) 

(2.12) 

where 

Sl 1,6 ~ - 1,6; - tP; + tP;, 

S2=tP ; - 1,6; + tf;; - tP;, 

rl=(si + ~ )1/2, 

r2=2(tP,tP, - tPztPz)' 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The fluid anisotropy for the present model can be de
scribed by the quantity 

8-(U-1T)/1T>0, (2.18) 

= (rl - r2)ls2. (2.19) 

Note that, letting tP_O in (2.6b), (2.7), (2.10), (2.11), and 
(2.12), we recover the corresponding expression for the Ta
bensky and Taub solutions.4 

3. COMOVING COORDINATES 

For the fluid under consideration we have two types of 
comoving coordinates, first the comoving coordinates with 
respect to one of the fluid components and second the co
moving coordinates with respect to the fluid flux velocity. 
Comoving coordinates of the first type can be easily found. 
The coordinates 

T = 1,6 (t, z), (3.1a) 

dZ = t(tPzdt + tP,dz), (3.1b) 

X=x, Y=y, (3.1c) 

are comoving to the fluid component described by 
uP = 1,6 ,P/(tP,utP ,u)1/2, since 

uP_uW(T,Z) = (tP,atP,U)1I2(1,O,O,O), (3.2) 

The integrability of (3.1b) is guaranteed by (2.9a). 
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as 
The metric in this new system of coordinates can be cast 

ds2 = (tP,utP,a)~I(dT2 - t ~2dZ2) - t(dX2 + dy2). 

(3.3) 

Note that this metric, as well as the Jacobian of the transfor
mation (3.1), is singular at t = 0. 

The velocity if = tP,P/(tP,p tP,a)1/2 of the other fluid com
ponent, as well as the flux velocity UIL and the anisotropy 
direction X", transform under (3. 1) as 

vo' = tP,u tP,a/(tP,ptP./3 )1 12, 

Vi' = t3/2e~fi(tPztP, - tP,tPz)/(t/J,atP,U)1/2, 

I' 5/4 ~fi/2 (rl + SI)1/2(tPztP, - tP,t/Jz) 
X = t e (si + ~ _ rls2)1/2 . 

(3.4a) 

(3.4b) 

(3.6a) 

(3.6b) 

In a similar way one can define comoving coordinates to the 
fluid component if = t/J,fL I(t/J,at/J,a)' Formally, we can also de
fine a comoving system of coordinates with respect to the 
fluid flux velocity 

T= T(t,z), (3.7a) 

dZ = H [(tPz + tanf3t/Jz )dt + (1,6, + tanf3tP, )dz], (3.7b) 

X=x, Y=y, (3.7c) 

tanf3 =(rl - sl) 1/2/(r l + S2)1/2, (3.7d) 

where H is an integrating factor. It happens that the field 
equations (2.9) are not sufficient to guarantee the integrabi
lity of (3.7b) for any 1,6 and tP solutions of (2.9). 

4. SINGULARITIES 

The singular behavior of the field equations (2.9) near 
t = ° is described3 by 

tP=E(z)lnt, 

t/J=F(z)lnt, 

(4.1a) 

(4.1b) 

where E and F are arbitrary functions of their arguments. 
Now we shall compute all the relevant quantities keeping 
only the term of dominant singular behavior.3 

From (4.1) and (2.7) we get 

ds2=t 41E' + F') ~ I12(dt 2 _ dz2) _ t (dx2 + dy2), (4.2) 

and, performing a simple change of variables, we find 

ds=d72 - 72P'dt 2 - 72P'dx2 - 72P'dy 2, (4.3) 

where the symbol P ~(PI' P2, P3 ) is given by 

_ (2(E
2 + F2) _! ! , ~ ), 

P- 2(E2+F2)+3' 2(E2+F2)+j 2(E2+F2)+j 
4 (4.4) 
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Note that ~Pi = 1 and ~P i #- 1. Thus the metric (2.7) has a 
velocity-dominated semi-Kasner-like singularity. 2.3 

From (2.10), (2.11), (2.19), and (4.1) we find 

1T = U=f)':::=-~(E2 + F2)t - 41E' + F')- 3/2, 

8=0; 

(4.5) 

(4.6) 

thus, near the singularity the fluid became isotropic, a result 
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The problem of joining two homothetic solutions of Einstein's field equations with a perfect fluid 
is considered in general, without any symmetry requirements. 
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The study of self-similar (or homothetic) solutions of 
the Einstein equations for a perfect fluid is offundamental 
importance in many areas of relativistic astrophysics and 
cosmology. In particular some models try to explain the 
variability of quasars and radiosources on the basis of rela
tivistic blast waves. I These waves correspond to self-similar 
solutions of the special relativistic fluid-dynamical equations 
generalizing the well-known classical Taylor-Sedov solu
tions. I

-
3 However, in astrophysical applications, it is doubt

ful whether the self-gravity of the waves can be neglected4 

and therefore a fully general-relativistic treatment is 
warranted. 

In this area a fundamental problem is that of matching 
two self-similar solutions of Einstein's equations with a per
fect fluid across a shock front. In the case of spherical sym
metry, Cahill and Taub5 have shown that self-similarity is 
preserved by the Einstein equations, provided the initial data 
are self-similar. They have also shown that, in the case of 
spherical symmetry, if the perfect fluid is thermodynamic 
and the space-time is self-similar behind a shock front, the 
matching conditions imply that it is self-similar ahead of the 
shock front. 

In this paper, Cahill and Taub's results are proved with
out imposing the restriction of spherical symmetry. The 
proof hinges upon some results of Co1l6 on the Cauchy prob
lem of Killing vectors suitably generalized to homothetic 
Killing vectors. 

In Sec. 1 the formalism which will be used is expound
ed. In Sec. 2 one treats the problem of the preservation of 
self-similarity by the Einstein equations in the case of perfect 
fluids. 

Finally in Sec. 3 one considers the problem of the con
tinuation of a homothetic vector across a shock front. 

1. GENERALITY 

Let M be a differentiable manifold with a metric g with 
signature (1 - 1 - 1 - 1). Consider on M the hypersur
faces c/J (p) = const, such that g(dc/J, dc/J ) #0. If one writes 
E = ± 1, according to whether the hypersurfaces are space
like or timelike, the unity normal is 

n = Ad¢, (1 ) 

where A = ± l/(Eg(dc/J, dc/J W12· 
Let hab and Kab be the first and the second fundamental 

forms of c/J (p) = const, namely? 

hab = gab - Enanb, 

Kab = ha ehb dVend, 

(2) 

(3) 

w here Ve is the covariant derivative with respect to the met
ricgab · 

Let Rab be the Ricci tensor of the metric hab'? and Tab 
the energy-momentum tensor, which is characterized by6 

7 = Tabnan b, (4) 

te = Tabnah be' (5) 

Hab = ha chb dTed · (6) 

If one writes 

K = h abKab , (7) 

R = h abRab , (8) 

H= habHab , (9) 

Sab = KaeKb e - !KKab' (10) 

Pab = Hab - !(H + E7)hab' (11) 

and takes a coordinate congruence adapted to a vector field 
V = EAn + Il, 8 where Il is a vector field tangent to the hyper
surfaces c/J (p) = const, then the Einstein equations read6 

DaKab -DbK=tb' (12) 

KabKab - K2 + ER = - 27, (13) 

ahab = 2EAKab , (14) 

a~ab = A (Rab + 2ESab - Pab) - DaDbA, (15) 

where a = Lv _ J-l denotes the Lie derivative along V - Il and 
D a denotes the covariant derivative with respect to the met
ric hab defined? by DaA be = haih/he IViAjl' Equations (12) 
and (13) are the constraint equations and Eqs. (14) and (15) 
are the evolution equations. 

Let 

Bab = Lsgab - cgab , (16) 

where 5 = Ean + {3, a is a function, {3 a vector field tangent 
to the hypersurfaces c/J (p) = const, and c a constant. If one 
writes f7 = Babnanb, Ie = Babnahe b, Lab = ha ehb dBed' then 

f7=(dA}!2(aa+L pA)-cAj, (17) 

1a = (dA }!haba{3b + EADaa - eaDaA j, (18) 

Lab = Lphab + 2eaKab - Chab' (19) 

By choosing a and {3 such that f7 = 1a = 0, namely 

aa = !CA - LpA, (20) 

a{3a = E(aDaA -ADaa), (21) 

the derivative of Eq. (19) along V - Il is 

aLab = 2EA (LpKab + a(Rab + 2ESab - Pab) 
(22) 
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and by Eq. (AI) 

(L, Ted )ha ehb d 
= (l/A HAL,Hab + EA (tbDaa + taDba) 

- m(tbDaA + taDb A )j. 

5 is a homothetic Killing vector iff Bab = o. 

(23) 

Fron the Einstein equations, if 5 is a homothetic Killing 
vector, it follows that L, Tab = 0, hence the following. 

Proposition 1: If 5 is a homothetic Killing vector, Eqs. 
(20) and (21) and the following equations 

Lf3hab + 2EaKab - Chab = 0, (24) 

Lf3Kab + a(Rab + 2ESab - Pab) - DaDba - !cKab = 0,(25) 

AL,Hab + EA (tbDaa + taDba) ~ m(tbDaA + taDbA ) = 0 
(26) 

hold true. 
Remark: If a = 0, Eqs. (19)-(23) become 

Lab = Lf3hab - Chab' (19') 

L f3A = ~cA., (20') 

a/3a = 0, (21') 

aLab = 2EA (Lf3Kab - !cKab ), (22') 

(Lf3 Ted )ha ehb d = Lf3Hab . (23') 

If a#- 0, by starting from a non-null hypersurface~, a conve
nient set of hypersurfaces, such that.I = 1 ¢J (p) = 0 J and 
V = 5, can be found. 8 Therefore by using Eqs. (14) and (15), 
Eqs. (19)-(23) become 

Lab = LVhab - Chab' 

LvA = !CA, 

aJia = 0, 

aLab = 2EA (LVKab - !cKab ), 

(LvTed)ha chb d = LvHab. 

(19") 

(20") 

(21 ") 

(22") 

(23") 

Equations (19")-(23") can be formally obtained from Eqs. 
(19')-(23') by replacing/3by V. From this it is easily seen that 
all the calculations given in the appendix, where the vector 
field /3 is used, also hold true when /3 is replaced by V. Hence 
any theorem involving the vector field 5 = mn + /3, will be 
proved only in the simpler case a = o. 

2. THE CAUCHY PROBLEM FOR THE HOMOTHETIC 
KILLING VECTORS 

Theorem 1: Under suitable differentiability conditions,6 

a vector field 5 is a homothetic Killing vector if and only if 
Eqs. (24) and (25) are satisfied on a non-null hypersurface ~ 
and Eqs. (20), (21), and (26) hold true in a neighborhood of~. 

Proof The necessity of these conditions is a trivial con
sequence of Proposition 1. In the a = ° case the conditions 
of the theorem are the Eqs. (20') and (21') and 

(27) 

Gab = Lf3Hab = O. (28) 

By deriving Eq. (22') along V - Ji and by using Eqs. (15), 
(20'), (21'), and (A2)-(A5) one finds 
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!Ea2Lab _ 
= (E/U )(aA )(aLab ) + A IALf3(R ab + 2ESab - Pab) 
- Lf3DaDbA + ~cDaDbA J 
= Dab IL (2),aL (O)J + Dad G (O)J, (29) 

where Dab 1 L (r), aL (m) J ' and Dab 1 G (n) I are homogeneous 
polynomials in Lab' aLab , Gab' and their tangential deriva
tives of order r, m, and n respectively. The Eqs.(27)-(29) 
prove the sufficiency. 

Henceforth solutions of Einstein's equations with a per
fect fluid energy-momentum tensor will be considered, 
namely 

Tab = (p + p)ua Ub - pgab' (30) 

where p is the pressure, p the rest energy density and Ua the 
fluid unit velocity. Put v = g(u, n)9 and Xa = ha bUb' 

Ua = Evna + Xa' (31) 

T= (p +p)v - EP, (32) 

ta = (p + p)vXa, (33) 

Hab = (p + P)XaXb - phab· (34) 

The last equation can be written6 

Hab = (1I1T)ta tb - phab' (35) 

where 

1T = Ep + T. (36) 

Theorem 2: The vector field 5 is a homothetic Killing 
vector if and only if Eqs. (24) and (25) are satisfied on a non
null hypersurface~, and Eqs. (20) and (21) together with 

L,p + cp = 0 (37) 

hold in a neighborhood of ~. 
Proof From Eqs. (35), (AS), and (A6) 

Lf3Hab = Dab IL (2l, aL (Ill - £((l/r)tatb + hab) 
X (Lf3p + Cpl· (38) 

Equations (29), (27), and (38) prove the sufficiency. The ne
cessity is trivially obtained from proposition 1 and Eq. (38). 

Lemma 1: If 5 is a vector field subject to Eqs. (20) and 
(21), then 

Lsp + cp = D IL (2), aL (1)j + (l/V2)(L,p + cp), (39) 

Ls(P/p) = D IL (2), aL (1)1 + (l/p2)(p - pi V 2)(Lsp + cp), 
(40) 

where V2 = v /(v2 
- E). 

Proof From Eqs. (32) and (33) 

p = ET + 'TJhr, (41) 

where'TJ = t ata; from Eqs. (41), (A 7), and (A9) it follows that 

Lf3p + cp = D 1 L (2), aL (1) J - E('TJ/Tr2)(Lf3p + cp); 
(42) 

and from Eqs. (32) and (33) it follows that 

E'TJ/Tr2 = - 1!V2. 

Equation (40) is trivially obtained from Eq. (39). 

(43) 

Theorem 3: If the perfect fluid is barotropic, namely, 
p =/(p), space-time is homothetic in a neighborhood ofa 
non-null hypersurface ~ if and only if a scalar a and a tan
gent vector field /3 exist on 2, such that Eqs. (24) and (25) 
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hold, and/(p) = kp, where k = const, holds in a neighbor
hoodof~. 

Proof Construct, by Eqs. (20') and (21'), p and A in a 
neighborhood of~. If p = kp, Eq. (40) becomes 

(1/p)(1 - k /V2)(Lpp + cp) = D IL (2), aL (Ill. (44) 

If k = V2
, then from Eq. (43) 

rr + Ek'1] = 0, (45) 

which once differentiated with respect to p, gives 

D IL (2), aL (Ill + 2Ep1T(Lpp + cp) = O. (46) 

The necessity follows trivially from Theorem 2 and Lemma I 
by differentiating p = I( p) along p. 

Henceforth the term "barotropic perfect fluid" will be 
used to indicate the p = kp, where k = const. 

Now we will consider a thermodynamic perfect fluid, 
namely a perfect fluid characterized by a function fJ, the 
proper temperature, and a function S, the specific proper 
entropy, such that5 

P +p = (p/fJ)G(fJ), 

fJdS = dG - (1/r)dp, 

r = (p/fJ), 

(47) 

(48) 

(49) 

where r is the rest mass density. If a is the velocity of sound 
then5•10 

y = 1/a2 = (G (fJ)lfJ)(1 - 1/G (fJ ),G (fJ) = dG /dfJ, 
(50) 

wdS = dp - y dp, 

u(S)=O. 

(51) 

(52) 

HenceforththecaseG (fJ) = G (fJ )/fJ,correspondingtoabaro
tropic perfect fluid, will be excluded. 

By differentiating Eq. (32) along p and from Eq. (A 7) it 
follows that 

2v( p + p)Lpv + (~ - E)(Lpp + cp) + ~(Lpp + cp) 

= D IL (2), aL (Oll. (53) 

From Eq. (47) it follows that: 

L L = G(fJ) - fJG(fJ) L fJ. 
{3 P (G(fJ)-fJ)2 {3 

(54) 

Then 
Proposition 2: If 5 is a homothetic Killing vector one has 

Lsv = 0 (55) 

and if the fluid is thermodynamic one has 

(56) 

Theorem 4: A space-time with a thermodynamic perfect 
fluid is homothetic in a neighborhood of a non-null hyper
surface ~ if and only if a scalar a and a tangent vector field p 
exist on ~ such that Eqs. (24) and (25) and 

aafJ + AL{3fJ = 0 (57) 

hold true. 
Proof Construct, by Eqs. (20') and (21'), p and A in a 

neighborhood of~. From Eq. (52) 

as=O, (58) 

where a = rra + AL" and from Eq. (51) , 
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ap - yap = O. (59) 

Equations (36), (41), and (59) give 

(I + y)ErrJr - (Eyrr + '1])arr + rra'1] = 0, (60) 

which can be written 

arr = (1/[Eyrr + '1]])1£(1 + y)rraT + EA (1 + y)rrL,T 

- (A /rr)(Eyrr + '1])L,rr + a'1]], (61) 

from which 

ap = (E/qrr + '1])1 (Err - '1])aT + EA (1 + y)rrL,T 

- (A /rr)(qrr + '1])L,rr + a'1] J, (62) 

but from Eq. (59) 

ap = yap - (A /rr)(L,p - yL,p), (63) 

hence 

a L = :(P;;; yp) !(Err - '1])aT + EA (1 + y)rrL,T 
p p (EY +'1]) 

- ~(Eyrr + '1])L,rr + a'1]] + APl(L,p - yL,p). (64) 
rr rrp 

Let N = L{3fJ; from Eqs. (A9) and (AI4)-(AI7) 

L{3E(p - yp)lpl(qrr + '1]) 
= D {N (0)] + D 1 L (2), aL (I)] 
+ 3CE(p - yp)/pl(qrr + '1]). (65) 

From Eqs. (A7), (A9), (AlO), (AB), (AI7), (AI8), and (A23) 

L{3I(Err-'1])aT] =DIN(O)] +DIL(2), aL(2)] 
- 3c(Err - '1])aT. (66) 

From Eqs. (A9), (AI4), (AI7), and (A21) 

L{31 (A /rr)(Eyrr + '1])L,rr] 
=DIN(I)] +DIL(3), aL(2)] 

- 3C(A /rr)(qrr + '1])L,rr. (67) 

From Eqs. (All), (AI4), and (AI7) 

L{3{EA(1 +y)rrLtT] =DIN(O)] +D{L(3), aL(I)] 
- 3CEA (1 + y)rrLtT. (68) 

From Eqs. (A7)-(AlO), (AI2), (AI7), (A.22), and (A24) 

L{3a'1]=D{N(I)] +D{L(3), aL(2)] -3ca'1]. (69) 

From Eqs. (AI4)-(A20) 

L{3{ (Ap/rrp2)(Ltp - yLtp)] = D {N(l)] + D {L (3), aL (2)]. 
(70) 

Equations (64)-(70) give 

L{3a(p/p) =D {N(l)] +D {L(3), aL(2)]. (71 ) 

But from Eq. (47) 

L{3aL = G(fJ)-fJG(fJ)aN+D{N(O)1 (72) 
p (G(fJ) - fJ)l ' 

therefore 

aN=D{N(I)J +D{L(3), aL(2)j. (73) 

and from Eqs. (29), (38), and (40) 

alLab = Dab {N(O)J +Dab{L(2), aL(I)]. (74) 

Equations (73) and (74) and the hypothesis 
Lab II = 0, aLab II = 0, N II = 0 prove the theorem. 
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3. ON THE CONTINUATION OF A HOMOTHETIC 
KILLING VECTOR THROUGH A SHOCK 

Let (M, g) be a space time with a perfect fluid, divided 
into two parts M _ and M II by a timelike noncharacteristic 
hypersurface I, through which the second derivative of the 
metric g (therefore the energy-momentum tensor) are dis
continuous, but the first and the second fundamental form 
hab and Kab are continuous. 

These hypotheses and Eqs. (12) and (13) imply the con
tinuity of the vector field 

(75) 

through I. 
The continuity of rna together with the continuty of rv 

through I are the Rankine-Hugoniot equations.s.lo 

In this case v and V, defined in the previous section, are 
respectively the frequency and the velocity of the shock front 
relative to the fluid. s,1O 

From the continuity of hab andKab through I and from 
Theorem 3 follows 

Theorem 5: If a homothetic Killing vector /3 tangent to 
I exists on M _ and if the fluid is barotropic on M, then Mis 
homothetic in a neighborhood of I. 

Theorem 6: If the fluid is thermodynamic on 
M = M _ UM and a homothetic Killing vector /3 tangent to I 
exists on M _, then Mis homothetic in a neighborhood of I. 

Proof Since /3 is tangent to I and hab and Kab are con
tinuous through I, it follows that 

Lab I.l" = 0, aLab I.l" = 0. (76) 

The theorem follows from Theorem 4 if L{30 I.l" = 0. 
Since M _ is homothetic, from Theorem 2 and Proposition 2 

(77) 

These equations and the continuity of rv through I give 

L{3pvlO = - cpvlO (7S) 

on I. But 

L{3pvlO = (0 (vL{3p + pL{3v) - pvL(30)lO 2, (79) 

hence 

L{3vlv = - (l/p)(L{3p + cp) + L{30 10 

on I. From Eqs. (39) and (53) 

(l/V2)(L{3p + cp) + (p + p)(L{3vlv) = ° 
on I. Equations (SO) and (SI) give 

(SO) 

(SI) 

(1- - P+P)(L{3P+CP )+ P+PL{30=0, (82) 
V 2 P e 

and by Eq. (40) 

( ~ - 1 - £..) pV
2 

Lp.!!... + £..(1 + .!!...)L{30 = 0. 
V P V 2 _.!!... pOp 

P 
(S3) 

The case V2 = pip, together with Eq. (40), implies 
L{3plplI = 0, hence L{30 I.l" = 0. By using Eq. (47), Eq. (S3) 
becomes 
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O=p[ _ G(O)-O (1- V2 G(8)) 
V2(G(O) - 0) - 0 0 

X G(O) - OG(O) + G(O) ]L 0 
(G(O)-Of O(G(O)-O) {3 

p 
(0 - G(O))[ V2(G(O) - OJ - 8) 

X {(8 - V 2G (0))6 (0) + V 2G (0) jL{30. (S4) 
But if 

(0 - V 2G(O)jG(O) + V 2G(O) = 0, (85) 

then by Eq. (50) r = l/V2, namely I would be a characteris
tic of Einsteins's equations, 10 therefore L{30 II = O. 
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APPENDIX 

Henceforth the vector field V = €).n + Il will be chosen 
as the coordinate congruence with respect to a family of non
null hypersurfaces ¢ (p) = const. 

If S = €an + /3 is another vector field, one has 

Lsha b = (€I). )(aDa). - )'Daa)nb. (AI) 

If a = 0 and Eqs. (20') and (21') hold true, by using Einstein's 
equations (12)-(15) and the equations 

L{3hab = Dab {L (0)) + ehab' (A2) 

L{3Kab = Dab {L (0)) + !cKab , 

it follows that 

L{3Da ¢ = Da L{3¢' 

where ¢ is a scalar. 

L{3Da U b
c = DaL{3 U b

c + ~h bdK e
c 

X {De(L{3had) + Da(L{3hde) - Dd(L{3haelJ 

(A3) 

(A4) 

- !K bd {Dc(L{3had ) + Da(L{3hcd) -Dd(L{3haclJ 

=Dabc{L(I)) + Da L{3U b
co (AS) 

where U b
c is a tensor field tangent to ¢ (p) = const. 

L{3Rab 
=!h cd {DcDa(L{3hbd) + DCDb(Lphad) - DcDd(Lphab ) 

-DbDa(Lphcd )} =Dab {L(2)}, (A6) 

Lp'T=D {L(2), aLtO)) -C'T, (A7) 

Lpta = Da {L (I), aL (Ill - ~cta' (AS) 

Lp1]=D{L(I), aL(I)) -2c1], (A9) 

LpL,). = D {L (I), aL (I) - eL,)., (AW) 

LpL,'T = D {L (3), aL (I)} - ¥L,'T, (All) 

LpL,1] = D {L (2), aL (2) J - lEL,1], (AI2) 

LpData =D{L(2), aL(2)) -t;Data. (Al3) 

Putting N = LpO one has 

Lpr = D {N(O)), (AI4) 

Lpp = DIN (0) J + D I L (2), aL (1) I - ep, (A15) 

Lpp = D IN(Oll + D {L (2), aL (1)) - ep, (AI6) 
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L/3 1T =DIN(O)j +DIL(2), aL(I)j-C1T, (AI7) 

L/3H ab = Dab IN(O)j + Dab IL (2), aL (I)j, (AI8) 

L/3L ,p = D !N(I)j + D!L (3), aL (2)j - ?f:L,p, (AI9) 

L/3L ,p=D[N(I)j +D!L(3), aL(2)j-?f:L,p, (A20) 

L/3L ,1T=D!N(I)j +D[L(3), aL(2)j-?f:L ,1T,(A2I) 

L/3Db(AHab)=DaIN(l)j +Da[L(3), aL(2)j 

- ~cDb(AHab)' (A22) 

aT =AHabK ab - EATK - 2L,A - AD ata , (A23) 

aT] = 2[ - EAKabtat b - EAT]K + ETL,A - taDb(AHab)j. 

(A24) 
Equations (A23) and (A24) can be obtained by Einstein's 
equations and by 

aDaUbc 

= DaaU b
c +!h bdK/[De(ahad) + Da(ahde ) - Dd(ahae)j 

- ~bd[Dc(ahad) + DA (ah cd ) - Dd(ahac)j, (A2S) 
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where U b
c is a tensor field tangent to tP (p) = const. 

aRab =!h cd [DcD~(ahbd) + Dc Db (ahad ) - DcDd(ahab) 

-DaDb(ahcd)j. (A26) 
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We study divergenceless dynamical systems from a differential geometrical point of view. The 
analogy with Hamiltonian mechanics is pursued even as far as Poisson brackets. In particular, we 
study Nambu mechanics and its generalizations. 
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I. INTRODUCTION 

In many situations in physics one comes across diver
genceless vector fields, i.e., those satisfying the equation 

divv = O. (1) 

This equation occurs, for example, in hydrodynamics, statis
tical mechanics, thermodynamics, magnetostatics. In the 
case of hydrodynamics, for instance, it expresses the condi
tion of incompressibility (it is the continuity equation for the 
flow of an incompressible fluid flowing with velocity v). 
More generally, if the fluid is compressible, the continuity 
equation becomes (we write p for the mass density) 

: + divpv = 0, (2) 

which is of the same form, but generalized to four dimen
sions. Like this equation for the conservation of mass, the 
equation for the conservation of charge, namely 

dp + divJ = 0, 
dt 

is a generalization of (1) to four dimensions. Another exam
ple in higher dimension is the conservation of phase-space 
volume in Hamiltonian statistical mechanics: 

I (Ji;' + JPi) = O. 
Jq' JPi 

All of these examples involve a vector field v = (Vi , ••• ,vn
) 

on a manifold M. The vector field is the infinitesimal gener
ator of a family of transformations of M, and these transfor
mations leave a certain volume element invariant. That is, 
Eqs. (1), (2), and their generalizations to higher dimension 
express the invariance of a volume element. 

Consider, for instance Eq. (2). Two equivalent ways of 
interpreting it are the following (in both of them the mani
fold M is R4

). First, the vector field v = (p,pv l ,pv2 ,pv3
) pre

serves the volume element usually written as 

"Postal address: Mostra d'Oltremare Pad. 19,80125 Naples, Italy. 

dr = dtdx ldx2dx3
• Second, the vector field v = (l,v l ,v2,v3

) 

preserves the volume element dm = pdr. Both views, of 
course, merely state conservation of mass. 

In this paper we discuss the generalization of these ideas 
to arbitrary differentiable manifolds, and we interpret the 
vector fields as dynamical systems on the manifolds. The 
volume elements, which we shall call n, are then regular m
forms on the manifold, where m is the dimension ofthe 
manifold under consideration. We wish to examine the geo
metrical properties of such volume preserving dynamical 
systems, which we shall call Liouville dynamical systems. 
This then furnishes a geometrical approach to all dynamical 
systems which satisfy some continuity condition. In particu
lar, we draw the analogy between Hamiltonian and Liouville 
dynamics and study the analogs of Poisson brackets. 

Section II discusses some of the simplest properties of 
Liouville dynamical systems, their invariant structures, dif
feomorphisms and symmetries, and begins the discussion of 
Poisson brackets. Section III generalizes the idea of the Pois
son bracket. Section IV applies the previous considerations 
to a particular class of Liouville systems which are called 
Nambu'·2 dynamical systems. 

II. LIOUVILLE DYNAMICS 

A. Definition and Simplest properties 

1. Let M be an orientable differential manifold of di
mension m = 2n. We shall distinguish one vector field 
AEX(M) on the manifold which we call the dynamics, dyna
mical system, or dynamical vector field. If M is a symplectic 
manifold, i.e., if there is given on it a symplectic (regular, 
closed) two-form w, we say that A is Hamiltonian with re
spect to W iff there exists a function HEY(M) such that 

ij,w = - dH. (3) 

It is well known that w is then invariant under..::1, i.e., 
that Lj,w = 0, where L is the Lie derivative. If, further, we 
write 
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{J)n = (J) A (J) A ... A (J) = fl, (n factors) 

it then follows that fl is also invariant: 

L,1fl = o. (4) 

This is known as Liouville's theorem; a Hamiltonian dyna
mics leaves the volume element invariant. (Note that (J)n, like 
any other regular m-form on M, is a volume element for M). 

We shall say that a dynamics..1 is Liouville with respect 
to an arbitrary volume fl on M (not necessarily with respect 
to (J)n) iff fl is invariant under ..1, i.e., iff Eq. (4) is satisfied. 
This does not presuppose thatM is symplectic; there need be 
no two-form on M such thatfl = {J)n, and in fact, m = dimM 
may from now on be odd. Then a dynamical system may be 
Liouville without being Hamiltonian. 

In analogy with Hamiltonian systems and more pre
cisely,..1 will be called locally Liouville with respect to fl 
(locally fl-Liouville) iff (4) is satisfied. Equation (4) implies 
that about each point xEM there is a neighborhood U in 
which there exists an (m - 2)-form eEA m -2(U) (or, briefly, 
locally there exists such a e) such that i,1 fl I u = - de. If 
then e turns out to be a globally defined (m - 2)-form, we 
shall say that ..1 is globally fl- Liouville. That is, ..1 is globally 
fl -Liou ville iff there exists a @EA m - 2(M) such that 

i,1fl = - de. (5) 

Usually when we characterize a dynamics as Liouville we 
shall mean that it is locally Liouville. Clearly if a dynamics is 
globally fl-Liouville it is also locally fl-Liouville. 

Let (M,{J)) be a symplectic manifold, and If (M) be the 
set of dynamical systems Liouville with respect to fl = {J)n on 
M. We have seen that Iy (M):J I;y (M ) (the set of Hamilton
ian dynamical systems). Suppose that M is, like the phase 
space of a classical dynamical system, the cotangent bundle 
T * Q of some configuration space Q and that F is a two-form 
on Q. Let {J)o be the natural symplectic structure on T *Q, and 
construct the two-form 

(J) = {J)o + F. 

(Note the abuse of notation: F is actually a two-form on Q.) 
Then it is clear that {J)n = (J)~, for each term of the form 
(J)~ A F n - k has more than n factors of the form dqi, and only 
n of them are independent. It follows then that if ..1 and..1 'are 
Hamiltonian with respect to two different symplectic forms, 
they can nevertheless be Liouville with respect to the same 
fl. Incidentally, symplectic structures like (J)o + Flead to 
what Birkhoff3 calls gyroscopic interactions which, like the 
magnetic force, do no work. It is seen then that such interac
tions do not show up at the level of Liouville dynamics. 

2. Suppose that ..1 is not Liouville with respect to a given 
volume fl. Is it possible to find another volume fl ' such that 
..1 is fl '-Liouville? Note first that the set of m-forms on a 
manifold M of dimension m is itself of dimension one, and 
therefore that if fl and fl ' are volumes, there exists a function 
fsuch that 

fl'=ffl, f#OEY(M). (6) 

Thus the question reduces to finding an f such that ..1 is 
Liouville with respect to f fl. 

It is not always possible to find such a function. In 
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general 

L,1fl' =L,1ffl = (L,1J)fl +JL,1fl 

= (LilJ + fdivn ..1 )fl, 

where the function div n..1 is defined by 

L,1 fl = (div n..1 )n (7) 

(observe that Lil fl is an m-form). Thus if L1 is fl '-Liouville,f 
must satisfy the equation 

L,1J + Jdivn ..1 = 0, (8) 

which does not always have solutions in Y(M), the set of C = 

functions over M. 
As an illustration of a dynamical field which cannot be 

made fl '-Liouville, consider 

..1 = xalax + yalay 
on R2, and fl = dx Ady. Then L,1fl = 2fl, and Eq. (8) 
becomes 

xaJ lax + yaf lay + 2J = O. 
To be a solution of this equationJwould have to be "homo
geneous" of degree - 2 inx andy, and thusJtY(M), forJis 
undefined at x = y = O. 

B. Invariant structures 

1. Let..1 be locally Liouville (henceforth when fl is not 
specified, we are assuming that a given fl has been chosen); 
then in the neighborhood of each mEM there exists an 
(m - 2)-form e such that (5) is satisfied locally, and de is a 
local invariant of the motion, for 

L,1de = d(i,1de) = - d(i,1i,1fl) = o. 
If in addition i,1 e is closed, e itself is invariant, for 

L,1 e = i,1de + di,1 e = - i,1i,1fl + di,1 e. 

Note the rough analogy with the Hamiltonian case. In 
that case i,1 (J) = - dH implies that dH is an invariant, and 
moreover H itself is an invariant, for the analogue of di il e 
does not appear in the expression for L,1H. 

Let us write (5) in a canonical chart, obtaining what may 
be called, in analogy with Hamiltonian dynamics, Liou
ville's canonical equations. A canonical chart is one in which 
fl can be written in the form 

fl = dx i Adx2 A .. · Adxm. 

Let e in this chart be given by 

e = '" edxi Adx2 A···Ad~ A .. ·Ad~ A .. ' Adxm
, 

~ IJ 
I <J 

where dxk means that dxk does not appear in the exterior 
product. Then 

ae 
- de = - L ~Xk A dx I A ... A dXi A '" A dx} A· .. A dxm 

k axk 
i <j 

aeij . i . ] +-. (-1)1dx A .. ·AdX'A···Adxm 
• 

axJ 

This can be written in the form 
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~ .a8ij I . 
-de= £..( -1) '~x /\···/\dX'/\ .. ·/\dxm

, 

iJ ax' 

where 8}k = - 8 k}. On the other hand, if..::1 k is the k th 
component of..::1 in the local chart, we have 

(in = L ..::1 i ( - 1)1+ Idxl/\ .. ·/\d~ /\ .. ·/\dxm, 

so that Eq. (5) becomes 

. a8 .. 

(9) 

..::1 J==Xi = ( - 1) 1+ I L ~( - 1 )i. 
i ax' 

(10) 

These are Liouville's canonical equations. The expres
sion on the right-hand side ofthis equation is sometimes 
called the divergence of 8 ij ( - l)i + i + I. If the bivector (actu
ally, bivector field) with these components is called I (that is, 
i J;n = e), then this equation states that..::1 = divI. 

Example 1: Ifm = 2, write 8 12 = - 8 21 = - H. Then 

'1 a821 aH x =--=-
ax2 ax2

' 

x2 = _ a812 ( _ 1) = aH 
ax! - ax l ' 

This is the Hamiltonian case in dimension m = 2, or n = 1, 
so that,as expected, 0) = n. 

Example 2: If m = 3, write 8 12 = - J;, 8 23 = -/1' 

8 31 =/2' Then 

·1 a/3 a/2 x =---
ax2 ax3 ' 

'2 a/I aJ; x =---
ax3 ax l ' 

'3 a/2 a/I x =---
axl ax2 ' 

In the usual notatiqn for R3 this may be written i = V Xj. 

Since e plays roughly the role in Liouville dynamics 
that H plays in Hamiltonian, one may ask what the analog is 
for replacing H by H' = H + K, where K is a constant. The 
analog is related to the fact that dH' = dH, and in the Liou
ville case this means that e can be replaced bye' = e + {3 
where d{3 = O. Locally this means that {3 can be written in 
terms of an (m - 3)-forma:{3 = da, and thus that the 8ij of 
Eq. (10) are not uniquely defined. 

An example of this is classical electrodynamics. In the 
introduction it was pointed out that conservation of charge 
implies that the vector field..::1 = ~,J) on R4 is a Liouville 
dynamics. This means that there exists a two-form F such 
that 

iall = dE, 
where fl = dt /\ dx I /\ dx2 

/\ dx3
• In fact it can be shown [see 

Eq. (10)] that if F = FJ.lv dxJ.l/\dxv is the two-form whose 
elements are the components of the electromagnetic field, 
and if F is its dual in the sense of Hodge (i.e., FJ.lv 

= gJ.lagvpE"PYli Fyli )' then what is obtained are Maxwell's 
equations. As described ~bove, however, Fis not unique: one 
can add any two-form {3 such that d{3 = O. This corresponds 
to adding an arbitrary source-free field to the electromagnet
ic field which corresponds to F. 
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2. Letiafl = a. Then..::1 is (locally) Liouville, i.e.,..1 sat
isfies (4), iff a is closed: 

da=O, iafl=a. (11) 

Suppose now that there exist functions/w .. ,jm _ I EY(M) 
such that 

a = d/I /\ ... /\ dim _ I . (12) 

Then a is closed, ..1 is therefore Liouville, and moreover each 
ofthe/k is a constant of the motion. Indeed, 

iaiafl = 0 

= L ( - 1)k+ I d/I /\ ... /\ (L a/k )d/k + I /\ ... /\ dim _ I . 
k 

Sincethed/k are independent (ifa#O),La/k = o for each k. 
In a sense this is a different kind of analog of a Hamiltonian 
dynamics, one which is defined not by one, but by a set of 
m - 1 Hamiltonians/I, ... ,jm _ I' Each of these Hamilto
nians is then a constant of the motion. 

To a limited extent, something like the converse is true 
locally. Assume..1 to be Liouville and let/EY(M) be a con
stant of the motion (i.e., satisfy La / = 0). Then locally there 
exists an (m - 2)-form{3such thatd//\{3 = a is the (m - 1)
form of Eq. (11). Indeed, 

0= ia(d//\fl) = (La/)fl - d//\iafl = d//\a. (13) 

By taking/to be one of the coordinate functions in a local 
chart we see that a must be of the form (locally) d/ /\{3. Sup
pose further that..1 has m - 1 independent constants of the 
motion/I,. .. ,jm _ I' Then it follows that locally we may write 

a = Fd£ /\ ···/\d/m _ I' (14) 

where (by closure) F depends only on/" ... ,jm _ I' 
In a sense the Ik of Eqs. (12) and ( 14) provide an analogy 

with a Hamilton-Jacobi transformation for..1, for if they are 
taken as m - 1 of the m local coordinates, the integral curves 
of..1 lie along the mth coordinate direction. 

C. Dlffeomorphlsms 

1. A canonical diffeomorphism qJ:M-+M is a diffeomor
phism which satisfies 

qJ*fl = n. (15) 

Again, the analogy with canonical diffeomorphisms (sym
plectomorphisms) of Hamiltonian dynamics, which satisfy 
qJ*O) = 0), is obvious. In general for a diffeomorphism qJ, the 
function detnqJEY(M) is defined by 

qJ*n = (detnqJ)fl, 

so that qJ is canonical iff detn qJ = 1. 
A symmetry of the field..::1 is a diffeomorphism which 

leaves..1 invariant: 

(16) 

If qJ is a symmetry for the Liouville dynamics..1, then det[}. 
is a constant of the motion, for 

[LL\ (det[}qJ)]fl 

= La [(detnqJ)fl ] = LnqJ *fl 

= qJ *(L<p.a fl ) = qJ *(Lan) = O. (17) 
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This result leads to an interesting consequence. It associates 
the constant of the motion detnq; even with a discrete sym
metry 91. Recall that a Hamiltonian system is necessarily 
Liouville, so this gives a way to associate a constant of the 
motion with a discrete symmetry also in the Hamiltonian 
case. 

The converse of this result is not quite true, but if detnq; 
is a constant of the motion, then 91 • ..:1 is n-Liouville, as is 
obvious from (17), and..:1 is 91· .11-Liouville. Such a diffeomor
phism may be called canonoid.4 

Let 91 be canonical and a symmetry for a = ian, i.e., 
q;*a = a. Then 91 is also a symmetry for..:1, for 

a = 91 *a = 91 *(ian) = i",.a n . 

Since .11 is regular, 91 • ..:1 =..:1. The Hamiltonian analog of 
this is: if 91 is canonical and leaves H invariant, then it is a 
symmetry for ..:1. The Liouville case involves not the ana
logue of H [i.e., not e of Eq. (15)], but the analog of dH. 

Remark: According to Koopman5 a canonical diffeo
morphism q;:M-M generates a unitary transformation on 
the particular Hilbert space of functions on M which is ob
tained from the measure n. Suppose now that..:1 is Liouville 
with respect to two volumes .11 I and .112' The flow associated 
with..:1 then generates a one-parameter group of transforma
tions which is canonical with respect to both .11 I and .112, and 
therefore one obtains two unitary representations of this 
group on the two Hilbert spaces one can construct from the 
two measures. Let ¢: M-Mbe such that ¢*n l = .112' Then 
¢ generates the intertwining operator between the two repre
sentations. Thus canonoid transformations generate inter
twining operators between unitary representations. A simi
lar result is true for groups of transformations canonical 
with respect to two measures .11 I and .112 also if these groups 
are more general than one-parameter groups. 

2. The definitions and assertions concerning diffeomor
phisms have infinitesimal versions, and these infinitesimal 
versions refer to vector fields rather than to 
diffeomorphisms. 

Let X El:(M) generate a one-parameter group 91 ~ of dif
feomorphisms. Then 91 ~ is canonical iff X is n-Liouville, for 
in an obvious way (q;~)*n = .11 iff Lxn = 0. 

A vector field X is called an infinitesimal symmetry for 
..:1 (or simply a symmetry when no confusion will arise) iff 
[X,..:1 ] = 0. Then if X is symmetry for ..:1, it follows that L xn 
is invariant under..:1 (i.e., that div n X is a constant of the 
motion). Indeed, 

(18) 

As in the finite case, the converse is not quite true, but if L xn 
is invariant under .11, then [..:1,xl isn-Liouville, as is obvious 
from (18). 

Let Xbe n-Liouville and a symmetry for a = ian, i.e. 
Lxa = 0. Then X is also a symmetry for..:1, for 

ilx,a ].11 = Lxian = - Lxa = 0, 

and since .11 is regular, [X,..:1 ] must be zero. The Hamiltonian 
analogue of this statement is that if X is a Hamiltonian field 
which leaves invariant a function H, it is a symmetry for the 
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dynamical field..:1 whose Hamiltonian is H. Again, in the 
Liouville case it is the analogue of dH which enters, rather 
than H itself. 

The roles of X and..:1 can be interchanged in this demon
stration. That is, if ixn = f3 and Laf3 = 0, then [X,.1 ] = ° 
and X is a symmetry for ..:1. This statement also has its obvi
ous Hamiltonian analogue. Actually, the condition L af3 = ° 
is stronger than needed. It is easily shown that if dLdf3 = 0, 
then [X,..:1 ] = 0, and a similar weaker statement works also in 
the Hamiltonian case. 

D. First discussion of Poisson brackets 

1. The usual (intrinsic) definition of Poisson brackets 
(PB) in Hamiltonian dynamics is the following, Let 
J, gEY(M) and define X ;=l:(M) by i x. (i) = - df Then the PB 
offwith g is defined by 

[J,gl = iX,ixK(i) = - (i)(Xf,xg)EY(M). (19) 

As is well known, the PB so defined is antisymmetric, satis
fies the Jacobi identity (because (i) is closed) and is nondegen
erate in the sense that if [J,gJ = ° Vg, thenfis a constant. 
Because this definition depends in the way it does on (i), it is 
difficult to generalize to Liouville dynamics, so we shall use 
another, also intrinsic, based on work by Cartan, Jost, Pauli, 
and Flanders.6 .? 

The second definition also depends on (i), but in a differ
ent way. Let J, gEY(M), as before. Then the PB off with g 
may be defined by 

[J,g J (i)n = n(df A dg) A (i)n - t, (20) 

where the powers of (i) are with respect, of course, to the 
exterior product. It can be shown? that this definition agrees 
with that of Eq. (19), but because it involves the volume it is 
more suitable for generalization to Liouville dynamics. 

2. Before turning to a detailed discussion of PBs in the 
next section, we wish to point out a similar intrinsic defini
tion of the Lie derivative of a function, which is related to the 
PB definition of Eq. (20). 

LetfEY(M)andXEl:(M). Thensinceixnisan(m - 1)
form ifn is a volume, there exists a function gEY(M) such 
that 

dfAixn = gn . 

From df An = ° it follows that 

0= ix(dfAn) = (ixdf)n - dfAixn = (Lxf)n - gn, 

so that g is the Lie derivative off Thus the Lie derivative can 
be defined by 

(Lxf)n dfAixn. (21) 

The connection between Eqs. (20) and (21) is the follow
ing. Let..:1 El:( T *Q ) be Hamiltonian and let its Hamiltonian 
function be hEY(T*Q): 

id(i)= -dh. 

Then for any fEY( T *Q ) and for .11 = (i)n 

(L df)n = df Aid .11 = ndf Aid (i) A (i)n - I 

= - ndfAdh A(i)n - 1= - [J,h In. 
In other words, L df = - [J,h J, a well known result. 
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These definitions and the analogy between Liouville 
and Hamiltonian dynamics can be used to define a PB not 
between functions, but between a function and an (m - 2)
form. Let L1 be globally Liouville, i.e. satisfy (5) with a certain 
(m - 2)-form e. Then for any fEY(M), 

o = i,j (df Ail) = (L aI)il + df A de. 

If the analog ofthe PB of/with e is defined by 

[f,e lil - dfAde, (22) 

it follows that 

LaI= [f,e I· (23) 

Thus if a Liouville dynamics L1 is defined by its Liouville 
(m - 2)-form e through Eq. (4) in the same way as a Hamil
tonian dynamics is defined by its Hamiltonian function 
through Eq. (3). the Lie derivative of any fEY(M) is given by 
Eq. (23), which is obviously similar to its Hamiltonian 
analog. 

In a local coordinate chart this analog of the PB may be 
written [use df = ~ (af / axk )dxk and Eq. (9)] 

alj ae 
[f,e 1 = I( - l)i+j_. _lJ . 

iJ ax' ax' 

It is easily shown that for m = 2 and e l2 = h, this becomes 
the usual expression in Hamiltonian dynamics for the PB of 
a functionfwith the Hamiltonian in a canonical chart. 

Remark: In terms of what was called~ around Eq. (10), 
this anal.og of the PB may be written in the form of the scalar 
product gradfdiv~. 

In Hamiltonian dynamics a PB on closed one-forms is 
sometimes defined8 in the following way. From Eq. (19) one 
has 

i[x.l'x.ftl = Lxix/v = - d {f,gl. 

The PB is then defined by [d f,dg J = - d { f,g I, or 

{ df,dg J = i [X.I'X. ftl· 
Then it follows that 

4ig = - Lxix. (tI = - [df,dg I. 
The analog in Liouville dynamics is a PB on closed 

(m - 1 I-forms defined as follows. Let 

ixil = ex, iyil = e y, 

[with dex = dey = 0, so that X and Yare in x:/. Because 
the map il: xy- -.A ;;;o~e~ : X I----.i xil is a Lie-algebra homo
morphism, the expression 

[ex,ey 1= i[x.y lil 

has the properties of a PB. Moreover 

Lxey = Lxiyil = i[x,y lil = (ex,ey J; 

the Lie derivative is related to this PB in the same way as the 
Lie derivative is related to the analogous PB of Hamiltonian 
dynamics. 

III. POISSON BRACKETS 

1. Further generalizations of the PB will be based on the 
observation that in both the Hamiltonian and Liouville cases 
the PB was defined through a volume element (m-form) il 
and an (m - 2)-form which we shall call a. For two func-
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tionsf,gEY(M), for example (and it is only this example that 
will be generalized), the PB was given by an equation of the 
form 

(f,glil = (dfAdg)Aa. (24) 

In Eq. (20), il was (tin, and a was n(tln ~ I. Thus for fixed il, all 
one need do to define a generalized PB is to choose a suitable 
a and insert it into (24). What constitutes suitability for a is 
not yet clear. For example, although the PB defined through 
(24) is bound to be antisymmetric, it will not satisfy the Ja
cobi identity unless a fulfills certain conditions which will be 
discussed later in terms of bivectors. Moreover, the PB as 
defined through (24) will often be degenerate in the sense 
described after Eq. (19). This will also be discussed in what 
follows. 

2. A volume element provides an isomorphism between 
k-vectors and (m - k I-forms. For example, the map 

il:x(M) -.A m~ I(M):XI-+ixil 

is an isomorphism. More generally, so is the map 

il:Ak(M)-+A m ~ k(M):A I--+i"il, 

where 

AdM) = [~XI AX2 A ... AXk IX/EX(M) I 
is the set of k-vectors. (The contraction of a k-vector with a 
form is defined in the usual way like contraction of tensors, 
except that one must take into account their antisymmetry.) 
This allows one to discuss PBs in terms ofbivectors instead 
of (m - 2)-forms: a bivector leads uniquely to an (m - 2)
form which in tum leads to a PB in accordance with (24). The 
suitability of the (m - 2)-form can then be analyzed in terms 
of the suitability of the bivector. 

LetAEA 2(M) bea bivector. Then A can be used to define 
a PB between function in two different ways. First, by using 
(24) and choosing a = i"il, so that 

(f,g)"il ==.(dfAdg) A (i"il). (25) 

Second, by using the fact that A defines a linear antisymme
tric map Y(M)XY(M)-+Y(M) in accordance with 

f,gl-+[ f,gl" = i,,(dfAdg). (26) 

At first glance (25) and (26) seem to give the same PB, and in 
fact they do, though the proof is not as easy as it may seem. 
We defer the proof until later, and for a while we use only 
(26). In any case, these are candidates for PBs provided only 
that A satisfies the conditions of suitability yet to be 
discussed. 

Example 3: Consider the bivector wEA z( T *Q ) satisfying 

iw il = n(tln~ I. 

It is easily shown that in a local canonical chart 

a a w=I-A-
i api aqi' 

(27) 

and that the PB it yields in accordance with (26) is the usual 
one of Hamiltonian dynamics. 

Since bilinearity and antisymmetry accrue to the PB 
from (26) alone, the only condition to be placed on A is that 
the PB satisfy the Jacobi identity. Consider two bivectors 
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A. = IXi A Yi and IL = I W; AZi, 
j i 

and define (note that the ranges of i andj may be different) 

[A.,IL] = I [[Xi,Wi] A Yi AZj + [Yi,Zj] AXi A Wi 
iJ 

- [Xi,Zj] A Yi A Wi - [1';, Wi] AXi AZj 

+ (divXi)Yi A Wi AZj - (divYi)Xi A Wi AZj 

+ (divWi)Xi A Yi AZj - (divZj)Xi A Yi A Wi). 

Then it has been shown9
•
10 that the PB of (26) satisfies the 

Jacobi identity iff [A.,...t ] = O. This condition is trivially satis
fied by the bivector w of Eq. (27). 

3. Having defined PBs in terms of two-forms, one can 
generalize further to something like a PB, but which maps 
not two, but a larger number k off unctions into Y(M). In 
fact let {3 be a k-vector and consider the map 

YI(M)X"'XYk(M)---+Y(M): 

JI""/k ~ if""'/k)P 
defined by 

(fl""/k )f3fl if3fl AJ, A .. · AJk' (28) 

For k = 2 this reduces to Eq. (25). This definition of a more 
general PB is, incidentally, independent of fl. 

An example of such a generalized PB is the following. 
In a canonical chart let {3 be given by 

{3=F~ 1\ ... 1\ ~ 
axl axk ' 

where FEY(M). Then 

(f1""/k)f3 = F I Ci,. i aJ, ... aJk 
i, ... i, ., axi, ax i, 

It is not immediately evident that this extension of the 
idea of a PB has much to do with dynamical systems, al
though it will be seen in the next section that it can be applied 
in Nambu mechanics. The PB of Eq. (28) is, in any case, 
antisymmetric in each pair of functions. 

IV. NAMBU TYPE MECHANICS 

1. Consider m - 1 independent functions H" ... ,Hm - I 

in Y (M), where M, as before, has dimension m. These define 
an obviously Liouville dynamics .1 in accordance with 

iilfl = dH I I\dH2 1\ ... l\dHm _ I' (29) 

This shall be called a Nambu type of dynamical system. 
Each of the Hj' according to the discussion around Eqs. (11) 
and (12), is a constant of the motion for .1, and ifjEY(M), 
then according to (21) dJ Idt = LilJis given by 

(LilJ)fl = dJl\dH,I\ .. ·l\dHm -I' 

Now let Wbe the m-vector dual to fl: 

iwfl = 1; 

then contraction with W gives 

LilJ= dJ Idt = iw(dJl\dH,1\ .. ·l\dHm -I)' 

We want to show that this is (J,H I, .. . ,H m _ I ) w in accordance 
with the definition (28). IfJis not independent of the 
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H k , both expressions are zero, so it follows trivially. 
IfJis inde pendent of the H k , then locally one can write 

W=P~ 1\ ~ 1\ ... 1\ a 
aJ aH, aHm _ , 

1 
fl = ..:....(]J 1\ dH, 1\ ... 1\ dH m _ I , 

P 
pEY(M). Then the result follows immediately. Thus we ar
rive at 

(30) 

It is seen that this is quite similar to the situation in 
Hamiltonian dynamics. The analog of fl is the symplectic 
form w of Hamiltonian dynamics, and the analogue of W is 
then the bivector w dual to w, given by iww = 1. This bivec
tor is then that of Eq. (27), and indeed the usual PB may be 
written in the form [ J,g J = (J ,g)w . In keeping with this anal
ogy, we shall call the H j of Eq. (30) Hamiltonian Junctions. 

Now consider anyone of the Hamiltonian functions, 
say HI> and define the bivector GI by 

iG,fl = dH2 1\ ... l\dHm _ I' (31) 

It will now be shown that for JEY(M) 

LilJ= [H,/JG, (32) 

[see Eq. (26)]. 
The proof depends on showing first that 

iG,dHk = 0, k # 1. (33) 

Indeed, let 8 1,82EXr(N) be such that for some gEY(M) 

fl= g8 1 1\ 8 2 1\dH2 A .. ·l\dHm _ I' 

Then 

iG,fl = g(iG, 8 1 1\ 8 2 )dH2 1\ .. ·l\dHm _ I 

+g81I\a, 

+ g82 1\a2 + g811\ 8 2 1\ (iG,dH21\ .. ·l\dHm _ I)' 

where neither a l nor a 2 have any factors of 8 1 or 8 2 , Ac
cording to (31) this is equal to dH 21\ ... 1\ dH m _ I , and there
fore because 8 I ,82, and the dH k are all independent, the last 
three terms add to zero. But then each one of these last three 
terms must be zero, for the first has no factor of 8 2, the 
second no factor of 8 I' and the last has both. Finally since a I 
contains no factors of8 1 and sinceg81 l\a , = 0, it follows 
that a I = 0. Similarly a 2 = 0, and 

i G , (dH21\ .. ·l\dHm _ I) = iG , iG,fl = 0, (34) 

Now consider al' This (m - 3)-form is a sum of terms each 
of which is the product of a function rk = i G , 8 2 1\ dHk , 

kE [2, ... ,m - 1J with an (m - 3)-form dH/" 1\ ... 1\ dH/
on 

"Ii 
# k. These terms are all independent, since each has just one 
of the dHk missing; and since their sum vanishes, each term 
vanishes separately. A similar statement may be made for a 2 • 

Thus 

iG,82 l\dHk =iG,8,l\dHk =0, kE[2, ... ,m -I). 

A similar arguement starting from Eq. (34), rather than from 
a I = ° then shows that 

iG,dHk I\dH/ = 0, k #1. 
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It follows that the vector field iG, dHk satisfies Eq. (33), as 
asserted. 

Now let us calculate LJ. According to (21) 

(LJ)n = djl\dHII\···l\dHm _ 1 = djl\dHlAiG,n. 

Note that the right-hand side is (J,H1)G,n in accordance 
with Eq. (25). That is, in proving (32) we will also be proving 
the equivalence of (25) and (26), that is, that I j,g}" = (J,g)". 

Proceeding, we have 

0= iG, (djl\dH1I\n) 

= iG, (djl\dHdn + djl\dH1l\iG,n + Z, 

where Z vanishes by Eq. (33) because it consists of terms all 
of which contain factors of iG,dHk' kEI2, ... ,m - I}. Thus 

(L,J)n = - iG, (djl\dH1)n = IH1/}G,n, 

which proves Eq. (32). 
More generally, if Gk is defined by an equation similar 

to (31), but with dHk missing, then 

Le,.j= (Hklk = IHklla,. (35) 

It may thus seem that a Nambu-Liouville dynamics 
[i.e., one satisfying (29)] leads inevitably to a Hamiltonian 
dynamics given by (35). But in fact Eq. (35) does not yield a 
Hamiltonian dynamics, for the PB in it is degenerate in the 
sense described after Eq. (19): from iG• dHI = 0 for k #1 it 
follows that (HI/)G. = 0 for k # I and for alljEY(M). In the 
seemingly Hamiltonian dynamics whose PB is ( , )G. many 
Hamiltonian functions lead to null dynamical systems. 

On the other hand these PBs satisfy the Jacobi identity. 

This follows from Kirillov,9 where it is shown that if A is a k
vector and B is an I-vector, then 

i[A,B Ja = (- l)kl+liAdiBa + (- l)kiBdiAa 

for any closed a. If A = B = Gk and a = n, this equation 
becomes 

i[G.,G.ln = (- 1)4+2iG.diGk n + (- WiG.diG.n = 0, 

since diG. n = 0. Since {} is an isomorphism, [Gk ,Gk ] = 0, 
which is a necessary and sufficient condition for the PB de
fined through Gk to satisfy the Jacobi identity. 

2. As a more detailed example of the Nambu-Liouville 
formalism consider a rigid body rotating freely about a fixed 
point. Let the principal moments of the body beA, B, C, and 
let the angular velocity have components p,q,r in the princi
pal axis systems. Then Euler's equations for the motions of a 
rigid body (actually for the components of the angular veloc
ity vector) are 

Ap= (B- C)qr, Bq= (C-A )rp, 0= (A -B)pq. 

LetMbe R3 and letp, q, rform a Cartesian chart onM. Then 
this system is described by the dynamical vector field Li 
which can be written in the form 

B-C a C-A a A -B a 
Li=--qr-+--rp_+ __ pq_. (36) 

A ap B aq C ar 

Because M is of dimension three, it cannot be symplectic, but 
it is easily verified that 

Le,.{) = 0, 

where 

n = dp I\dq 1\ dr. (37) 
Thus Li is {}-Liouville. Let us calculate 

B-C C-A A-B d 
in =--qrdql\dr+--rpdrl\dp+--pqdpl\ q 

e,. ABC 

= 1 [ B - C dq2 1\ d~ + C - A d~ 1\ dp2 + A - B dp2 1\ dq2 ] 
4 ABC 

= _1_ [A 2dp21\ (Bdq2 + Cd~) + B 2dq1 1\ (Cd~ + Adp2) 
4ABC 
+ C2d~ 1\ (Adp2 + Bdq2)] 

= _1_ [A 2dp2 + B 2dql + C2d~] 1\ [Adp2 + Bdq2 + Cd~] = dH11\dH1 , 

4ABC 
(38) 

where 

HI =A 2p2 + B2q2 + C2~, 

H2 = _1_ (Ap2 + Bq2 + C~). 
4ABC 

[Incidentally, it is easily seen from Eq. (38) thatLe,.n 
= die,. n vanishes.] It follows from (38) that H J and Hz are 

constants ofthe motion [see the discussion around Eqs. (11) 
and (12)], i.e., that Le,.HJ = Le,.H2 = O. These two constants 
are essentially the square of the angular momentum and the 
energy of the rotator. 

The dynamical system under consideration is now seen 
to be of the Nambu type, and it follows that for any fEY(M) 
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dj =LJ= (J,H J,H2)w, 
dt 

where 

W=~I\~I\~ 
ap aq ar 

is the trivector dual to n. 
In accordance with (31) the bivector G2 associated with 

H2 is given by 

iG, n = dHJ = 2(A 2pdp + B 2qdq + C 2rdr), (39) 

This is an algebraic equation for the coefficients of the three 
basic bivector components of G2, whose solution is easily 
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found to be 

G ZA 2 a a 2 a a 
2= P-I\-+2Bq-l\-

aq ar ar ap 
+2C2r~ I\~. 

ap aq (40) 

Equation (39) guarantees that diG,n = 0, and then accord
ing to Lichnerowicz lO [G2,G2] = 0 and the generalized PB 
defined by G2 satisfies the Jacobi identity. Equation (35) then 
implies that for any fEY(M), 

dl/dt=LJ= (H2/h = iG,dH2 l\ df 
This can be written in the form 

dl =_I_(EI1o-=\EII, 
dt ZABC " 

where E = Hz/(ZABC) is the energy of the rotator. For 
example, 

jJ= IE,pj =_I-iGzdEl\dp 
ZABC 

= _1_ iG (Bqdq 1\ dp + Crdr 1\ dp) 
ZABC ' 

_1_ [ _ 2C 2 Brq + 2CB Zrq] 
2ABC 

B-C 
=---rq, 

A 

(41) 

where reproduces, as it should, the first of Euler's equations. 
It is easily seen, in addition, that { p,q I = Cr/(AB), and other 
similar results can be obtained by more or less obvious cyclic 
permuations. 

It may thus seem that we have arrived at a Hamiltonian 
dynamics for the rigid rotator: Eq. (41) defines a generalized 
PB such that the time derivative (the Lie derivative along the 
dynamics) of any function is given by its PB with the energy 
function E. In fact, of course, the dynamics is not really 
Hamiltonian, and for two reasons. The first is that there is no 
two-form UJ on M such that i,6 UJ = dE. The second is that the 
generalized PB is not regular. Indeed, a simple calculation 
will show that 

[Rtll = 2A~CiG,dR,l\dl= ov IEY-(M), 

in agreement with Eq. (33). 
Other proposals by Nambu I involve contracting a 

three-vector with a two-form to obtain a vector field and 
hence a derivation. Of course this procedure is easily gener
alized to contracting a k-vector with a (k - 1 I-form. 

v. CONCLUSION 

We have discussed Liouville dynamics from the geo
metrical point of view and have investigated the way in 
which the idea of the PB can be generalized and then ex
tended from the Hamiltonian to the Liouville domain. This 
involved defining the PB in terms ofbivectors, and we were 
thus led in a natural way to further generalizing the PB in 
terms of k-vectors and thence to applications to Nambu me
chanics. It may be of interest that bivectors can also be used 
to define foliations 10 and hence that PBs can be related to 
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foliations. 
There are, in addition, other possible ways these ex

tended ideas about PB's can be used. For example, let n be a 
volume on RXM defined by 

n = dt I\dft 1\ ... I\dlm , 

where.t;EY(RXM). Let {g,h I be given by 

{g,h jn -===dtl\dgl\dlzl\ .. ·I\dlm _, I\dh. 

If the.t; form a local canonical chart for M, this becomes 

! h I - ag ah ag ah 
(g, - af, aim - afm af, , 

which one might call apartiai PB. Other partial PB's can be 
generated in the same way. Without going into further de
tail, we state that this kind of procedure can be applied in the 
time-dependent Hamiltonian formalism, for which 
dlll\ .. ·I\dlm =UJ". 

A similar procedure may be used with constrained sys
tems. For them, however, dt is replaced in the definition of n 
by the k-form dr, 1\ ···I\drk , where r J, ... , rk are the k con
straint functions. Then n is given by dr J 1\ .··I\drk 
1\ dll 1\ ... f\ dl m _ k' and the partial PB's are defined similar
ly to the way they are defined in the time-dependent case. 

At the end of Sec. lIBI we mentioned thati,6 n = de is 
not an equation that defines e uniquely, and we illustrated it 
with the example of Maxwell's equations for the electric
current four-vector.d = ~, J). This can be thought of a sort 
of gauge transformation, and therefore begins to indicate a 
geometrical framework for treating certain kinds of gauge 
transformations. 
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For classical continuous n-particle systems equilibrium states are characterized by a condition of 
passivity. 
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INTRODUCTION 

In statistical mechanics one describes the equilibrium 
states by a density function (operator) of the form 
p = e - {3H /z. The aim of this paper is to give for classical 
systems a justification for this from the second law ofther
modynamics: If a system is in equilibrium, no work is per
formed by the system if the external parameters are varied in 
a certain (cyclic) way. 

The notion of passivity has been introduced in Ref. 1 
and the equivalence of equilibrium, KMS, and complete pas
sivity established for abstract C *-dynamical systems, where, 
as in fermion and lattice systems, the dynamics is given by a 
strongly continuous one-parameter group of automor
phisms. In a related paper2 the notion of passivity is dis
cussed, for finite quantum spin systems, in detail. This prob
lem has not been treated yet for continuous classical systems. 
Therefore we will consider here classical continuous systems 
consisting of n-point masses, and realize a program analo
gous to the one in Ref. 2. 

The main part of this paper deals with the characteriza
tion of passive states by a very simple condition on the densi
ty function (Theorem 1). The rest of the results follow from 
this Theorem and investigations similar to those given in 
Ref. 2. As far as we know, the proof of Theorem 1 is essen
tially new. In Ref. 1 part of the results is proved relying on 
the algebraic structure for KMS states as obtained in Ref. 3, 
whereas in this paper we rather use symplectic geometry. 

1. NOTATION AND DEFINITIONS 

In this section we fix the notation and quote some stan
dard results on Hamiltonian mechanics; for more details see, 
e.g., Refs. 4-6. 

A n-particle classical system S is described by (M2k, il, 
H), where M 2k is a symplectic manifold (the cotangent bun
dle of the configuration manifold), il the canonical symplec
tic 2-form, and H the Hamilton function on M 2k. [One could 
think of M 2k = (lRd X IRd r if the particles move freely in d
dimensional Euclidean space or M2k = (T d XlRdr if the 
particles are enclosed in a box with periodic boundary condi
tions.] In the following we write Mfor M2k. A will denote the 
Liouville measure on M. Let us introduce some function 
spaces onM. 

C = (M ) is the set of (real) C = -functions on M. 
C (; (M) is the subset offunctions with compact support. 
CO(M) is the set of (complex) continuous functions 

which have a limit at infinity. 

L 2(M,A )isthesetof(complex)L 2-functionswithrespect 
to A. ~ is the C *-algebra of (complex) continuous functions 
on Sf, where Sf is the one point compactification of M. As a 
set, ~ equals CalM). 

The Poisson bracket is a bilinear map [ , j:C (; (M) 

xC (; (M )-C (; (M) such that for allf, g, hEC (; (M): 
(p 1) Skew-symmetry: If, g j = - I g,f J; 
(p2) Jacobi identity: 

{If,gj,h} + {lh,fj,g} + {I g,h j,f} =0; 
(p3) Leibnitz rule: I fg, h j = If, h j.g + I g, h j:f. 
A difIlM), resp. S difIlM), is the set of A-(volume)-pre

serving, resp. symplectic (il-preserving), diffeomorphisms 
on M. A diffo(M) and S diffo(M) are the subsets consisting of 
diffeomorphisms which differ from the identity only in a 
compact subset of M. S diffo(M) - id will denote the C =
connected component of the identity in S diffo(M). The fol
lowing are in one-to-one correspondence: 

HEC =(M) locally defined; 
X H local Hamiltonian vector field with Hamilton func

tionH; 
L H:C = (M )-C = (M) the Liouville operator defined by 

LH(f) = If,Hj; 
(<PI)IER the phase flow, a one-parameter group in S 

difIlM) defined for small 1 t I. 
The correspondence is defined by the following formulas: 

:J~o <P, (x) =XH(x), 

~ I,~O f( <PI (x)) = (LH f)(x) = If, H j(x). 

Given a Hamilton function H, the equations of motion in 
local coordinates read: 

aH 
p, = - -a ' Pi(O) =p,o, 

q, 

. aH 
qi = -a ' q,(O) = qiO . 

'Pi 

Write (p,q) = x. The solution of these equations XI = <PI (xo) 
defines the phase flow <PI' If the Hamiltonian is time-depen
dent, we write XI = <P"S (xs ), where <P"S is the flow from s to t 
along the trajectories of the solutions of the equations of 
motion with initial condition xIs) = XS' <P"S is no longer a 
one-p~rameter group, but one has <P,.S = <P"U °<pu,s' If 
<PEA dlfIlM), a unitary linear operator <P *: L 2(M, A)-
_L 2(M, A ) is defined by transposition: 

<P *(f) =f°<p. 
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A state w of the system S is a normalized positive linear 
functional on ill:: 

where f.l is a normalized, regular, Borel measure on M. We 
only consider states which are given by a positive density 
functionp: 

t. = pEL l(M,A). 

Perturbations of the dynamics: We assume that the field 
X H is full and therefore the corresponding phase flow <p, is 
defined for all tER. This guarantees that all differential equa
tions considered in the sequel have solutions defined for all 
tER. 

Definition 1: A perturbation is a family (h, )'ER in 
C a (M) such that: 

(hI) (t,x)-h,(x) is smooth; 
(h2) h, = 0 for ti(O,T); 

(h3) u supp(h,) is contained in a compact subset of 
'ER 

M. 

The perturbed phase flow corresponding to the time-depen
dent Hamiltonian H + h, is denoted by t/l"s' 

2. PASSIVITY, COMPLETE PASSIVITY, AND 
STATEMENT OF THE RESULTS 

Given the perturbation hI' we define (cf. Ref. 1) 

h ( (dh,) I : = Jo t/l~o dt dtEill:. 

Definition 2: w is called a passive state iffor all perturba
tions h, w(1 h »0. 

Theorem 1: w is passive if and only if p is decreasing with 
respect to H, i.e., for all x, yEM 

H (x) > H (y)~ pIx),;;;; p( y). 

Corollary: A Gibbs state is passive. 
For every mEN we consider the system S m = (M m, 

n m, H m), where 

Mm=MXMX ... XM, 
m times 
~ 

m 

n m = Ell n, 

Hm=H®I® .. · ®1+···+I® .. ·®I®H. 

(1) 

If w is a state on ill: with density p, then w '" m is the state on 
ill'" m with density function pm defined by 

Definition 3: w is completely passive if w®m is passive 
state for the system S m for all mEN. 

Theorem 2: w is completely passive if and only if 
p = e- f3H /Z with 0,;;;; f3,;;;; 00. 
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3. PROOFS OF THEOREMS 1 AND 2 

Let us first compute w(1 h ). We start with a perturbation 
h, of the Hamiltonian H. Let <Pt respectively t/lt,s denote the 
phase flows corresponding to H respectively H + h,. Then 
by partial integration (cf. Ref. I) 

Ih = - i 1

(:t t/l~o) h, dt. (I a) 

Define 

y, = <P - ,t/l,.o (2) 

so that 

y~ = t/l~o <P *-- , . 
Bearing in mind the formulas 

d A.*-A.*L dt 'f/, -'f/, H' 

d .1,* - .1.* L dt '1"',.0 - '1"',.0 H+h,' 

<P *! f, g l = [<p * f, <p *g l for symplectic <P, 

we find 

d * _ d (.1,* A. * ) dt y, - dt 'I"',.o'f/ -, 

= t/l~o L H + h, <P *-, - t/l~o <p *- , L ff 

= y~<p ~(LH + h, - L H) <p *-, 
= y~ L¢~h, . 

On the other hand, 

(:r t/l~o) h, = t/l~o LH(h,) = y~<p ~LH(h,) 
= y~LH(<P ~h,) = - y~L¢~h,(H) 

and therefore 

( 
d .1,* ) h _ 
dt'l"'"o ,- .:!.- y~(H) . 

dt 

(3) 

Hence I h = y'P-(H) - H and therefore w is passive iff for all 
perturbations h, 

w(y'P-(H) - H »0. (4) 

We now characterize the set of YT'S which can be ob
tained from a perturbation h,. From (2) it is clear that YTES 
diff(M ), (3) and (h3) imply Y TES diffo(M). Since Yo = id and y, 
satisfies (3), yTESdiffo(M) -id. A very large class g" ofYT's is 
obtained by choosing h, suitable. Take T = 1 and let pEN. 
Let ajEC ""([O,l]-R) such that supp(aj)C [(j - I)/p, j/p], 
aj((j - I)/p) = 0 and aj(j/p) = l,j = I,2, ... ,p. Letgj 
EC a(M) arbitrary,j = 1, ... ,p. Define 

h, = f a;(t)<p*-,(gj)' 
j~l 

Now (3) reads 

d * _ * '()L - y, - y, a j t g 

dt ' 

j-l j 
for --,;;;; t,;;;;-. 

P P 
This equation can easily be solved, yielding 

YI = exp(Xg)O ... ° exp(Xg,) 

H. A. M. Daniels 
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and 

11 = exp(L )0 .• , 0 exp(L ), 
gl gp 

where exp(Xg) denotes the time 1 map corresponding to the 
Hamiltonian vector field Xg with Hamilton function g. Let 
If! denote the set of y's defined by (5). It follows from Ref. 7 
that if H '(M,R) = 0, the class If! coincides with S diffo(M)
-id. So, if H '(M,R) = 0 [e.g., M = (RdXRdrl. one has: 

Lemma 1: w is passive iff (4) holds for all yES diffo(M)-
-id. 

Lemma 2: A passive state is invariant. 
Proof Take y, = exp(tXg), then (4) implies 

!!...I w(l1(H) - H) = O. 
dt r~O 

Hence 

w({ g, H II = 0 for all gEC 0' (M), 

yielding the invariance of w. 
Remark: Using the classical KMS condition one shows 

easily that (4) holds for small It I if w is a KMS state.s The 
problem is to show that (4) holds for all t. 

Proof of Theorem 1: For the sake of simplicity we re
strict ourselves to the case where M = (Rd XRd)n and P con
tinuous. (This proof can be generalized easily for pEL 1.9) 

Suppose p satisfies (1). To prove passivity, we prove, in 
view of Lemma 1, the a priori stronger assertion 
w(r*(H) - H»O for all yEA diffo(M). Suppose there exists 
yE A diffo(M) such that 

fM [H(x) -H(y(x))] dp(x) = E>O. 

This will lead to a contradiction. Let K be a cube in M such 
that y = id on K C

• Define 

A: = sup Ily-'(x)-y-'(y)11 

x.YEK II x - yll 
x,",y 

and 

B: = max I H(x)1 
XEK 

II isjust the Euclidean norm on (Rd XRdt. Sincep is uni
formly continuous on the cube K, there exists 17 > 0 such that 
for all x, yEK 

II x - yll <1]=>1 pIx) _p(y)1 < E 
8B.A(K) 

Divide the cube K into N small cubic cells C I'C2 ' ... ,C N of 
equal A-measure: A (C;) = A (K)lN and diam(C;)-
= [A (K)lN] Ilr.vr,where r = 2 dn. Choose Nlarge 

enough to ensure 

I L H(x) dp(x) - ;~I H(x;)p(C;) j <. ; , (6) 

j L H (y(x)) dp(x) - ;~I H (x;) p(y-I(C;)) 1<. :' (7) 

(
A (K))lI r 

(A + 1) --,:;- . vr<,1] (8) 

for all possible choices of x I, ... ,XN with X;EC;. Using the 
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mean value theorem, we can choose x;Eint(C;) such that 

p(C;) = ( pix) dA = p(x;) A (C;), i = 1, ... ,N, Jc, 
and then for all i and j 

H(x;»H(xj)=>p(C;)<J.l(C;). (9) 

We claim that there exists a permutation II of [1,2, ... ,N J 
such that 

Cl/V)n y-'(C;)#0, i = 1,2, ... ,N. 

Indeed this follows from a theorem of Hall. 10 The Hall con
dition is fulfilled because y-I is A-(volume)-preserving. De
fine U; = Cnll) U y-I(C;); then, using (8), 

diam(Uj)<.(A + 1) diam(C;)<1] 

and therefore 

I p(y-I(C;)) - p(Cl/Ii,li 

= I i_'ICiIP(X)dA - L/lii,P(X)dA I 
<, sup Ip(x)-p(y)I·A(U;) 

X.yEUl 

E E 
<. 8BA(K) .U(C;)= 4BN' 

Hence 

I ;tl H(x;)p(y-' (C;)) - ;tl H(X;)p(Cl/1;1)1 <, : . 

Combining (6), (7), and (10), we obtain 

NNE I H(x;)p(C,) - I H(X;)P(Clll;I» - >0. 
i~ I i~ I 2 

This contradicts (9) (cf. Refs. 11 and 2). 

(10) 

Conversely, let w be passive and suppose p does not 
satisfy ( 1). Then there exist x, yEM such that 

H(x»H(y) and p(x»p(y). (11) 

Since both Hand p are continuous, there are small cells 
C I 3x, C2 3 y such that (11) holds on the cells. We now con
struct yEA diffo(M) which interchanges the cells C I and C2 
and A ([ xEM I y(x) #x and xicl uC2 J ) is very small. If 
M = R2, one takes y = expXg, whereXg is the vector field of 
Fig. 1. The field goes to zero in the shaded area. In the higher 
dimensional case one proceeds as follows. Take a 2-dim sym-

FIG. 1. 
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plectic plane P through x and Y on which the symplectic 2-
form is nondegenerate. Then take C, and C2 to be two sym
plectomorphic cylindric cells symplectic-orthogonal to the 
2-dim plane P. Take y restricted to P the transformation of 
Fig. 1 and then extend to the symplectic orthogonal comple
ment of the plane P. Following this method, one can con
struct y with 

w(y*(Hl -Hl<O, 

which contradicts the passivity of w. 0 
ProofofTheorem 2: In view of Theorem I complete 

passivity is equivalent to the condition 

H(x,l+ ... +H(xml>H(YIl+ ... +H(Yml 
=? pIx ll",p(xm l< p( y,l···p( Ym 1 

for all (x" ... ,xmlEM m and (Y" ... ,YmlEM m. The rest of the 
proof runs like the proof of Theorem 7 in Ref. 2. 0 

Remark: The "only if' part of Theorem 2 can also be 
proved using the techniques of Ref. 8. 

Note added in prool After this paper was submitted 
we received a preprint by J. Gorecki and W. Pusz contain
ing similar results obtained by different methods. 
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A new approach is developed for solving time-independent inverse problems for particle or 
radiation transport described by the monoenergetic linear Boltzmann equation. For a 
homogeneous plane geometry medium, the approach leads to a set of inverse solutions which can 
be obtained by purely algebraic means; previously derived methods appear as special cases. All 
these solutions require only measurements of the angular intensities at the surface. The analysis is 
extended to time-dependent and energy-dependent problems. 

PACS numbers: 05.60. + w 

I. INTRODUCTION 

The purpose of solutions to inverse transport problems 
is to characterize the unknown material properties of a tar
get. Such solutions fall into two categories, invasive and non
invasive. Only the former requires that the intensity be mea
sured at all interior positions, while both depend upon the 
ingoing and outgoing intensities on the surface. The nonin
vasive solutions show much more promise for use in 
experiments. 

Invasive solutions have been developed for multienergy 
group transport in a homogeneous slab target 1 and for one
group transport in a homogeneous target of any shape.2 For 
a slab target with at most quadratically-anisotropic scatter
ing, the coefficients of the scattering function can be deter
mined in a noninvasive manner from azimuthally-indepen
dent moments of the incident and emerging distributions,3.4 
any number of scattering coefficients can be obtained with 
an azimuthally-dependent incident beam,5 as verified nu
merically for up to 19th-order scattering.6 

A general approach for obtaining inverse methods for 
the monoenergetic transport of photons and neutrons is de
veloped in Sec. II. The homogeneous plane geometry medi
um is analyzed in Sec. III, and results obtained earlier 3-5 are 
recovered in a direct manner; procedures for obtaining other 
solutions by purely algebraic manipulations are also present
ed. Using the Laplace transform method in Sec. IV, the anal
ysis is broadened in scope to include the possibility that the 
incident distribution is time-dependent; the resulting inverse 
method does not require any inverse Laplace transform. 

The plane geometry analysis is also extended in Sec. IV 
to energy-dependent problems for neutrons. Solutions are 
developed for the slowing down region and for cases where 
the scattering kernel obeys detailed balance. For the slowing 
down case, only in-group cross sections can be obtained; for 
the thermal energy problem, only spectrum-averaged coeffi
cients result. The multigroup model is also analyzed, and 
results analogous to those of Siewert 1 are obtained. 

II. GENERAL INVERSE SOLUTIONS 

Consider the monochromatic linear transport equation 
describing the stationary equilibrium of particles or radi
ation within a convex domain D with incident radiation on 
its surface aD: 

in D X (41T) } 
on aD X (21T) _ . 

(1) 

Here ¢o(r,a) represents the radiation intensity at point r in 
direction a, S (r,a) is the external volumetric source, and ¢ob 
is the incident radiation on the boundary; the term (21T)_ 
refers to the hemisphere of incident directions, i.e., a.n";O, 
at a given point of the surface aD with external normal n. 

The linear transport operator 

B=a·V+K (2) 
is composed of the streaming operator a· V and of the opera
tor K which describes the interaction of radiation with the 
medium, 

K=a-H. (3) 

Here aIr) is the total cross section, and H is the scattering 
operator defined by 

(H¢o)(r,a) = r as (r,a'_a)¢o(r,a') d a', (4) 
J(41T) 

where the differential cross section as contains all angular 
information about the interactions. 

The medium is assumed isotropic so that the scattering 
operator is invariant under rotation; therefore, H can be dia
gonalized using spherical harmonics, 

(5) 

Here Qk is the orthogonal projection on the invariant sub
space generated by the set of spherical harmonics 
I Y~; Ill~k j, i.e.: 

QJ)(a)= ') y~(a)r yk-I(a')f(a')da'. 
likk J(41T) 

The constants hk' in conjunction with u, uniquely char
acterize the interaction of the monochromatic radiation with 
the medium. They can be written in terms of more familiar 
quantities as 

hk = OJk/(2k + 1), 

where the OJk 's are 41T times the coefficients of the expansion 
of Us on the Legendre polynomials of argument a·a'. 

The object of an inverse method is to provide a scheme 
for the computation of the coefficients u and hk in terms of 
angular intensities which are assumed known. One straight
forward derivation of such a method follows by multiplying 
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transport Eq. (1) by YUO), and then integrating the result
ing equation in V X (417') over some volume V of homogen
eous material2

: 

(J' _ hk = f(41T) Yi (O)(Sv(O) - O''''av(O)) dO 

f(41T) Yi (O)tPv(O) dO' 

Thus only the spatially-averaged quantities 

Sv(O) = Ls(r,O)dr, 

tPv(O) = ( tP(r,O) dr and "'av(O) = ( tP(r,O) d S 
Jv Jav 

need to be known. 

(6) 

For an infinite medium containing a localized monodir
ectional plane .source, Eq. (6) takes on an especially simple 
form. 7 In plane geometry it is also possible to generalize the 
ideas leading to Eq. (6) by multiplying transport equation (1) 
by znYi(O), wherezis the spatial variable and n is a nonneg
ative integer. Such a procedure was used to obtain an inverse 
method for a finite slab without using information about the 
angular dependence of the distribution inside the medium I 

and was used to obtain a set of inverse methods for the case ~f 
an infinite medium containing a localized, monodirectional 
plane source. 8 

All such inverse methods relying upon Eq. (6) imply 
that one must measure the intensity inside the volume V, a 
requirement that introduces the complications of locating a 
probe inside the medium and correcting for perturbations in 
,p(r,O). Therefore we will restrict our efforts to methods that 
use noninvasive measurements. 

Typically the data for a noninvasive inverse method 
will be obtained by irradiating the surface of the body with 
some monochromatic intensity tPb' and by measuring the 
outgoing angular intensity. The effects of a possible volume 
source can be eliminated by subtracting the values of two 
measurements taken before and during irradiation, respec
tively, so we will limit our analysis to the case S = 0 in Eq. 
(1). 

We proceed now to outline a general approach for the 
derivation of noninvasive inverse methods. We first define 
the scalar product 

(J,g) = ( Jgdrd 0, 
JD X (41T) 

(7) 

where J and g are arbitrary functions of rand O. After inte
gration by parts we obtain our basic equation, 

(f,Bg) = (B *J,g) + (J,g), (8) 

where B * is the formal adjoint of the monochromatic trans
port operator, 

B*= -O·V+K (9) 

and the surface contribution 

(f,g) = ( [fg]O· dS dO 
JrX(41T) 

(10) 

extends over the set r of surfaces of discontinuity ofJg. In 
deriving Eq. (8) it has been assumed thatJandg have at most 
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a finite number of discontinuities of the first kind, (f,g] re
presenting the jump at the discontinuity. 
. Notice that by appropriately selecting Jand g as func-

tlOns of the angular intensity tP, Eq. (8) can be reduced to only 
the surface contribution, i.e., to an equation relating values 
of tP at the boundary; this can potentially produce a noninva
sive inverse method. With this in mind, we put 

J=LtP, g=tP (11) 

and choose the operator L, not necessarily linear, so that the 
volume contribution to Eq. (8) identically vanishes, 

(B *LtP,tP) = O. (12) 

The resulting equation, 

(LtP,tP) = 0 (13) 

depends only on the values of tP at the boundary. Thus, al
though, the operator L can act on the r variable, (LtP)(r,O) 
evaluated at rEF must depend only on values of tP(r,O) on r. 
Furthermore, since only values of tP are accessible, L must 
not contain any spatial derivative except, of course, those 
along the boundary. Note that a simple, linear form of Lis 
obtained by taking any integral operator in the 0 variable. 

For each operator L satisfying the previous require
ments, Eq. (13) will yield a noninvasive inverse method pro
vided that L depends on the cross sections or, equivalently, 
on the operator K. It is obvious that when r comprises interi
or boundaries, not accessible to measurement, this inverse 
method will involve unknown intensity values; since tP itself 
is continuous, the discontinuities ofJg = (LtP)tP originate 
from those of L and, ultimately, from the discontinuities of 
the cross sections. Thus, in the case of a body with internal 
discontinuities the inverse method so defined will not be 
complete, and supplementary equations will have to be add
ed in order to estimate the values of the intensity at the dis
continuities. In any case, the first problem posed by nonuni
form bodies is the detection of the presence of discontinuities 
by noninvasive measurements. In the present work we will 
put aside this problem by dealing only with the case of a 
homogeneous medium. 

We end this section by briefly discussing the method of 
solving Eq. (12). Since the angular intensity tP is not known 
inside the body, we look only for operators L satisfying 
B * LtP = O. In general, any solution L of this equation will 
contain spatial derivatives, but these spatial derivatives may 
be partially or totally eliminated by using the fact that tP is 
the solution of the transport equation, i.e., - O·V = K 
when acting on tP. This a posteriori elimination leads to a 
complicated procedure involving lengthy manipulations' of 
the equations.3

-
5 Instead, we opt to perform such elimina

tions before calculating L. 
The basic idea for satisfying B * LtP = 0 consists of per

muting with L the spatial derivative component of B * and 
then using the relations O· V = B - K and BtP = 0 to get rid 
of the spatial derivative terms. In doing so, the most general 
equation one obtains is 

(14) 

where L is an arbitrary operator that is selected so that it 
minimizes the number of spatial derivative terms in Eq. (14). 
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Although a complete elimination of these terms is possible in 
the case of plane geometry, as is shown in the next section, it 
seems that a general solution does not exist for an arbitrary 
geometry. In the latter, the operator L will contain spatial 
derivatives and the experimental set-up will have to be modi
fied to allow for measurements of derivatives of t/J in every 
surface layer of the body. 

III. THE PLANE GEOMETRY CASE 

In plane geometry the angular intensity tP(z,p"e ) de
pends only on the spatial variable z, and on the angular varia
bles Il and e, where Il = cos (floe.) and e is the azimuthal 
angle. Moreover, because of the symmetries of the transport 
operator it is possible to derive a set of independent transport 
equations for the Fourier components, I/I"(z,p,), of the inten
sity with respect to the azimuthal angle e. For instance, as
suming that the external sources and the boundary condi
tions are even in e, one can expand 

t/J(Z,Il,e) = f (2 - Dmo )cosme,pm(Z,Il) (15) 
m=O 

and obtain a transport equation for t/Jm by multiplying Eq. (1) 
by cos mede and then integrating over (0,21T). The equation 
is of the form ofEq. (1) but with t/J,S and t/Jb replaced by their 
Fourier components t/Jm,S m and t/J'!:. The corresponding 
transport operator is 

Bm =Ilaz +Km, 

with Km = u - H m, and 

where Q'; is the orthogonal projection 

(Q ';t/r)(z,/1) = ¢> ';( /1)J~ I¢> ';( /1')t/Jm(z,/1') dll'· 

(16) 

(17) 

Here ¢> '; is the normalized associated Legendre function 

¢> ';( Il) = P';( 1l)IN';, k-;'m, (18) 

and 

(N';)2 = _2_ (k + m)l. 
2k+ 1 (k-m)l 

To simplify our notation the superscript m will not be indi
cated in the following, except when necessary to avoid 
confusion. 

In order to apply to the present case the ideas outlined 
in the preceding section, the scalar product ofEq. (7) is re
placed by 

(f,g) = r Jgdzd/1 = r fgdz, (19) 
JDxl-1.11 JD 

where now D = [z _ ,z + ], and we have introduced the an
gular scalar product 

fg = J~ (g dll· (20) 

In particular, the surface integral (10) now reads as 

(J,g) = I[f(/1g)], 
r 
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where, for a continuous layer, r = ! z _ ,z + I, so Eq. (13) 
becomes 

I[Lt/J'(/1t/J)] = O. (21) 
r 

We tum now to the solution of Eq. (14). In the case of a 
uniform slab it is possible to choose L so that the terms con
taining spatial derivatives cancel out. Indeed, since L does 
not depend on z, we can write 
- fl· V L + Ln. V = ( - ilL + Lilja. that vanishes for 

L = IlLIl- I. Replacing this value of Lin Eq. (14) and multi
plying on the left by Il- I gives 

(Il-IK)L + L (Il-IK) = 0, (22) 

which indicates that /1- IK and L anticommute. The general 
solution of this equation is of the form 

(23) 

where .nf(X) is the algebra of operators commuting with X, 
and R is a particular solution with a two-sided inverse R - I 

such thatR -IR = RR -I. If the medium is such thatu#h;" 
K has a two-sided inverse; in any case, because of the diag
onal structure of K, it is always possible to construct an in
verse operator K - I as any operator that acts as the inverse of 
K in Range (K ), and is closed in Kernel (K). 

An important part of .nf (p - I K ) is the abelian sub-alge
bra generated by polynomials ofll-IK and its inverseK -1/1. 
In the following, we will restrict our attention to this particu
lar class of linear solutions. Thus, we replace Eq. (23) by the 
more restrictive form 

(24) 
n= - co 

for any convergent sum. Here the an's are real numbers and 
the factor u has been introduced for normalization purposes. 
As a particular solution we choose the reflection operator 
R = R -I defined by (RJ)( Il) = J( - /1). 

In principle, any operator of the form (24) will provide 
an inverse method when used in Eq. (13). This is true with the 
exception of those operators that satisfy Eq. (13) regardless 
of t/J. These spurious solutions verify the relation 
/1L + L */1 = 0, where, from now on, the asterisk designates 
the adjoint with respect to the angular scalar product. Since 
R, K and /1 are self-adjoint we obtain from Eq. (24), 

/1L +L */1 =IlR f an (1 + (- t)(uK -11l)n 
n = - 00 

so we can restrict the summation in Eq. (24) to only odd 
values ofn. 

At this point a few comments are appropriate. First, 
since the operators given by (24) are linear, it is sufficient to 
study only the operators L, defined by an = Dn' and I odd: 

L, = R (uK -1/1)'. (25) 

On the other hand, since u-1K = 1 - u-1H and 
uK -I = 1 + HK - I, it is readily shown that the system of 
equations generated from (24) will be inhomogeneous. In 
particular, the source term originating from L, is (R/1't/J,t/J) 
and involves an angular integration with weight /1' + I; for 
negative powers of /1, this integral may be unbounded or may 
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produce inadmissible inaccuracies when using experimental 
data, so we will consider only the inverse methods generated 
for L/s with t;;. - 1. Finally, observe that when the azi
muthal number m is different from 0, it is necessary that the 
incident signal t/Jb be e-dependent, otherwise the Fourier 

components t/Jm will be ° for m #0 and the corresponding 
equations will vanish identically. 

The derivation from Eq. (21) of the inverse method cor
responding to a given L{ is only a matter of straightforward 
algebraic manipulation, the details of which are indicated in 
Appendix A for I = - 1, 1 and 3. Although the generation 
of inverse methods for higher values of I appears to be cum
bersome, it requires only algebraic operations and, as shown 
in Appendix B, there is an iterative procedure that simplifies 
this derivation. To illustrate the advantage of the recursion 
relation the cases I = 3 and I = 5 are obtained in Appendix 
B. 

The results are expressed in terms of the angular 
moments 

Ik =,pki= J~/djl')/(Z,Jl')djl' 
and the coefficients 

dk = hJ(a - hk ) 

dk = 1 + dk = a/(a-hk) 

rk = {(k+ 1-m)Nk~I/((2k+ l)Nd, 

(26) 

(27) 

The inverse method generated by L_, is defined by the sys
tem of equations, 

f~ It/J(Z,jl)t/J(z, - jl) djll:+ 

m=O,l, ... , (28) 

where, for a homogeneous medium 

I'[/(z)) f(Z)\z+ = {i(z+) - I(L), z+ < 00 

r z_ -/(z-), z+=oo. 

For the inverse method generated by L
" s: t 2

t/J(z,jl)t/J(z, - jl) djll:~ 
= I ( - )k - mdk(jlt/J)~ \z', m = 0,1,.... (29) 

k;;.m z 

Finally, from Appendix B the L3 result is r ,jl4t/J(Z,jl)t/J(z, - jl) djl \:' 

= I (- )k-m(jlt/J)k{2(dkdk+ ,dk+2 - l)rkrk+ 1i,pt/Jh+2 
k-;;,m 

+ [d~(ndk+' +n-,dk-t!-(n +n-I)] 
Xi,pt/J)k}I~: ,m = 0,1,... (30) 

Equations (28)-(30) are three independent sets of equa
tions which can be used to calculate the coefficients h k / a for 
a finite or semiinfinite homogeneous slab. Because any real 
scatterer has a given order N of anisotropy beyond which the 
hk 's, k > N, are negligible, in practice the system of equations 
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corresponding to any of these inverse methods is of finite 
order. Nevertheless, the order of anisotropy N constitutes 
another unknown, and the system of equations will have to 
be recursively solved, for increasing values of N, until the 
solution stabilizes. 

Although the system of equations (29) is nonlinear in 
the cross sections, it is linear in the variables dk • Due to the 
presence of off-diagonal moments, caused by the permuta
tion between the operators jl and H - I K, the system of equa
tions (30) cannot be reduced to a linear form, and the same 
applies for any I> 3; the only linear inverse methods are 
those of Eqs. (28) and (29). Also, the systems of equations 
corresponding to these two methods have a triangular 
structure. 

Inverse methods (28) and (29) have been previously ob
tained by McCormick.5 A particular form of inverse meth
ods (28), (29), and (30), namely the one corresponding to 
m = ° and hk = ° for k > 2, has been derived by Siewert.3

,4 

The recursion relation 

(jln + 't/J)k = rd jlnt/J)k.j , + rk _ II jlnt/J)k _ , (31) 

shows that there is not a unique way to write the moments in 
the inverse method equations. This helps explain the appar
ent differences between Eq. (30), Eq. (AI2), and Siewert's 
result. 4 

We end this section by showing that all the results in 
plane geometry can be obtained without constructing the 
transport equations for the Fourier components of the inten
sity. Indeed, starting with the general transport equation for 
the total intensity, t/J(Z,Jl,e ), we again obtain Eq. (22), but now 
the solutions ofthis equation will be operators acting on both 
jl and e. In particular, assuming again that the angular inten
sity is an even function of e, the orthogonal projection 

M:t/J(z,jl,e )-cosme~(Z,Jl) (32) 

commutes with the operator K, and it is easy to check that 
MR is a particular solution of Eq. (22). Thus the new solu
tions will be given by ML, with L from Eq. (24). Then the 
inverse method equation becomes 

0= (MLt/J,t/J) = (MLt/J,Mt/J) = (Lt/J,t/J) plane , 

where (,)plane is the scalar product ofEq. (21). 

IV. TIME-AND ENERGY- DEPENDENT CASES 
A. Time-dependent case 

Consider first the monochromatic time-dependent 
transport equation for a system without internal sources 
which begins to be irradiated at time t = 0, ( + at + B )t/J = O,in D X (41T) , for t;>O ~ 

t/J = O,in D X (41T), for t.;;;O 
t/J = t/Jb,on D X (21T)_, for t;>O 

By Laplace transforming we obtain 

Bs¢=O, in Dx(41T) }, 

¢ = ¢b' on D X (21Tl_ 

where 

Bs = B + s/v = n·v + as - H 
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o-s = 0- + S/v (36) 

and 

tft(r,O,s) = f" e - S't/1r,O,t ) dt. (37) 

Notice that transport equation (34) for the Laplace 
transform of the intensity is ofthe form ofEq. (1) but with a 
modified cross section O-s' Consequently, any inverse meth
od derived for the stationary' case will apply to this equation. 
The equations of the inverse method will depend on s 
through the modified cross section (36), and through the val
ues ofthe Laplace transform of the intensity, Eq. (37). Be
causes is arbitrary, it is possible to generate different systems 
of equations from a single inverse method by simply chang
ing the value of s, which gives flexibility for the treatment of 
the problem; selection of a large s enhances the importance 
of short-time measurements, whereas a small s enhances 
long-time measurements. 

For the plane geometry case, both the unknowns and 
the matrix coefficients depend on s. In particular, the equa
tions will involve the total cross section 0- in a nonhomogen
eous way because hk/o- is now replaced by hk/(o- + s/v). 
Thus it will be necessary to add a supplementary equation to 
compute 0-, which can be accomplished by taking any of the 
equations with a different value of s. 

An interesting situation arises when the medium is irra
diated with a periodic intensity starting early enough to en
sure that the medium has reached its equilibrium by the time 
t = 0, i.e., that the intensity inside the medium oscillates 
with the same periodicity. For instance, assume a time be
havior of the form e - iw,; then the problem is similar to that 
ofEq. (33) but with an initial condition, t/J = t/Jo(r,O), in 
D X (41T) at t = O. By Laplace transforming we again obtain 
Eq. (34), but now 

o-s = 0- - iw/v, tft(r,O,s) = t/JoI(s + iw). (38) 

In the present case t/Jo is a complex' function, and the inverse 
method equations will be complex. Notice that, since 
(Ltft,tft) = (Lt/Jo,t/Jo)(s + iW)-2, these equations will be inde
pendent of s. Nevertheless, the frequency w gives us the same 
flexibility that we had with s in the previous case. 

B.Energy-dependentc8se 

The linear transport equation for energy-dependent in
teractions between neutrons and matter is still of the form of 
Eq. (1), but now sources, intensities and cross sections de
pend upon the energy variable E. The corresponding scatter
ing operator is an integral operator in the variables 0 and E, 

(Ht/J)(r,O,E) = f o-s(r,O,'E'-O,E)t/J(r,O',E') 
J(41T) x (E) 

dO'dE', 

(39) 

where (E) designates the domain of integration in E. Again, 
for a rotationally invariant medium, this operator acts pro
jection-wise in the angular variable. 

(40) 
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except now Hk is an integral operator 

(H,J)(E) = f hdr.E'-E)f(E') dE' 
J(E) 

(41) 

whose kernel describes the change of energy after collision 
for neutrons in the k th angular mode. 

The technique outlined in Sec. II for the treatment of 
the inverse problem can be adapted to the present case by 
merely replacing the scalar product of Eq. (7) by 

(j,g) = i fgM (E) dr d 0 dE, (42) 
D X(41T)X(E) 

where we have introduced a weightM (E );;;'0. Then, with the 
appropriate modifications to account for the extra integra
tion in the energy domain, Eqs. (8) and (10)-(14) apply to this 
case. The formal adjoint of the energy-dependent transport 
operator is now 

B* = -O·V +K* (43) 

because, in general, the operator K will not be self-adjoint. 
Similarly, the treatment of the plane geometry case can 

be generalized to the energy-dependent case. Equation (22) is 
replaced by 

jL-1K*L +LjL-1K=0, (44) 

which, with T = jL -IK and X = JLL, reduces to the more 
symmetric form 

T*X+XT=O. 

If X is a solution of this last equation, for any operator P 
commuting with T, then XP,P * X and their adjoints are also 
solutions. Thus, given a particular solution ofEq. (44), we 
will be able to generate a set of solutions. 

Because of the complicated structure of the operator H 
ofEq. (40), the problem of finding a solution to Eq. (44) is not 
a trivial one except, of course, when K is self-adjoint, which 
we have already considered. The operator K will be self
adjoint whenever the condition 

M(E)o-s(r,O',E'-O,E) = M(E')o-s(r,O,E-O',E') 
(45) 

is satisfied for all E, E 'E(E). 

The operator K can be made self-adjoint if the scatter
ing cross sections satisfy the detailed relation,9 which is Eq. 
(45) provided M (E) is the Maxwellian for the equilibrium 
temperature T. If the signal t/Jb is zero for energies E~KT 
(where K is Boltzmann's constant), then we can constrain E 
to the thermal domain. Again Eq. (44) can be solved, with the 
technique previously developed, although some precautions 
have to be observed. For instance, uf,E) now depends on the 
energy so it cannot be used as a normalization factor in Eq. 
(24); also the derivation of inverse methods involving K - I 

will demand some approximation for the computation of 
(0- - Hk)-I in the energy domain. 

Here we consider only the case L _ I = RjL - I K for 
which, proceeding as in Appendix A, we get 

f M (E )u(E )t/J(z,jL,E )t/J(z, - jL,E) djL dE I z, 

J( - I.IJx(E) Z 

= I (- )k-m f M(E)t/JdE)dE 
k>m J(E) 
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x I HdE '_E)1/IdE ')dE'i
Z

+. 

IE) Z 

(46) 
After defining appropriate spectrum-averaged cross sec
tions, Eq. (46) can be written as 

f M(E)1/I(z,/1-,E)1/I(z, -/1-,E) d/1- dE IZ+ 
J1-I.I]XIE) Z 

h i IZ+ I(_)k-m~ M(E)1/I~(E)dE m=O,I, ... (47) 
k>m (T IE) z 

which will yield the constants hk/(i. 

It is important to note that a correct definition of the 
spectrum-averaged cross sections. i.e .• the one based on the 
spectrum created by the signal1/lb' is possible only ifthe 
dependence of the flux on the energy can be factorized, or 
otherwise both (i and hk will depend on the azimuthal mode 
m and on the surface position. z_ or z+. In any case. for 
those averaged cross sections to be representative it is neces
sary not only that the factorization be a good approximation 
for the flux induced by 1/Ib' but also that the spectrum so 
produced be close to the reference Maxwellian spectrum. 

We consider now neutrons in the slowing-down energy 
range. for which there is no upscattering. We first consider 
the idealized case for which the scattering is elastic and both 
the total and the angle-integrated scattering cross sections 
are independent of energy. Then a Mellin transform in ener
gy (which is equivalent to a Laplace transform in the lethar
gy variable. proportional to - lnE) reduces the energy-de
pendent transport equation to a form nearly identical to the 
monoenergetic equation. 10,11 Then applying the inverse 
methods of Sec. III one can obtain (T-Ihds). which are the 
transform ofthe coefficients (T-lhdE'-E). Ifdesired, the 
energy-dependent coefficients can be recovered by a numeri
cal inverse transform. 

The two cases just discussed were based on a continu
ous-energy description of the scattering. We turn now to the 
pragmatic case in which we introduce a multigroup repre
sentation by dividing the energy domain into a set of G dis
joint groups. the gth group being defined by the range of 
energies (Eg) = [Eg .Eg + 1 ]. In this approximation the flux is 
characterized by its averaged values on the groups, 
1/1- {~;g = 1 .... G I, and a spectral-averaged set of cross sec
tions is used to describe group-to-group transfers. A natural 
basis in the energy domain is defined by the functions 
{Xg(E);g = 1 .... ,G I. where r(E) is (Eg + 1 - Eg )-1/2 times 
the characteristic function of (Eg ). 

Consider now the multigroup formulation of the plane 
geometry transport equation for the mth Fourier component 
of the flux. Then. the set of functions of the form 

t.6f(.u.E)=t.6dJl)r(E). k;;;.O. g=l, .... G. (48) 

with t.6k as defined in Eq. (18). constitutes a complete, orth
onormal basis with respect to the scalar product 

fg = f Jg d/1- dE. (49) 
J I -I.IIXIE) 

In this basis 
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H = I h fg'Qfg', (50) 
k,g,g' 

where the summation is for k;;;'m and for 1 <g, g' <G, and 

(Qfgj)(.u,E) = (t.6 {1)t.6 f(.u,E). (51) 

The constants h fg
', related to averaged cross sections, char

acterize the transfer by scattering from group g' to group g 
for the angular mode k. 

Let g be a group in the slowing-down domain. and sup
pose that the incident beam 1/Ib is zero for energies E > Eg + 1 , 

and nonzero for EE(Eg). Then. ~' = 0 for g' > g and the neu
trons in group g behave as if they were monoenergetic so the 
inverse methods obtained in Sec. III apply to the present 
case. Varying the upper energy of the incident beam makes it 
possible to determine the in-group scattering coefficients 
h fg 

/ ~ for all the groups in the slowing-down region. 
This method. and that ofEq. (47), do not provide infor

mation about the scattering transfer cross sections between 
different energies. If such information is needed. one can 
utilize the inverse method defined in Eq. (6), but the penalty 
is that invasive measurements are required. In plane azi
muthally-symmetric geometry, however, it is possible to ob
tain an inverse method that requires only the scalar flux in
side the medium and not detailed angular measurements; I 
such a method has practical experimental advantages over 
one requiring angular data. 

Proceeding as for Eq. (6). we apply ¢ f· to transport 
equation (1) and integrate the result in D = [z -,z +] to obtain 
the multigroup version of Eq. (6) for the azimuthally-inde
pendent (m = 0) plane geometry case, 

~)~or - h fg
') f tPf (z) dz = - ¢ f '(.u1/l) I z, , 

g JD z 

k;;;.O, l<g<G. (52) 

Here ~ is the averaged total cross section in group g, o~' is 
the Kronecker delta. and tPf = t.6 f .1/1. 

With G linearly independent signals (such as 1/Ib 
= Xg (Elf(.u) for some functionJandg = 1, ... ,G), one can 

solve Eq. (52) for any angular mode k to obtain the compo
nents of the k th collision matrix K fg

' = ~8~' - h fg
'. Besides 

the surface term on the RHS ofEq. (52), this calculation will 
require the volume contributions 

i11 = ltPf (z) dz 

that have to be determined by measuring the angular flux 
inside the medium. But, as shown in Appendix C. the coeffi
cients i11 can be recursively calculated from surface contri
butions and from spatial moments of the scalar flux I/?o. 
Therefore, the inverse method ofEq. (52) will only require 
measurements of the surface angular flux, and measure
ments of the scalar flux inside the medium. In general, i11 
depends upon the collision matrices KI of order 1< k, so in
verse method (52) has to be solved for increasing values of k. 

The practical validity of the calculated average cross 
section determined by such an inverse method will depend 
on the ability to obtain approximate factorizable spectra un
der experimental conditions. 
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V. CONCLUSIONS 
A new derivation is presented for obtaining inverse 

methods for the linear transport equation. For homogeneous 
plane geometry a set of noninvasive inverse methods is ob
tained which encompasses previous ones.3

- 5 Time-depen
dent and neutron energy-dependent inverse problems also 
have been analyzed. 

Although it is possible with plane geometry to keep de
veloping independent sets of noninvasive method equations, 
they will become increasingly nonlinear. Only the two in
verse methods corresponding to Eqs. (28) and (29) are linear, 
for which good numerical accuracy has been obtained6

; 

these two methods require azimuthally-dependent measure
ments. Another alternative for developing an inverse meth
od is to select equations corresponding to more than one L I; 
in particular, selecting only the m = 0 equations for 
1= - 1,1,3, etc. yields an inverse method which depends 
only on azimuthally-symmetric measurements. Such a 
scheme will have the inherent numerical difficulties associ
ated with nonlinear problems whenever the scattering is at 
least quadratically anisotropic. 12 

The use of time-dependent incident distributions makes 
possible any number of different calculations with a given 
noninvasive inverse method, since the variable s or w can be 
selected arbitrarily. It should be noted, however, that mea
surements are still required for all times, but the value of s, 
for example, can be chosen to match the accuracy of the 
experimental information. 

Noninvasive measurements of the surface distribution 
for neutrons in the thermal energy region will provide the 
Maxwellian-averaged energy-transfer cross sections. With a 
multigroup formulation, in-group cross sections can be ob
tained by noninvasive measurements using a set of different 
sources, one for each energy group. Measurements of the 
scalar flux inside the medium are needed if multigroup trans
fer cross sections are desired. (See note added in proof.) 

In Sec. III only linear solutions for the operator L ofEq. 
(22) have been considered. The simplest nonlinear solution, 
L = R T, corresponding to a commutator of the form 
Tt/J = t/Jo, with t/Jo a constant, does not yield any inverse 
method. Possibly other nonlinear solutions should be 
investigated. 

The question of the uniqueness of the inverse problem 
has not been addressed here. Nevertheless, numerical results 
obtained using Eqs. (28) and (29) seem to substantiate the 
uniqueness of the inverse solution for the homogeneous 
slab.6 

Note added in proof E. W. Larsen [J. Math. Phys. 22, 
158 (1981)] has constructed in plane geometry a noninvasive 

scheme for measuring multi group transfer cross sections. 
His formulation utilizes a solution t/J* to the adjoint trans
port equation, and requires that a supplementary set of non
invasive experiments be performed to determine the values 
of t/J* on the slab surfaces. In our notation, Larsen's ap
proach corresponds to selectingLt/J = t/J* as a solution ofEq. 
(12), in which case the operator L must contain information 
not available from the measurement of t/J. This suggests that 
our approach in Eqs. (8)-{13) could be generalized by includ
ing information from two or more experiments. For in-
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stance, if we replace Eq. (11) byf= Lt/JI' g = t/J2' then any L 
which depends upon the properties of the medium and satis
fies (B *Lt/JI' t/J2) = 0 would lead to an inverse method of the 
form (Lt/JI' t/J2) = O. 
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APPENDIX A: DERIVATION OF THE INVERSE METHOD 
EQS. (28H30) 

For the operator L[ ofEq. (25), the generic form of the 
inverse method equation (21) is 

J.Lt/J.L1t/J =J.Lt/J.R (uK -1J.L)It/J = 0, (AI) 

where, for the sake of simplicity, the symbols l:r and [ ] 
have been omitted. We will perform our calculations using as 
a basis the functionstPk defined in Eq. (18), which are orthon
ormal with respect to the scalar product (20). Thus, 

fg = 2/kgk' (A2) 
k 

where, from now on, the summation is for the integers >m, 
andfk is the k th component off, as defined in Eq. (26). In this 
basis, for any linear operator T, we can write T ~ I Tkl tP k tP I' 

k,/ 

with the components Tkl =tPk·TtPl' 

In particular, 
(Tf)k = ITuh. (A3) 

1 

The operators H, R, and D = HK - I are diagonal with 
components 

Hkk = hk' Rkk = (- )k-m, Dkk = dk, 

where dk is defined in Eq. (27). 
Consider now the first operator L_I = RJ.L-Iu-IK. 

Since Rand J.L anticommute and are self-adjoint, 

J.Lt/J.L_It/J = - Rt/J.u-IKt/J = Rt/J.(u-IH - 1)t/J. 

Using Eqs. (A2) and (A3) to express Rt/J·u-IHt/J in compo
nents, the corresponding Eq. (A 1) for L = L _I is 

h 
t/J.Rt/J = I( - )k - m _k t!lk. (A4) 

k u 
Similarly, for LI = RuK -IJ.L, we have 
J.Lt/J.LIt/J = RJ.Lt/J·uK -1J.Lt/J = RJ.Lt/J.(l + D )J.Lt/J and, express
ing RJ.Lt/J.DJ.Lt/J in components, we obtain 

J.L2t/J.Rt/J = I( - )k - mdk(p,t/J)~. (AS) 
k 

Finally, consider the case 

L3 = R (uK -1J.Lf = R (J.L + DJ.L)3 

= R [J.L3 + J.L 2DJ.L + J.LDJ.L2 + DJ.L3 + J.L(DJ.L)2 

+ DJ.L2DJ.L + (DJ.L)2J.L + (DJ.Ln (A6) 

for which we have to compute the contribution of every term 
to Eq. (A 1). In order to reduce the number of computations, 
we observe that 

J.LRA = B *RJ.L~LAt/J'J.Lt/J = LBt/J'J.Lt/J (A7) 
for any two operators A and B. Consequently, the fourth 
operator in Eq. (A6), DJ.L3, and the seventh, (DJ.L)2J.L, will give 
the same contribution as the second, J.L 2DJ.L, and the fifth, 
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J-l(DJ-l)2, respectively. The first three terms of L3 are readily 
dealt with: 
J-lt/J.RJ-l3t/J = - J-l4t/J.Rt/J, 

J-lt/J.RJ-l2DJ-lt/J = RJ-l3t/J.DJ-lt/J = L) - )k - mddJlt/J)dJl3t/J)k' 
k 

J-lt/J.RJ-lDJ-l2t/J = - RJ-l2t/J.DJ-l2t/J 

= -I(-)k- mdk{J-L2t/J)i. (A8) 
k 

For the remaining terms we need to explicitly calculate 
the operators J-l, J-l2, and J-lDJ-l. Using the recursion relation 
for the associated Legendre functions, one obtains 

(A9) 

where the Yk are given in Eq. (27). Then, 

J-l2= I[YkYk+l¢k¢k+2 +(n +n-I)¢k¢k +Yk-IYk-2¢k¢k-2h 
k 

J-lDJ-l=I[YkYk+1dk+1ifJkifJk+2 +(ndk+1 +n-ldk-difJkifJk +Yk-IYk-2dk-lifJkifJk-2]' 
k 

(AlO) 

With the help of these formulas we obtain 

J-lt/J.RJ-l(DJ-l)2t/J = - DRJ-lzt/J.J-lDJ-lt/J = I( - )k - mdd J-lZt/J)dYkdk + II J-lt/J)k + I + Yk _ I dk - I {J-Lt/J)k _ I ], 

k 

J-lt/J.RDJ-l2DJ-lt/J = DRJ-lt/J.J-l 2DJ-lt/J = I( - )k - mdk {J-Lt/Jh [Yk Yk + I dk + 2 {J-Lt/J)k + 2 

k 

+(n +n-ddk{J-Lt/J)k +Yk-IYk-2dk-2{J-Lt/J)k-2]' 

J-lt/J·R (DJ-lft/J = DRJ-lt/J'J-lDJ-lDJ-lt/J = I( - )k - mdk{J-Lt/J)k [Yk Yk + I dk + I dk+ 2 {J-Lt/J)k + 2 

k 

(All) 

Thus, the inverse method equation from Eq. (AI) is, for L = L 3 , 

J-l4t/J.Rt/J = I( _)k -mdk {{J-Lt/J)k [2{J-L3t/J)k + 2YkYk+ Idk+ Idk+ 2 {J-Lt/J)k + 2 + (ndk+ t + n-1dk- ddk{J-Lt/J)k] 
k 

- {J-L2t/J)k [2Yk dk + I {J-Lt/Jh + I + {J-L2t/J)k + 2Yk - I dk _ I {J-Lt/J)k _ t ]}, (AI2) 

where dk = I + dk • Equation (AI2) has been simplified by 
using the identity 

(AI3) 

to transform the term containing Y k _ 2 • 

APPENDIX B: A RECURSION RELATION FOR THE 
DERIVATION OF THE INVERSE METHOD EQUATION 

Write Eq. (AI) in components, 

J-lt/J.L I + 2 t/J = I{J-Lt/J)dLI + 2 t/J)k = 0, 
.k 

(BI) 

and observe that L 1+ 2 = (aK - IJ-l f L /. Then, with the help 
of Eq. (A3), we obtain a recursion relation for the (LI + 2 t/J)k: 

(B2) 

To calculate the operator (aK - 1J-l)2 = (I + D ){J-L 2 + J-lDJ-l) in 
Eq. (B2), we use Eq. (AlO) to obtain 

(aK -1J-l)2 = Idk [Yk Yk + 1 dk + I ifJkifJk + 2 
k 

+ (ndk+ I + n-ldk-l)ifJkifJk 

+y k - I Y k - 2 d k - I ifJ k ifJ k - 2 ]" (B3) 

Let us first illustrate the use of the recursion relation 
(B2) by again deriving the inverse method fori = 3. We begin 
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by calculating the components for / = 1 from Eq. (AS), 

(L1t/J)k = (- )k-m(l +dk){J-Lt/J)k = (- )k-mdk{J-Lt/J)k' 
(B4) 

where the inhomogeneous part ( - )k - m{J-Lt/J)k is the k th 
component of - J-l2t/J.Rt/J. After use ofEqs. (B2HB4), we get 

(L3t/J)k = (- (-mdk [YkYk+ Idk+ Idk+ 2{J-Lt/J)k+2 

+ ddndk+ I + yL Idk _ 1 ){J-Lt/J)k 

+Yk-tYk-2dk- 1dk- 2{J-Lt/Jlk-2]' (B5) 

Use ofEq. (B5) in Eq. (BI) will give the inverse method for 
L 3• The new inhomogeneous term comes from the action of 
J-l2 on the components of the inhomogeneous term of Llt/J. 
Since this new term can be identified as - J-l4t/J.Rt/J, we 
obtain 

J-l4t/J.Rt/J = I( - )k - m{J-Lt/Jlk {2(dkdk + 1 dk + 2 - I)Yk 
k 

XYk+I{J-Lt/J)k+2 + [d~{ndk+1 +n-1dk-d 
- (n + n-I)] {J-Lt/J)k}, (B6) 

where we have used the identity (A13) to transform the term 
containing Yk - 2' 

Similarly, using Eq. (B5), the Ls result is found to be 

J-l6t/J.Rt/J = I( - )k - m{J-Lt/J)k [C4 {J-Lt/J)k + 4 

k 

+ C2{J-Lt/J)k + 2 + CO{J-Lt/J)k ], (B7) 
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where 

C4 = 2(Vtk+j)(U/k+j -1). 
C2 = 2rkrk+ I {ildk+j [dk+2(1'1+2 dk+3 + 1'1+ Idk+ d 

+ dk(1'1dk+ 1+ 1'1-ldk- I)] 

- (1'1+2 + 1'1+ 1+ 1'1 + 1'1-I)}' 

-2 -
+ 1'1_I1'1_ 2d k_ ldk_ 2] 

- [1'11'1+1 +(1'1 +1'1_d2 +1'1-11'1-2]. 

APPENDIX C: ITERATIVE CALCULATION OF THE 
SPATIAL MOMENTS iii/, 

(B8) 

Because the procedure to be developed is independent 
of the energy variable, we will suppress the group index and 
consider the moments 

(CI) 

where we have implicitly defined the operator jj and have 
used angular scalar product of Eq. (20), Ih = <Pk .if;. 

Applying <Pk' to the transport equation (p,az + K )if; = 0 
we obtain, after having used recursion relation (31) for n = 0, 

az(rk if;k + I + rk - I if;k - d + Kk if;k = 0 • (C2) 

Now define the operator D, an inverse of az , by 

D/= r'/(Z')dz':::::}Daz ={)+ -1, 

where 

(C3) 

(C4) 

Then, applying D to Eq. (C2) we obtain the recursion relation 

if;k+1 ={)+ if;k+1 +r,;-I[rk-I({)+ -I)if;k_1 +DKkif;k] 
(C5) 

and, by integrating in [z_, z+1: 

¢k+ I =/3k+ 1+ rk- IKJ5Dif;k' (C6) 

where /3 is defined as 
-I -

/3k+1 =aif;k+I(Z+)+rk rk-I[aif;k-dz+)-if;k-I] 

and a = z + - Z _ . 

Although Eq. (C6) is not a closed recursion relation for the 
¢k'S, it can be used in conjunction with Eq. (C5) to obtain, in 
an iterative manner, all the moments ¢k for k> O. The re
sults will be expressed in terms of the surface contributions 
and the spatial moments of if;o given by 
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1 1z
, lJIn = - znif;o(z) dz. 

n! z 
(C7) 

In practice, when using formulas (C5) and (C6) it is useful to 
take advantage of the fact that {) + and D commute with K k , 

and that 

{j2 ={j {j D=O DDn=D(z-z-J" (C8) 
+ +, +, 1 n. 

As an example, we give the formula for the first five 
moments, 

¢o = lJIo, 

¢I=SI' 
¢2 =/32 + rl lKls2' 

¢3 = /33 + r; IK2;2' (C9) 

¢4 = /34 + r3- IK3(a 2'Y12 - r2- I rls2 + r2- IK2;3)' 

¢5 =/35 + r4 IK4[a2 'Y13 - r3- lrz;2 + r3- IK3 
x (a3'Y12 - r2- I rlS3 + r2- IK2;4)]' 

where an = an In! and 

Sn = an if;1(Z + ) + ro- IKolJln, 

'YIn = if;n + dz + ) + rn- Irn - I if;n _ I (z + ), 
{;, = an 'YII - rl- IrolJln - I + rl- IKISn + I . (ClO) 

To apply these formulas to the multigroup case it is only 
necessary to replace if; k by the vector of components t/Ik, 
g = I, ... G, IJIn by the vector of components IJI~, and Kk by 
the collision matrix of elements K fK'. In such a case, formu
las (C9) are equivalent to the multigroup results of Siewert. I 

Finally, observe that the formalism defined by Eq. (C5) 
and (C6) also can be applied to the mth Fourier form of the 
transport equation, with appropriate modifications, but in 
that case, the moment if;o requires angular measurements.8 

Ie. E. Siewert, Nucl. Sci. Eng. 67, 259 (1978). 
2M. Kana1 and I. A. Davies, Transp. Theory Stat. Phys. 8, 99 (1979). 
'C. E. Siewert, Z. Angew. Math. Phys. (ZAMP) 30,522 (1979). 
'c. E. Siewert, I. Quant. Spectrosc. Radia . .Transfer 22, 441 (1979). 
5N. I. McCormick, I. Math. Phys. 20,1504 (1979). 
ON. I. McCormick and R. Sanchez, I. Math. Phys. Ian. 1981. 
7N. I. McCormick and I. Kuseer, I. Math. Phys. 15,926 (1974). 
"N. I. McCormick andl. A. R. Veeder, I. Math. Phys. 19,994 (1978); 20, 

216 (1979). 
91. I. Duderstadt and W. R. Martin, Transport Theory (Wiley, New York, 
1979) 

WI. I. McInerney, Nucl. Sci. Eng. 22, 215 (1965). 
"D. G. Cacuci and H. Goldstein, I. Math Phys. 18, 2436 (1977) 
12W. L. Dunn and I. R. Maiorino, I. Quant. Spectrosc. Radia. Transfer 24, 

203 (1980). 

R. Sanchez and I':. J. McCormick 855 



                                                                                                                                    

Linear transport in an exponential atmosphere a) 

Edward W. Larsen 
Theoretical Division, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 
87545 

Thomas W. Mullikin 
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 

(Received 8 October 1980; accepted for publication 14 November 1980) 

Two basic theoretical problems concerning linear transport in a subcritical half-space with an 
exponential scattering ratio are solved. First, the continuum eigenvolutions developed by 
Mullikin and Siewert are shown to be half-range complete. Second, the singular integral equation 
developed by Martin for the angular flux exiting the half-space is shown to possess a unique 
solution. 

PACS numbers: 05.60. + w, 02.30. + g, 42.68.Db 

I. INTRODUCTION 

In this article we shall analyze some theoretical aspects 
of the following linear transport problem with an exponen
tial scattering ratio c(x) = c exp( - xis): 

a fl f-l-a ¢(x,f-l)+¢(x,f-l)=5... e - xls ¢(x,f-l')df-l', 
x 2-1 

c>O, 

¢(O,f-l) = flp), O<f-l< 1, 

fis prescribed and Holder-continuous; 

1¢(x"u)I<M, O<x< 00, 

(1.1) 

(1.2) 

(1.3) 

This problem was originally proposed by Chamberlain 
and McElroy. I Later it was studied by Martin, 2 who derived 
a singular integral equation which the flux exiting the half
space, ¢(O, - f-l) for 0 <f-l< 1, must satisfy. Martin also 
showed that if the inequality 

5...[-s-ln(I+2s)+~ + (_S_)112] <1 (1.4) 
2 s+l s+l s+l 

is satisfied, then this singular integral equation uniquely de
termines the exiting flux. 

The above inequality has been tested numerically, and 
has been shown to be conservative.3.4 That is, excellent nu
merical solutions of Martin's singular integral equation have 
been obtained for values of c and s which violate the inequal
ity. Numerical difficulties have arisen, however, if the in
equality is sufficiently violated. For example, if c = 0.99, 
Martin's inequality predicts unique solvability for s < 0.570, 
while numerical calculations using Siewert's collocation 
(i.e., "FN ") method5 give excellent results for s < 20. 3

•
4 For 

s> 20, Siewert's original method breaks down,4 although 
some recent modifications have apparently ameliorated this 
difficulty.6 Other numerical aspects of problem (1.1)-(1.3) 
have been considered by Mullikin. 7 

"Work by the first author (E. W. L.) was performed under the auspices of 
the U. S. Dept. of Energy . The second author (T. W. M.) expresses apprecia
tion for the hospitality of the Sandia Corporation (Applied Mathematics 
Division 2646) where some of this work was performed. 

Mullikin and Siewert3 have recently derived Martin's 
singular integral equation in a new way, by first constructing 
a set of continuum eigensolutions of the transport equation 
and then manipulating these eigensolutions. We shall sketch 
their derivation here. 

The continuum eigensolutions are 

¢v(x,f-l) = fvlp)e - xlv + g",lp)e - xl"" 

where 

O<v< 1, (1.5) 

fvlp) = 6(v - f-l), (1.6) 

g",lp) = ~ [p.V.(_l_) _ 6(tu _ f-l)ln(l + tu)], 
2 tu-f-l l-tu 

(1.7) 

(P.V. means principal value) and 

1 1 1 
-=- + _. (1.8) 
tu v s 

These solutions satisfy "full-range orthogonality," i.e., 

flf-l¢v.(O,-f-l)¢v(O,f-l)df-l=O, O<v',v<1. (1.9) 

To proceed, one assumes that the solution ¢ of problem 
(1.1)-(1.3) can be written 

¢(x,f-l) = f a(v)¢v(x,f-l) dv. (1.lO) 

This expansion is valid provided the boundary condition 
(1.2) is satisfied: 

lip) = f a(v)¢v(O"u) dv, 0 <f-l< 1. (Lll) 

Eq. (1.11) can be rewritten as 

lip) = (I + !cL )alp), (1.12a) 

where I is the identity operator, and L is defined by 

i
S/is 

+ I) ( S )2 ( ) d (La) Ip) = P.V. tu __ a ~ _(V_ 

a S-(V S-tu (V-}L 

-f-l -- a -- In --( S )2 ( f-lS ) (1 + f-l) 
s-f-l S-f-l 1-f-l' 

(1. 12b) 
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where 

for fl- > I and fl- < 0. (1.12c) 

Formally, L can also be written as 

(La){JL) = ('/1'+ I) w(_s _)2a(~) 
Jo s - w s - w 

x[~ - t) (w - fl-)ln(l + w) 1 dw. 
w - fl- I - w 

( 1.13) 

Next one sets x = ° in Eq. (1.10), operates by 

f~ IJ-l¢,/ (0, - J-l)(') dJ-l, uses Eq. (1.9), and rearranges to get 

f J-l¢v(O,fl-)¢(O, - fl-) dfl-

= Lfl-¢v(O,-fl-lf{JL)dfl-, O<v<l, (1.14) 

which is Martin's singular integral equation. In this deriva
tion one must assume that Eq. (1.12) holds, i.e., that the ei
gensolutions ¢v(O,f.-l) are half-range complete. Larsen and 
Pomraning4 have recently proved this completeness if c and s 
satisfy Martin's inequality, Eq. (1.4).8 

To summarize, it has been shown that if c and s satisfy 
the inequality (1.4), then: 

(a) The continuum eigensolutions are half-range com
plete (i.e., Eqs. (1.12) have a unique solution in L 2[0, 1]), and 

(b) Eq. (1.14) uniquely determines in L 2 [0, 1] the exiting 
flux. 

Our goal in this article is to prove that if c and s are any 
positive constants such that the half-space x > ° is subcriti
cal, then the results (a) and (b) hold. [Unique solvability of 
Eq. (1.14) has recently been shown7 in a different Hilbert 
space.] In essence, we replace Martin's inequality by the 
much weaker condition that the half-space x> ° be subcriti
cal. [However, our proof requires the incident fluxfto be 
Holder-continuous, whereas the analyses in [3] and [4] only 
require fEL 2(0, I). By a more technical analysis our proof 
should extend to L 2(0, I). J Interestingly, the expansion coeffi
cients a(v) which make the continuum eigensolutions half
range complete lie in L 2(0, 1) but are generally not continuous 
on (0, I), no matter how smooth is the incident flux. In fact, 
a(v) has a logarithmic singularity at each point 
Vn = (1 + n/s)-I, O<n< 00, and is Holder-continuous on ev
ery closed interval lying between any two consecutive such 
singular points. Thus the principal-value integral in Eq. 
(I.12b) must be interpreted in an L z sense. We shall discuss 
this in detail in Sec. II. 

A summary of the remainder of this article follows. In 
Sec. II we establish half-range completeness of the contin
uum eigensolutions by proving that Eqs. (1.12) have a unique 
solution. The analysis in this section, which is based on the 
Laplace tranform of problem (1.1 H 1.3), makes substantial 
use of analytic continuation arguments. In Sec. III we prove 
that Eq. (1.14) uniquely determines the exiting flux, and we 
conclude with a discussion in Sec. IV. 

II. HALF-RANGE COMPLETENESS 

The main purpose of this section is to prove that the 
continuum eigensolutions developed by Mullikin and 
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Siewert are half-range complete. From the discussion fol
lowing Eq. (1.10) above, this result follows from: 

Theorem 1: If Eqs. (1.1 )-( 1. 3) have a unique solution, 
Eqs. (1.12) have a unique solution a(v)EL2(0, 1). The solution 
a(v) has a logarithmic singularity at each point 

1 
Vn = ,n = 0,1,2,.·· 

1 + n/s 
and is Holder-continuous on every closed subinterval which 
lies between any two consecutive such singular points. 

The proof is contained in six subsections. In subsections 
(A) and (B), we derive an equation for J (z), the Laplace trans
form of the scalar flux <p (x), and we prove that J (z) is analytic 
everywhere in the complex plane except for the cut 
( - 00, - 1]. In subsections (C) and (D) we derive bounds on 
IJ (z)1 forRez <Oand Izl~ 1, which we use in subsection (E) to 
deform the (inverse Laplace transform) contour integral re
presentation for <p (x) around the cut. This generates a repre
sentation for <p (x) which contains a function a(v)EL2(0,1). 
Then in subsection (F) we show that this a(v) is the unique 
solution of Eqs. (1.12). 

A. Equation for J(zj 

We define 

a = 1/s>O, (2.1) 

<p (x) = ! J~ I ¢(x,J-l) dfl-, (2.2a) 

¢(z,J-l) = LX> e - ZX¢(X,f.-l) dx, (2.2b) 

and 

J (z) = r"" e - zX<p (x) dx = ! fl ¢(Z,fl-) dJ-l. (2.2c) 
)0 -I 

We note from Eqs. (1.3) and (2.2c) that for Re(z) > 0, J (z) is 
analytic and 

IJ (z)1 <M 12Re(z). (2.3) 

Now we compute the Laplace Transform of Eqs. (1.1) 
and (1.2) and rearrange to obtain 

./.( ) = fl-¢(O,J-l) + cJ (z + a) 
'I' z,J-l . 

1 + fl-Z 
(2.4) 

Since ¢ is analytic in z for Re(z) > 0, the above numerator 
must vanish for z = - 1/J-l, - 1 <J-l < 0. Hence, the exiting 
flux is given by 

¢(O,fl-) = - (c/J-l)J ( - 1/J-l + a), - 1 <fl- < 0. (2.5) 

Eqs. (2.5), (2.2), and (1.1)--(1.3) can be used to show that the 
exiting flux is a Holder-continuous function of J-l for 1 <J-l <0. 
We shall need this result below. 

Now we integrate Eq. (2.4) over J-l and use Eqs. (2.3) and 
(2.5) to obtain the difference equation 

J (z) = F(z)J (z + a) + G (z), 

F(z) = ..:.... -- dJ-l, JI 1 

2 - Ii + J-lZ 

G (z) = ! JI J-ltf(0,J-l) dJ-l. 
- I 1 + J-lZ 

E. W. larsen and T. W. Mullikin 
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(2.7) 

(2.8) 
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We note that F and G are analytic in z off the cuts 
( - 00, - 1] and [1,(0). 

B. Analytic continuation of Jrzj 
Let z' be any point which lies neither in the right half

plane (Rez' > 0), noron the cut ( - 00, - 1]. Then for some 
smallest integer n and some E> 0, the E-neighborhood of 
z' + na, N. (z' + na), lies in the right half-plane, and the sets 
N. (z' + ka), for k = O, ... ,n - 1, do not intersect the cuts 
(- 00, - 1] and [1,(0). Applying Eq. (2.6) recursively n 
times, we obtain 

J (z) = [~~ F(z + ka)]J (z + na) 

(2.9) 

For z in N. (z') each term on the right-hand side is analytic, 
and we have proved 

Lemma 1: J (z) is analytic everywhere in the complex 
plane except for the cut ( - 00, - 1]. 

C. Bounds on F and G 

Let Imz#O and w = Z-I. Then Eq. (2.8) can be written 
as 

G (z) = ~ II t/J(O,p) dp - ~ II t/J(O,p) dp. 
2z -I 2z -1 p+w 

Since t/J(O,p) is Holder-continuous for O<p< 1 and for 
- 1 <p<O, and in general has ajump discontinuity atp = 0, 

then one-sided limits for G exist on ( - 1,0) and (0,1), and9 

II t/J(O,p) df-l=O(lnlwl). Iwl<1. 
-IP+W 

This implies 
Lemma 2: The function G satisfies 

G (z) = ~ f I t/J(O,p) dp + 0 (1:12Inlzl). Izl~ 1, 

and there exists a constant C I such that 

IG(z)l<c/lzl, Izl>l + ~a. 
Similarly, 

Lemma 3: There exists a constant C2 such that 

D. Bounds on rfJ 

We define the points 

z" = - 1 - na, n = 0,1,2,.·· (2.10) 

and for any E < min (1 ,a/2) and n >0, we define the set 

Sn .• = !zllzn - Rezl<a/2, Imz#O, 
andlz-znl>El. (2.11) 

Equations (2.9) and (2.3) and Lemmas 2 and 3 show that 
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for each n 

ZES" .• 
(2.12) 

is finite. Also Eqs. (2.6) and Lemmas 2 and 3 give for 

ZE uSn .• , 
n=1 

(2.13) IJ(z)I«lIlzl)[c l +c2 IJ(z+a)l1, 

with C I and C2 independent of E, so that 

1 
un .• < 1 + (n _ ~)a [c i + CZUn - I •• ], n> I. (2.14) 

There is then a constant a > 0, independent of E, such that 

un .• «aln)[l+un_ I •• ], n>l. (2.15) 

This readily gives the estimate 

Un + P.,<-- 2: - + ~ un .• , a [p-I(a)k ()P ] 
n+p k=O n n 

(2.16) 

and shows, with n > a, that the sequence lu l ""_ I is bound-
J.' J-

ed and has ° as limit. This implies that I¢ I is bounded in 

n ~ oSn .• · and by Eq. (2.3) that there exists a constant C3, de

pendent on E, such that 

ZE uSn .• ' 
n=O 

(2.17) 

Next, since 1/I(0,p.) is HOlder-continuous at p = 1, then 
G (z), and F(z), have logarithmic singularities at z = - 1. 
Hence, by Eq. (2.6),J (z) has in general a logarithmic singu
larity at z = - 1 as well as at all the points Zn defined by Eq. 
(2.10). By a straightforward calculation, quite similar to the 
one which led to Eq. (2.17), we can obtain a constant C4, 

independent of nand E, so that 

A C 1 
1¢(z)I<-4In , 

Izi Iz - zn I 
(2.18) 

Now let us define the two limit functions 

Then Eq. (2.6) and the Holder-continuity of F ± (S') and 
G ± (S') for S' < - 1 - t5 (for any t5 > 0) imply that the J ± (S' ) 
are Holder-continuous in every closed interval between any 
two of points Zn defined in Eq. (2.10). 

Next, we combine Eqs. (2.6), (2.17), (2.18), and Lemmas 
2 and 3 to obtain 

J (z) = ~ II t/J(O,p) dp + 0 (~lnlzl) 
2z -I Izl 

+O(~ln 1 ) 
Izl ("!inlz - zn I) 

Hence for S' < - 1 and S'E!Zn j, 
J +(S') - J -(S') = b (S' liS' 2, (2.19) 

where 

Ib(S')1 = o (InlS' I) + O(ln 1 ) 

(miniS' - zn I) 
n 

(2.20) 
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Thus b (t) has logarithmic singularities at eachz", is Holder
continuous in every closed subinterval between any two con
secutive z,,' and an elementary computation for b (t ) in Eq. 
(2.20) gives 

I-llb(tr 
-"--=...:i~ dt < 00 

- 00 t 
for m = 1 and 2. 

We now summarize our results in: 
Lemma 4: Letz" be defined by Eq. (2.10) andS" .• by Eq. 

(2.11). Then there exist constants C J and C4 such that 

and 

A C 1 
I~ (z)1 <_4 In , 

Izl Iz - z" I 
Functions J ± (t ) and b (t ) related by 

J + (t) -J - (t ) = b (t )1 t 2 

are Holder-continuous in every closed subinterval between 
any two consecutive Zn' and 

I -llb(t)lm 
-'--="':2~dt < 00 

- 00 t 
for m = 1 and 2. 

E. Representation of ~(x) via inverse Laplace transform 

For x > 0, the inverse Laplace transform gives 

~ (x) = _. -. ezxJ (z) dz, r>O. 
1 ir+;oo 

2'TT'l r-ioo 

By Lemma 4, we can deform the contour of integration 
around the cut ( - 00, - 1] and obtain 

~(x)= --l-.I-le,;xb(~)dt. (2.21) 
21Tl - 00 t 

This integral converges for all x;;. 0, due to the final bound in 
Lemma 4. Introducing v = - t - I in Eq. (2.21) gives· 

~ (x) = ! E a(v)e - xlv dv, 

where 

a(v) = - (ll11'i) b ( - lIv), 

(2.22) 

(2.23) 

Using the properties of b (t) stated in Lemma 4, we have 

Lemma 5. There exists a functiona(v) such that 

~ (x) = ! fa(v)e - xlv dv. 

Also, a(v) (i) has a logarithmic singularity at each point 

Vn = 11(1 + na), n = 0,1,2,,,, (2.24) 

(ii) is Holder-continuous in every closed intervalbetween any 
two consecutive v n , and (iii) satisfies 

Ela(v)lmdv< 00, 

for m = 1 and 2. Thus ~ in Eq. (2.2a) can be extended to 
complex x to be analytic for Re(x) > 0. 
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F. Proof of Theorem 1 

We convert the transport problem (1.1 )-( 1.3) into the 
standard Peierl's integral equation for ~ (x), by inverting the 
operator on the right side ofEq. (1.1) to solve explicitly for t/J, 
integrating over fl, and using the definition (2.2). Then we 
introduce the form (2.22) into this integral equation and per
form some elementary operations to obtain 

t fly) e - xlv dv 
)0 1 

= i a(v)e-XIVdv 

+ ~ t [ t af.u) dfl]e - xlv dv 
2)0 Jo I - V(lIfl + lis) 

- ~ t [II dfl ]a(v)e - (1/1' + Ilslx dv. 
2 Jo - I 1- fl(lIv + lis) 

(2.25) 

In the last two integrals on the right side of this equation the 
inner integrals are in the Cauchy principal-value sense, the 
first of which exists in theL 2 sense because by Lemma 5, alll) 
is in L 2 • 

The change of variables 

lIw = lIv + lis 

now converts Eq. (2.25) into 

f I (v)e - xlv dv = 0, x;;. 0, 

where, with the operator L defined in Eq. (1.I2b), 

I(v) =f(v) - (I + !cL )a(v), 

(2.26) 

(2.27) 

is in L 2[0, I], and hence in L I [0, I]. Since Eq. (2.26) implies 
that a function in L I [0,00 ) has a Laplace transform identical
ly zero, it follows that I (v) = ° almost everywhere. It follows 
from Eq. (2.27) that the function a(v) in Lemma 5 satisfies 
Eqs. (1.12) almost everywhere. [It is easy to show that the 
points at which Eqs. (1.12) are not satisfied are exactly the 
points Vn defined in Eq. (2.24).] Thus, there exists a solution 
of Eqs. (1.12). It remains to establish uniqueness. 

Suppose there exist twoL 2 solutions ofEqs. (1.12), al(v) 
and a2(v). We define 

tPj(x) = faj(v)e-XIVdv, j=1,2. 

Sincea 1 anda2 satisfy Eqs. (1.12), then they satisfy Eq. (2.25), 
which implies that both ~l and ~2 satisfy the Peierl's integral 
equation. But by assumption, the transport problem (1.1)
(1.3) has a unique solution, and this is also true for the 
Peierl's equation. Thus tPl(X) = ~2(X) for x;;. 0, and 
al(v) = a2(v) almost everywhere, by uniqueness of the La
place transform of L I functions. This completes the proof of 
Theorem 1. Q. E. D. 

III. SOLUTION OF THE INTEGRAL EQUATION FOR THE 
EXITING FLUX 

In this section we shall prove that Martin's integral 
equation (1.14) possesses a unique solution. This result is 
contained in: 

Theorem 2: The singular integral equation for the exit-

E. W. Larsen an(j T. W. Mullikin 859 



                                                                                                                                    

ing flux, 

fptPv(O,P)tP(O, - p) dp = fptPv(O, - p)f(P) dp, 

O<v.;;;l, (3.1) 

has a unique solution tP(O, - p )EL2(0, 1). Moreover, this solu
tion is analytic in p for Re(p) > 0. 

Proof Sincef(p) is Holder-continuous, there exists a 
unique function a(v) in L 2[0, I], satisfying the conditions of 
Theorem 1, such that 

f(P) = fa(V)tPv(O,P) dv, (3.2) 

and such that 

t;6(x)=~fa(v)e-XIVdv, x>O 

for t;6 in Eq. (2.2a). From Eqs. (2.5) we have 

tP(O, - p) =.:... r= e - xiIlIL) + IIS)t;6 (x) dx, 
p Jo 

and from Eq. (3.3) the representation 

tP(O, - p) = fa(V)tPv(O, - p) dv. 

(3.3) 

° <p';;; 1, 

(3.4) 

Since Eq. (3.2) holds, then the analysis of Mullikin and 
Siewert, outlined in Sec. 1, shows that the function defined 
by Eq. (3.4) is a solution of Eq. (3.1). This solution is clearly 
analytic in Re(p) > 0. Uniqueness of the solution has been 
shown 7 in a certain Hilbert space of analytic functions, but 
we proceed to show this in L 2[0,1]. 

If D (P) is the difference of two solutions in L 2[0,1] to Eq. 
(3.1), then 

fptPv(O,P)D(P)dP=O, ° <v';;; 1. (3.5) 

Let bn (v) in L 2(0,1) be the half-range coefficients of p n given 
by Theorem 1, i.e., 

pn = fbn(V)tPv(O,P) dv. 

Then Eq. (3.5) gives 

° = f obn (v) fptPv(O,P)D(P) d,udv 

= f fbn(V)tPv(o"u) dvpD(P) dp 

= fpnpD (P) dp, n>O. 

The interchange of integration for the principal-value inte
gral part oftPv(O,p) is permissible since bn lv) andD (P) are in 
L2 (cf. Ref. 13, p. 170). Hence pD (P) is orthogonal to every 
polynomial inp, soD (P) = ° almost everywhere. This com
pletes the proof of the theorem. Q. E. D. 

IV. DISCUSSION 

The results of Sec. II show that for ° <s < 00, the con
tinuum eigenfunctions of Mullikin and Siewert are half
range complete. However for s = 00, it is well known that 
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the continuum solutions alone are not half-range complete; a 
discrete solution, linearly independent of the continuum so
lutions, is extant, and must be appended to the continuum 
solutions to have half-range completeness. 10 Thus the trans
port problem (1.1)-(1.3) has a spectral discontinuity in pass
ing from s < 00 to s = 00. (This is likely related to the fact 
that the Peierl's equation passes from discrete to continuous 
spectrum in passing from s < 00 to s = 00.) 

On the other hand, from a physical point of view, the 
angular flux tP should pass continuously to its value at s = 00 

in the limit as S-+ 00 . (This continuity of tP at s = 00 is in fact 
straightforward to prove, but we shall not do this here.) 
Therefore, we should expect a nonuniform behavior in the 
expansion coefficients as s-+ 00. In fact, the nature of this 
nonuniform behavior is demonstrated in Sec. II, where it is 
shown that the half-range coefficients a(v) for a general 
Holder-continuous function/(p) have logarithmic singulari
ties at the infinite denumerable set of points 

1 
Vn = , 

1 + n/s 
n=0,1,2,. ... 

These points become dense in the continuum O.;;;v';;; 1 as 
S-+oo. 

Thus, one can think of the spectral discontinuity at 
S = 00 as being compensated by the increasingly pathologi
cal behavior of the half-range expansion coefficients as 
S-+ 00, so that the physical solution passes continuously as 
s-+ 00 to its s = 00 value. 

Since the half-range coefficients have the singular be
havior described above, it appears hopeless to try to perform 
direct numerical computing of them in order to generate 
numerical solutions of boundary value problems. However, 
the development of these eigenfunctions and the proving of 
their half-range completeness does have the payoff of Theo
rem 2. 

Finally, we note that the method used to prove Theo
rem 2 can be applied to transport problems in other types of 
nonhomogeneous media, provided a number of conditions 
are met. To illustrate, let us consider the problem 

tP(O,p) = f(P), 

where/is prescribed and Holder-continuous, and 

ItP(x,p)1 <M, o.;;;x< 00, 

(4.1) 

(4.2) 

(4.3) 

We assume this problem to have a unique solution (i.e., we 
require the half-space x > ° to be subcritical). 

Suppose that a family tPv(z,p), VE2", of solutions of 
Eqs. (4.1), (4.3) has been found. (We take I to consist of the 
continuum plus possibly a finite number of discrete points. 

Also, we denote L(·) dv as integration over the continuum 

plus summation over the discrete points.) Moreover, sup
pose that full-range orthogonality 

f~ IPtPv'(O, - p}tPv(O,p) d,u = 0, V',V~, 
is satisfied, that for any Holder-continuousfthere exists a 
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unique function a(v) such that 

flJ-t) = la(v)t/'v(O,,u) dv, ° <,u< I a.e., 

and that 

La(v)t/'v(O, -,u) dv 

is Holder-continuous for ° <,u< 1. Then, following the anal
ysis of Mullikin and Siewere (see Sec. I), the integral equa
tion for the exiting flux is 

f,ut/'v(O,,u)t/'(O, -,u) d,u = f,ut/'v(O, - ,u)fIJ-t) d,u, vE2'.(4.4) 

We can now repeat the analysis in Sec. III, and find that 

t/'(O, -,u) = la(v)t/'v(O, -,u) d,u 

is the unique solution of the integral equation (4.4). 
The analysis outlined in the above paragraph applies 

not only to 

c(z) = coe ~ zls, (4.5) 

which is discussed earlier in this article, but also specifically 
to 

c(z) = Co (co< 1) 
and 

c + kbe~zls 
c(z) - 0 (4.6) 

- 1 + be~zls 
The case c(z) = Co has been thoroughly studied, to and a well
known set of "continuum plus one discrete" solutions satis-
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fying all the conditions of the above paragraph is extant. We 
refer the reader to Ref. 10 for details. [Also, we note that the 
unique existence of a solution to Eq. (4.4) for c(z) = Co has 
been proved using other methods. II] The function c(z) de
fined by Eq. (4.6) has also been studied, 12 and again, "contin
uum plus one discrete" solutions satisfying all the conditions 
of the above paragraph for a restricted set ofvalues of Co, k, b, 
and s have been found. Thus for this case also, Eq. (4.4) has a 
unique solution given by Eq. (4.5). 
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In this paper we develop a local gauge field theory formalism which is designed for use in a 
concomitant approach to motivate the field equations of gauge field theories. Several interesting 
identities are derived which enable us to gain further insight into these theories and into 
previously used formalisms and techniques. 

PACS numbers: 11.10.Np, 03.70. + k 

1. INTRODUCTION 

Ever since Yang and Mills' first introduced their well
known theory, gauge field theories have generated much in
terest. As in many other theories, it is sometimes difficult to 
motivate a particular set of field equations. In the area of 
relativity, much success has been met by using a concomi
tant approach.2

-4 The techniques involved in such an ap
proach rely heavily on the use oflocal coordinates. To deal 
with gauge field theories it is necessary to introduce local 
coordinates on both the usual underlying manifold of rela
tivity Xn and the Lie group G. The formalism outlined in this 
paper shares features with the formalisms of both Utiyama5 

and Kibble6 as well as those of Yang 7 and Rund. 8 Additional 
features are also present which give rise to identities that can 
be used to motivate gauge field theories from a slightly dif
ferent viewpoint. In particular, the usual restriction to infini
tesimal gauge transformations is avoided. This new formal
ism is not based upon a fiber bundle approach;9 however, 
certain aspects of fiber bundles do playa role in it. 

On the manifold Xn with local coordinates xi, 
i = I , ... ,n, it has become common 10 to represent the compo
nents of a tensor, a set oftensors, or similar geometric objects 
by a single symbol with a single upper case Latin letter as 
superscript, e.g., pA, A = 1, ... ,M. Under a coordinate 
transformation 

(1.1) 

with 

and 

J _detJ;~O, 

the transformation law ofthepA,s we are interested in can be 
expressed in the form 

(1.2) 

The Einstein summation convention is also in effect for these 
new indices, so that repeated upper case Latin indices are 
summed from 1 to M. This law is such that 

(1.3) 

and furthermore, under a second coordinate transformation 

Xi = xi(xi) 

with 

and 

K=detKj~O, 

C ~ satisfies the relation characteristic of a right action, 
viz., 

C~(Kj)C~(Jj) = C't(J~K1). (1.4) 

A similar description can be developed when the quan
tity pA is also subjected to a gauge transformation (see, e.g., 
Yang 7) by an element u = U(Xi) of an m-dimensional Lie 
group G. Relative to a canonical chart of the first kind" for 
G at its identity e, the coordinates (or components) of u (la
beled with lower case Greek letters), 

U
U = uG(x), a = I, ... ,m, 

are such that uG = 0 for all a if and only if u = e and the 
coordinates ofu -\ are - U U

• We shall be concerned with 
operations of the form w: G X G--G such that 

(i) w is analytic, 

(ii) w(e,u) = w(u,e) = u, 
and 

(iii) w(u,u-\) = e. 

Operations which satisfy (i)-(iii) shall be referred to as ac
tions. Two simple examples are the left action of u on v, i.e., 

w(u,u) = Lu u = uu, 

and the right action of u on u, i.e., 

w(u,u) = Ruv = uu. 

A non associative action is given by 

w(u,v) = uu(uu)"'uu. 

It will be assumed that the quantity pA transforms under a 
gauge transformation as 

where 

In addition, T~ satisfies the relation 

T~(uG)T~(uU) = T~ [WU(ufJ,J3»). 

(1.5) 

(1.6) 

(1.7) 

862 J. Math. Phys. 22 (4), April 1981 0022-2488/81/040862-08$1.00 @ 1981 American Institute of Physics 862 



                                                                                                                                    

where wa (u f3,rf1) denotes the coordinates ofw(u,v) relative to 
the same chart expressed in terms of uf3 and rf1, the coordi
nates of u and v respectively. T~ 's which satisfy (1.6) and 
(1.7) will be referred to as Lie group representations of type w 
of the Lie group G. 

For the quantity pA we would like to define a process of 
differentiation denoted by pA 110 which is such that under a 
coordinate transformation 

-A eA Jb B P 110 = B aP lib' (1.8) 

while, under a gauge transformation 

'A TA B (19) P 110 = BP 110' • 

This type of differentiation has been termed double covariant 
differentiation by Yang. 7 Section 2 is devoted to obtaining 
identities from (1.3), (1.4), (1.6), and (1.7), which enable us 
to define apAlia which satisfies (1.8) and (1.9). We shall then 
assume that pAlla takes the form 

A A CAs r r B fA A a B p 110 = P ,a - Br saP - Ba aP' (1.10) 

where a comma denotes partial differentiation with respect 
to the local coordinates, 

ae~(J%) I ' 
aJ; J;~/j; 

aT;~f3) I ' 
au u,,~o 

and rs ra and A ~ are new quantities. In Sec. 3 we determine 
the transformation properties of rs r a and A ~ under both 
kinds of transformations by demanding that (1.8) and (1.9) 
hold. The resulting properties lead us to call rs'a a linear 
connection and A ~ a gauge connection (also referred to as a 
gauge potential and, in some cases, a gauge field). 

Virtually any gauge field theory which is derivable from 
a variational principle employs a Lagrangian which is at 
most second order in the field variables pA and first order in 
both the linear connection rb ac and the gauge connection 
A~, i.e., 

(1.11) 

Such Lagrangians are scalar densities under a coordinate 
transformation, i.e., 

L=JL, (1.12) 

and scalars under a gauge transformation, i.e., 

L=L. (1.13) 

By virtue of both transformation laws, (1.12) and (1.13), sev
eral invariance identities2 which characterize L are obtained 
in Sec. 4. 

2. TRANSFORMATION IDENTITIES 

Since e ~ is such that 

dete; #0, 

e; has an inverse which we denote by C;. By evaluating 

e~(K;)e~( J;) = et(JhKJ) (2.1) 

at K; = 8; and then K; = J;, where J; is the inverse of J;, it 
is possible to establish the properties 
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and 
A ""i ""'A i e B(J j ) = e B(Jj ). 

At this point it should be noted that a quantity pA whose e; 
satisfies (2.1) need not be tensorial. 12 

In order to define a process of double covariant differ
entiation, it is useful to obtain three identities from (2.1). The 
derivative of (2.1) with respect to J;, followed by evaluation 
at J% = 8%, yields 

eA(Ki)CBs = eAr(Ki)KS 
B J Dr Dr J t' (2.2) 

where 

and we recall 

CBs =e Bs (8i ) Dr- Dr ). 

By taking the derivative of (2.1) with respect to K ;, and then 
evaluating at K % = 86, we obtain 

CASeB(Ji) = eAs(Ji)J r (2.3) Br D J Dr Jr' 

For our purposes we will express (2.2) and (2.3) in the forms 

(2.4) 

and 

(2.5) 

it being understood that the arguments of e; and e t~ are 
J;. These are two of the three identities referred to. For the 
third identity we take the derivative of (2.4) with respect to 

J % and then evaluate at J; = 8; to find 

CAbCBs = CAsb + C Ab8s 
Ba Dr Dra Dr a' 

where 

-A b a2
et I -e D~a - aFar . = et~~· 
s b J; = b; 

By making use of the above symmetry, we finally obtain the 
desired identity, viz., 

e- Ab e- Bs e- As e- Bb e- Ab '" e- As £b 
Ba Dr - Br Da = DrUa - DaUr" (2.6) 

It is interesting to note that since C;~ is constructed out 
of 8;, it is numerically the same in all coordinate systems and 
so it is invariant under coordinate transformations, i.e., 

e- As e-As 
Br - Br' (2.7) 

but, by combining (2.4), (2.5) and (2.7), we obtain 

CAs e A CE Js JbCDa 
Br - DBa r Ebo (2.8) 

Thus the transformation law of c;; can also be expressed in 
the general form of (1.2), subject to (1.3) and (1.4). This 
situation is reminiscent of the Kronecker delta which is in
variant under (1.1), and yet, is also a tensor of contravariant 
valency 1 and covariant valency 1. 

We shall now follow a similar analysis for gauge trans
formations. In the process, we shall derive several interesting 
identities in the area of Lie groups. The global conditions (i)
(iii) which define an action can be expressed in terms of the 
local coordinates as: 
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(i) wa can be expanded as a power series in both uf3 and 
uP about the origin, 

(ii) wa (O,uf3 ) = wa(uf3,O) = ua, 

and 
(iii) wa(uf3, - uf3) = 0. 

When the local coordinates of the action w,wa are expanded 
as a power series in uf3 we obtain 

wa = va + A p(if)uf3 + A py(if)uf3uY + "', 
where 

A a_aw
a I f3---- auf3 u y ~ o· 

From condition (ii) we see that 

A p(O) = op, 

and hence 

detA p #0 

in a neighborhood o~he identity. Thus A p has an inverse 
which we denote by A p. Expansion of A pand A pyas a pow
er series in if leads to 

wa = va + ua + A P,y(O)vYuf3 + A py(O)uf3uY + "', 
where 

aAa 
A f3a v = __ f3 (if). 

., av)' 

Conditions (ii) and (iii) imply 

A p/O) = 0 

and 

A (P.y) (0) = 0, 

respectively, where parentheses around indices denote sym
metrization. By expanding wa first as a power series in uP we 
find, in a similar manner, 

wa = ua + va + B P./O)uYuP + "', 
where 

B (P.y) (0) = 0, 

and B p has an inverse ii p in a neighborhood of the identity. 
Comparison of the two expansions leads to 

wa = ua + va + !CfJayuf3vY + ... , 
where the Cf3 a y 's are constants given by 

CfJ a y-2A P./O) = - 2B P.y(O) 

= - cyafJ· 

One tends to think ofthe CfJ a y's as the structure constants of 
the group G; however this is not necessarily the case. 

By virtue of the fact that Lie group representations of 
type w T~ satisfy 

detT~ #0, 
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T~ has an inverse which we denote by T~. When the 
relation 

T~(va)T~(ua) = T't [wa(uf3,uP)J (2.9) 

is evaluated at va = 0 and then va = - ua, we obtain 

T~(O) = 8~ 

and 

T~( - ua
) = T~(ua), 

respectively. 
As in the case of the transformation law (2.1), we will 

now obtain three identities from (2.9) which are useful in 
defining a process of double covariant differentiation. We 
first take the derivative of (2.9) with respect to ua and then 
evaluate at uY = 0 to obtain 

T~(vY)f~a = T~f3(vY)A~, 
where 

A aT~ 
T Df3(Vy)=-- (vY) 

auP 

and recall 

f~a=T~a(O). 

(2.10) 

By taking the derivative of (2.9) with respect to va and then 
evaluating at vy = ° we find that 

f~aT~(uY)= T'tfJ(uY)B~. (2.11) 

For our purposes we will express (2.10) and (2.11) in the 
forms 

(2.12) 

and 

T- A TB TA BfJ Ba D = Df3 a' (2.13) 

it being understood that the arguments are uY• The third 
identity is obtained by first taking the derivative of (2.12) 
with respect to uY and then evaluating at U V = 0, which yields 

T- A -B - T-A IT-A C f3 By T Da - Day + '2 Df3 ex l' , (2.14) 

where 

a
2
T't(u

f3
) I = fA . 

auaau Y U'~O Dya 

We then antisymmetrize (2.14) to arrive at the desired equa
tion, viz., 

-A -B -A -B _ f3 -A 
T Ba T Dy - T ByT Da - - Ca yT DfJ' (2.15) 

which is reminiscent of the well-known commutation law for 
the generators of a Lie algebra representation of a Lie group. 

An extremely important Lie group representation of 
type w is the quantity 

/'. 

Tp=B~Ab· 

The invertibility of T'f; follows from the invertibility of B 'f; 
and A 'f;. In order to illustrate that Tp satisfies (2.9), we sup
pose that there exists some Lie group representation T~ of 
type w. When (2.12) is evaluated at wv, we have 

T~(w~f~a = T~f3(w~A ~(w'). (2.16) 

By making useof(2.9) on the left-hand side and (2.13) on the 
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right-hand side of (2.16) we obtain 

T~(vV)T~(uV)f~a = f~yT~(wV)B~(wv)A ~(wV). 
Repeated applications of (2.12) and (2.13) evaluated at both 

uy and vY on the left-hand side ofthe above lead to 
- "" "" T~r T~(v)Tg(u)B ~ (v')A ~(v)B b(u')A ~ (U) 

- "" 
= T~yT~(w)Bb(w')A~(W). 

By virtue of (2.9) and the invertibility of T~ we see that 

f~rT;(v)T~(u) = f~rT:(w). 
Thus, provided G admits at least one Lie group representa
tion of type w for which 

-B -A 
gf3r T Af3 T Br 

is nondengenerate, i.e., 

detgf3r #0, (2.17) 

we have that T'/J satisfies (2.9), viz., 

T;(v)T~(u) = T:(w). 

A Lie group representation of type w that satisfies (2.17) will 
be called a semisimple Lie group representation of type w. 
Note that it is possible for G to admit a semisimple Lie group 
representation of type w without 

hf3r Cyuf3CuYr 

being nondegenerate. 
For the most relevant case, viz., when w is the left action 

of u on v, i.e., 

w(u,v) = Luv = uv, 

the Cf3 U y's are the structure constants ofthe Lie group and 
(2.9) reduces to the condition that T~ is a right action. It can 
be shown that T'/J is the inverse of the adjoint representation 
as follows. First of all, the associativity of multiplication is 
expressed as 

WU [wf3 (xY,yy),zI3] = WU [xP,wf3 (yy,zY)]. 

By setting yy = - x Y we obtain 

ZU = W U [xf3,wf3 ( - xY,zy)] . 

When the partial derivative of the above is taken with respect 
to zI', we find that evaluation at zY = 0 yields 

ocr = aw
u 

(xf3 _ x(3 )B Y( _ x(3) 
I' avY ' I' ' 

and therefore, 

aw
U 

~B (3) BAa( (3) -- (X'~ , - x = Y - x . 
avY 

(2.18) 

The adjoint representation expressed in local coordinates is 

(d7x)~ a(7x UY I ' 
au'" u'~O 

where 

7 x U =xux- I . 

Thus, by definition, 
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which reduces to 

(d7x)~ = aW
a 
(xP,-xP)A~(-xP). 

avY 

By virtue of (2.18) and the definition of T'/J we then have 

(d7x)~ = T~(xP), 
as required. Note that if w had been the right action of u on v 
then T~ would be a left action and T'/J itself would be the 
adjoint representation. In either case, since w is merely a 
multiplication, T'/J is actually defined and invertible in the 
entire domain of the canonical chart of the first kind and not 
just in a neighborhood of the identity as guaranteed by our 
local formalism. 

For any given action w, we have 

- aT'/J I T'/Jy=-- = Cf3ay. 
auY u'~O 

Thus, when the Lie group representation of type w T~ is T'/J, 
the identity (2.15) reduces to the Jacobi identity, viz., 

Cyl'aCrVy + Cvl'yCa Yr + Cyl'rCyVa = O. 

Therefore, if G admits a semisimple Lie group representa
tion of type w, the Cf3 a Y 's are the structure constants for 
some Lie group. 13 

As in the case of C ~~ under a coordinate transforma
tion, f;a has more than one transformation law under a 
gauge transformation. It is invariant, i.e., 

(2.19) 

and yet, by combining (2.12), (2.13), and (2.19), we obtain 
-'-A A ""D""f3-C 
T Ba = T CT BT aT Df3' (2.20) 

Similarly, gaf3 is invariant, but also satisfies 

"" "" gaf3 = T~ T'ffgyr· 

Therefore, T~ leaves gaf3 invariant in the sense that 
"" "" gaf3 = T~gyrT'ff, 

and thus, provided 

detgaf3 #O, 

we have that 

(detT'/J)2 = 1. 

However, we also know that 

T'/J(O) = o'/J 

and hence 

detT'/J = 1. 

It is also possible to show that 

Caf3y ==Cal' ygl'f3 

is totally antisymmetric. Several additional identities associ
ated with Lie groups can be generalized using these 
techniques. 

3. DOUBLE COVARIANT DIFFERENTIATION 

In order to arrive at the conclusions outlined in the in
troduction we shall first assume that coordinate and gauge 
transformations commute in the sense that 
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(3.1) 

The derivatives of (3.1) with respect to J; and ua evaluated 
at J~ = {j% and u" = 0, respectively, yield 

(3.2) 

and 

(3.3) 

while the "mixed" second partial derivative of (3.1) evaluat
ed at both identity transformations is 

One of the consequences of (3.2) is that the quantity 
rr' C-As T-B 
Ora == Br Aa' 

by virtue of (2.20), satisfies 
. - T"'{3 , 

g',." - "gr{3' 

(3.4) 

When the partial derivative of the above is taken with respect 
to u Y and then evaluated at u" = 0, it is found that 

0= g;{3C,,{3y' 

Thus, provided G admits a semisimple Lie group representa
tion of type w, 

g',./3 -0. 

We then turn to the quantity 
rl C-ArC-BI g,)- Bs A)' 

(3.5) 

By virtue of its transformation properties under coordinate 
and gauge transformations, g~ must be of the form3 

gv = a{j~{j; + (J{j;{j~, 
where a and (J are arbitrary constants. Therefore if we are 
given an equation of the form 

for some quantity tf;/, it would be possible to conclude that 

tf;/ = 0, 

provided both 

na +/3 #0 

and 

/3 #0, 

(3.6) 

which, in general, will hold since a and (J are arbitrary for 
unspecified pA. In our analysis we shall also meet equations 
of the form 

CAI,I,) + fA ,1,0 - 0 
Bjlf'i Half' - , 

where tf;( and tf;" are some given quantities. By virtue of(3.5) 
and (3.6) and the assumption that G admits a semisimple Lie 
group representation of type w, we will be able to conclude 
that 

tf;(=o 

together with 

tf;" = 0. 

We are now ready to demand that 

Plla = C~ J~pBllh 
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(3.7) 

should hold for pAlla given by 

pAlla = pA,a - c~~r/apB - T~aA ~pB. (3.8) 

Expansion of the left-hand side of (3.7) yields 

pAlla = C~ J~pB,b + C~~ J;apB 

- c~~r/aC~pD - T~aA~C~pD, 
where 

ar Jr = __ s 
sa- aX" . 

By making use of (2.4), (2.8), and (3.3), we obtain 
-A _ CA Jb [B C-BI ( J"'s J)r- r Ac P Iia - B a P lib - D) Irs cJ b 

-" A 

- J: J~ J~c - r/b) pD 

- T~a(A~J~ -A npD]. 

Therefore, for arbitrary pA, (3.7) is satisfied if and only if 

C- BI (r- r J) JAsJ"'c J) J-"'JAc r) D) S c rib - sc I b - I b 

+ T~a(A~ J~ -A~) = 0. 

Thus, provided G admits a semisimple Lie group representa
tion of type w, we must have 

and 

which states that r/c behaves like a linear connection and 
A ~ behaves like a covariant vector field under a coordinate 
transformation. 

When we demand that under a gauge transformation 

'A TA B P Iia = B P lia' (3.9) 

expansion of the left-hand side of (3.9) yields 

'A TA B + TA a B P Iia = BP.a Ba u .aP 

- c;;i'/a T~pD - T;a A ~T~pD. 

Equations (2.10), (3.2), and (2.20) enable us to arrive at 

pAlla = T;[pBlla -C~~(i'/a -r/a)pD 

- T~{3(j~A~ -A~ua.a _A~)pD]. 
Thus, for arbitrary pA, (3.9) holds if and only if 

C~~(i'/a - r,'a) + T~/3(T~A ~ - A~u",a - A~) = O. 

Therefore, provided G admits a semisimple Lie group repre
sentation of type w, 

and 

A a = T a A f3 + fja u{3 
a /3 a {3,a' 

i.e., r, ra is invariant while A ~ behaves like a gauge connec
tion under a gauge transformation if w were the left action of 

. 9 
U on v, 1.e., W = UV. 

Whenever a new process of differentiation is defined 
one is always curious to see what the commutator of two 
successive derivatives is. By the definition (3.8) we have 
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P
A _ A 
Iijk=P lIill k 

=pA . _ (CAS8h + 8A8S8h)r r B 
IiJ,k Br j B irs kP Ilh 

fA Aa B 
- Ba kP IIi' 

which can be expanded as 

pAlljk = pA Jk - c~~r:j,kpB - c~~r:jpB,k 

T-AAa B T-AAaB - Ba j,k P - Ba jP ,k 

_ C~~r:k(pBJ - C~:rb aj pD 

_ fH A apD) _ fA A u(pH . _ CBb r a.pD Du J Ba k J Va b J 

T- B A {3 D) r h A - D{3 j P - j k P IIh' 

Antisymmetrization of the above with respect to j and k, 
together with (3.4), leads to 

A A 
P Iljk - P IIkj 

C-AsR r B T-A Fa B - Hr s jkP - Ba j k P 
A h A (C- As C-Bb C- Ab C- Bs 

- '-Jj k P IIh + Br Da - Ba Dr 

+ C'b~8~ - C'b~8~)r:krb aj pD 
-A -B -A -B r -A {3 a D + (TBa T D{3 - TB{3TDa -C{3 uTDy)A/AkP , 

where R, rjk is the Riemann curvature tensor, i.e., 

R/jk=r:j,k -r:kJ +rsbjrbrk -rsbkrbrj' 

Fj a k is the gauge curvature, i.e., 

Fa~a Aa caA{3Ar 
j k - j.k - kJ - {3 r j k 

and .J/k is the torsion tensor, i.e., 

.Jh-r h r h 
j k= j k - k j' 

However, by virtue of (2.6) and (2,15), we see that the com
mutator simplifies to 

A A RA B Ah A P IIjk -p Ilkj = - BjkP -'-Jj kP Ilh' 

where 

RA -CAsR r + fA Fa Bjk = Br s jk Ba j k' 

It is interesting to note that if G aQmits a semisimple Lie 
$roup representation of type w then 

R ~jk = 0 

implies that both 

and 

Fj'\ = O. 

We can also see that the gauge curvature's transformation 
laws are 

F-a _JaJb F a 
jk-jkab 

under a coordinate transformation, and 

~ak = TpF/k 

under a gauge transformation. It is a simple matter to show 
that the gauge curvature satisfies the cyclic identity 

Fj a k IIh + Fh a j Ilk + Fk a h II j 

= .J / k F; a h +.J h;j F; a k +.J k \ F; aj , 
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which is an obvious counterpart of the Bianchi identity. 

4.INVARIANCE IDENTITIES 

Under a coordinate transformation the arguments of 
the Lagrangian 

L = L (pA;pA,a;pA,ab;rb ac;rb ac,d;A~;A ~,b) 

transform as 

and 

jjA = C~pB, 

jjA,a = C~ J~ pH.; + C~~ J:apB, 

jjA.ab = C; J~ J{, pB,ij + C; J~b pB,; 

+ C;~ J~b J~ pB,; + C;~ J~a J~ pB,; 

+ C~~ J:ab pB + C;~~ J~b J;a pB, 
_ A. 

r b
a
c =J~(J~J~r:, +J~C>, 

",................. . 
rb ac,d = - J~ J~ Jjd(J1 J~r;, + J~J 

A. 

+ J~(Jtd J~r:, + Jt J~dr:1 

+ Jt J~ J~r:l,u + J~cd)' 
A~=J~Af, 

A~.b =J~ J~A f.; +J~bA f, 
where 

and 

CAsu= ac;: _ (fC; 
Brt- aJI - aJraJ I 

u s u 

Therefore, when the derivatives of the condition 

L=JL 

(4.1) 

are taken with respect tOJ;IU,1;" andJ;, and then evaluat
ed at the identity transformation J j = 8;, we obtain the in
variance identities 

~(~CAU B+~CAS B 
3 a A Br P a A Br P 

p .Sl P ,IU 
+~CAI B) a A BrP 

P ,us 

+ aL =0, 
ar(Srr.u) 

(4.2) 

~(~CAI B+~CAS B) ~CAI B 2 a A Br P a A Br P + a A Br P .a 
P .s P .r P ,as 

and 

+ 
aL CAs B aL A aL 

--- BrP ,a +--p ,r +--
a pA,al a pA.H ar(S rt) 

+~(-~r' _~rs +~ra 
2 ar r bear r a b ar arc 

b c,s a b.1 s c,t 

+~ra)+ aL Fa +~Aa=o ar arc a b r r' 
r c,s arb (s,t) aA (.,1) 

(4.3) 

aL CAs B aL CAs B aL,.A 
~ BrP +~ BrP.a +~I-' ,r 

P P.a P.s 
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+ aL CAs B 2 aL A aL r s 
~ Br P ,ab + ~ P ,rb - ar r b c 

P ,ab P ,sb b c 

+~ra +~ra _~rS 
ar arc ar a b r ar r b c,d 

s cbs b c,d 

+~ra +~ra +~ra ar a r c,d ar a b r,d ar a b c,r 
s~ b~ b~ 

+ aL Aa+~Aa +~Aa =osL, 
aA a r aA a r,b aA a a,r r 

s s,b a,s (4.4) 
respectively, 

When the arguments of the Lagrangian (4,1) undergo a 
gauge transformation, we find that 

and 

pA = T;pB, 

'A TA B + TA a B P .a = B P ,a Ba U ,a P , 
'A _ TA B + TA a B TA a B P .ab - B P ,ab Ba U ,b P ,a + Ba U ,a P ,b 

+ T;aUa,ab pB + T;apU(3,bUu.a pB, 

tb ac = rb aco 

tb ac,d = rb ac,d' 

A· U - TU P B"'u (3 a - (3A a + p U ,a' 

A· U - TUA (3 + TU Y A (3 a,b - P a,b (3y U .b a 

'" '" '" + B P U(3.ab - B ~B ~B ~v U v.b u(3,a, 

where 

and 

aBY BY __ Jl 

JlV auv 

Thus, the in variance identities obtained by taking the deriva
tives of the condition 

L=L 
with respect to u(3,rs' u(3.r and u(3, and then evaluating at the 
identity transformation U V = 0, reduce to 

aL fA B aL - 0 -A- B(3 P + --P- - , 
ap .rs aA (r,s) 

(4.5) 

aL -A B 2 aL T-A B 
--A- T B(3 P + --A- BP P ,b 
a p ,r ap ,rb 

aL aL c U A Y - 0 +--+-- (3 -aA (3 aA U Y a , 
r a,r 

(4.6) 

and 

aL fA B aL fA B aL fA B 
~ B(3P +~ B(3P.a +~ B(3P .ab 

p p .a P ,ab 
(4.7) 

aL C U A Y aL C U A Y - 0 +-- y(3 a+-- y(3 ab-' aA U aA a . 
a a,b 

respectively. 
It is also possible to establish that the Euler-Lagrange 

expressions 
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and 

obey the transformation laws 

EA = JC!EB, 
. A.B 

EA = TAEB, 

Ebc = J Jb Jc P E /k 
Q J k a I' 

E~c=E~c, 
_ A.. 

E~ =J J~E~, 

and 
. A.p 
E~ = TaE~. 

Both sets of invariance identities yield "conservative laws" 
involving the various Euler-Lagrange expressions. When 
(4.5) and (4.6) are substituted into (4.7), (4.7) reduces to 

EA f;(3 pB - E~lIa + ..1/bE~ = O. (4.8) 

By taking the derivative of( 4.4) with respect to X S and substi
tuting (4.2), (4.3), and (4.8), it is found that 

(EA C;~ pB)IIS +..1r asEA C;~ pB 

- EA pAllr + E~ Frus - E~'II Is + E~sll s..1b or 

+ E bsR a .. a (E C-As B 2E(s,) a b rs -.LIs a A Br P - r II I 

+..1, bbE~1 + ..1dCrE~) - ..1r"allsE~' = O. 

5. DISCUSSION 

One of the features of the local gauge field theory for
malism presented here is that we did not restrict ourselves to 
infinitesimal gauge transformations. It is felt that much 
more insight is gained with the use of full transformations, 
particularly as far as fiber bundles are concerned. 

In the future, a concomitant approach using this for
malism should be able to successfully motivate the field 
equations of specific theories. Attempts have been made 14 

along these lines; however, more exploitation of our formal
ism is needed. 
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The role of real Lie algebras in the study of relativistic wave equations of the form 
(all-all- + iK)¢(X) = 0 is considered. To a finite-dimensional equation there corresponds a Lie 
algebra S containing soC 4,C) and a vector operator! a" J. The importance of finding all possible 
real forms of S containing the Lorentz Lie algebra so(3, 1) is discussed. This problem is solved in 
detail for certain "generic" cases, namely S = sp(n,C), so(n,C), and sl(n,C). The exceptional 
algebras G2, F4 , and E6 are also considered. 

PACS numbers: 11.I0.Qr, 03.65.Fd, 02.20.Sv 

1. INTRODUCTION 

A previous paper (Cant and Hurst l
) considered some of 

the Lie algebraic properties of finite-dimensional Lorentz 
invariant wave equations of the form 

( all-~ + iK )¢(X) = 0, 
ax" 

(1.1) 

where all- (/1 = 0,1,2,3) are n Xn matrices and K is a real 
nonzero constant. In this paper and the next, which are de
velopments of Ref. I, we examine the role played by real Lie 
algebras in the theory. 

Before we state the problem, we need to recall 1 some of 
the basic properties of (1.1). Our notation is as in Ref. 1; for 
real Lie algebras we use the notation of Helga son. 2 All repre
sentations are finite-dimensional, unless otherwise stated. 

If A belongs to the group .Y of proper orthochronous 
Lorentz transformations, we have 

""(x') = 1T(A )",(x) (x' = Ax), (1.2) 

and 1T is a representation of .Y. The generators I,,,, of 1T 
satisfy 

[/,,,,,1pa] = g"f,lll-<7 - g"plva - gval"p + gll-alvp' (1.3) 

while the invariance condition is 

[/,,,,,ap ] =g,'pa" -g"pa". (1.4) 

We say that ! a" J is a "vector operator" if (1.4) is satisfied. 
Thus any wave equation of the form (1.1) is specified by 

giving a representation3 (1T, V) of the Lorentz Lie algebra4 

so(3, 1) ::::::: sl(2,C) R which admits a vector operator [ a" J, and 
fixing such a vector operator. As is well-known, the repre
sentation 1T of sl(2,C) R extends to a unique representation 
(also denoted by 1T) of its complexification 
soC 4,C) ::::::: sl(2,C) $ sl(2,C) (or D2 = AI $ A I) which also acts 
on V. Let S denote the Lie algebra generated by 1T(D2) and 
the a" over C. Then, if (p, W) is any representation of S, we 
can take the vector operator pea"~), and the representation of 
D2 [and thus sl(2,C) R] obtained by finding the branching 
rules for the restriction of p to D 2 . This gives a new invariant 
wave equation. We therefore obtain a family of wave equa
tions based on the initial equation by lettingp go over all the 
irreducible representations of S. 

This procedure was discussed in Ref. 1, and S was cal
culated for certain classes of equations. Our main point was 

that the Bhabha5 case S = so(5,C), corresponding to the sit
uation [all-,a"] = clll-V (CEC, c#O), is not the only one; in 
fact, S can be of arbitrarily large dimension. We considered, 
in particular, the Kursunoglu equation, for which 
S = sp(12,C), and calculated some branching rules for 
S-D2, and the general form of the mass spectra. 

The above procedure is valid whether or not there exists 
a real form So of S which contains sl(2,C) R, and it remains 
valid if p is allowed to be infinite-dimensional, provided that 
the representation of sl(2, C) R thus obtained is integrable to a 
representation of the group SL(2,C). 

Nevertheless, the problem of finding all such real forms 
is an important one. One finds that the existence of such a 
real form is closely related to the existence of operators cor
responding to space reflection and charge conjugation; fur
thermore, in variance of (1.1) under these transformations 
leads, in most cases, to a distinguished real form. Also, if a 
real form So does exist, then we have an embedding of the 
corresponding Lie groups: SL(2,C) C Yo' We can then di
rectly consider representations p of Yo as providing new 
invariant wave equations; in this situation, since we have an 
embedding on the group level, the decomposition of pinto 
irreducible representations ofSL(2,C) may be easier to find. 

The present paper is devoted to finding those real Lie 
algebras, containing the Lorentz Lie algebra, which are of 
relevance for wave equations. In Sec. 2 we give notation and 
write down the necessary results of Ref. 1 in a general form. 
In Sec. 3 we find explicitly all the real forms So of S for 
certain "generic" algebras S: namely, S = sp(n,C), so(n,C), 
sl(n,C). We also discuss the exceptional Lie algebras G2 , E4 , 

and E6 . 

In a forthcoming paper we shall consider the connec
tion with parity and charge conjugation, and briefly discuss 
the formation of infinite-dimensional wave equations. 

2. PRELIMINARIES 

We shall write the representation (1T, V) of D2 as l 

(1T,v)=C!!1Tr, r!! Vr), (2.1) 

where 1Tr denotes the irreducible representation (kr,lr)of D2, 

with dimension (2k r + 1)(2Ir + 1). It is important to note 
that a given irreducible representation (k,l) can occur more 
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than once in 1r. Because of this, it turns out to be more useful 
to write 

(1r, V) = (; I tPj, j; I Yj), (2.2) 

where tPj is the direct sum ofnj copies of(kj,lj).We shall use 
the labels r,s = I, ... ,! to refer to the irreducible subrepresen
tations of V, and i,j = 1, ... ,k to refer to subrepresentations 
consisting of several copies of a single irreducible 
representation. 

As discussed in Ref. 1, when Vis an indecomposableS
module, 1r specifies an embedding of D2 in the orthogonal 
algebra so(V)=so(n,C) or the symplectic algebra 
sp( V)==sp(n,C). We shall need the most general possibilities. 

We always have the embeddings 
k 

D 2 C Ell so(Y;)Cso(V) (p = 1), 
i= 1 

k 

D 2 C Ell sp(Y;)Csp(V) (p = -1), 
i= 1 

(2.3) 

relative to the bilinear form with matrix B given in terms of 
the decomposition (2.2) by6 

k 

B = Ell (.1; ®B;), 
i= 1 

(2.4) 

wherethe.1;EGL(n;.C)satisfy..1 '{ =..1; (i= 1, ... ,k),andB; 
is the matrix of the canonical formb; defined on (k;,l;) which 
was introduced in Ref. 1. In (2.3)p = +1 (-1) according 
as the spin is integral (half-integral); it is clear that B T = pB. 

The embeddings (2.3) are an obvious generalization of 
(3.2) in Ref. 1. 

However, ifit happens that each irreducible representa
tion 1rr of D2 occurs an even number of times, i.e., if n; is 
even, for i = 1, ... ,k, then, as well as the above, we may choose 
the..1; such that..1 '{ = -..1; (i = 1, ... ,k). We then have 
B T = - pB and the embeddings 

k 

D2 C Ell sp(Y;)Csp(V) (p = 1), 
i= I 

(2.5) 
k 

D2 C Ell so(Y;)Cso(V) (p = -1). 
i= I 

This possibility was noted in Ref. 1, but not pursued. 
Given a vector operator I al'j, one can often choose the 

..1; inB such thatS~so(V) [sp(V)] [see Theorem 3.3 and the 
remark after (4.34) in Ref. 1]. We have also seen by means of 
examples in Sec. 3 of Ref. 1 that S is "almost always" equal to 
so( V) [sp( V)] ifsuch aB exists, and "almost always" equal to 
sl( V) otherwise. We shall refer to these as generic cases, since 
the collection offamilies based on these algebras exhausts all 
finite-dimensional wave equations. 

We shall keep the same explicit formulas for al' as in 
Ref. 1: al' splits via (2.2) into super matrix blocks [i I al'l j], 
each involving the Kronecker product of a coupling matrix 
A;j with a known combination of Dirac spinor matrices. 

3. REAL FORMS 
A. General results 

We begin by making some observations on the general 
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problem of embeddings of real Lie algebras. 
It is well known2 that all possible real forms Lo of a 

semisimple Lie algebra Lover C are obtained as follows. We 
find all involutive automorphismss of the compact real form 
U of L [without distinguishing automorphisms conjugate 
within the group Aut(U) of aut om or ph isms of U]. Writing 
U = K Ell P, where K and P are the eigenspaces of s corre
sponding to eigenvalues + 1 and -1, we take Lo = K Ell iP; 
Lo is a (noncompact) real form of L, and this procedure gives 
every real form. 

If L " L are semisimple Lie algebras over C, and U', U 
are compact real forms, then Mal' cev 7 has shown that L ' can 
be embedded in L if and only if U' can be embedded in U. 
Suppose L ~ and Lo are real forms of L ' and L, corresponding 
to the involutive automorphisms s', s of U', U. If U' can be 
embedded in U, then there is no guarantee that L b can be 
embedded in Lo. Also, if we have two embeddings of U' in U 
which are not conjugate within the group Int(U) of inner 
automorphisms, then it is possible for L b to be embedded in 
La in one case, but not the other. The general problem of 
embeddings of real Lie algebras has been extensively dis
cussed by Cornwe1l8- 10 and Ekins and Cornwell. 11.12 We 
shall use a slightly different version of the main theorem (34) 
of Ref. 8. We give a proof here, since the method of proof 
differs from that of Ref. 8. 

Theorem 3.1: With the above notation, if U' is a subalge
bra of U, then L b is a subalgebra of La if and only if s an 
extension of s', i.e., 

s(x') = s'(x') ('r/X'EU'). 

Proof Write L b = K' Ell iP', Lo = K Ell iP, where 
U' = K' EIlP' and U = K Ell P. Ifuand7aretheconjugations 
of L with respect to La and U, then it is easy to see that u 
commutes with 7. By the remark on p. 155 in Ref. 2, we have 
K = Lcf'iU, P = iLcf'iU. Similarly K' = L bnU', 
P' = iLbnU'. 

Suppose L b CLo. Then 

K' = L bnU' CLcf'iU = K, 

P' = iL bnU'CiLcf'iU = P, 

and so s(x' + y') = x' - y' = s' (x' + y') (x' EK " y' EP '). Thus 
s is an extension of s'. On the other hand, s extends s' means 
that K' CK, P' CP and so L b CLa. D 

We shall make direct use of this theorem in the follow
ing situation. Suppose we are given a wave equation of the 
form (1.1), i.e., a representation (1r, V) of D2 which admits a 
vector operator al'. We know "how many" vector operators 
exist by Proposition 3.1 in Ref. 1. Fix aI', and let S~ sl(n,C) 
be the Lie algebra generated by 1r(D2) and the al' over C. We 
shall assume I that S is irreducible, and thus semisimple. In 
order to find the real forms Sa of S which contain sl(2,C) R, 

we can apply Theorem 3.1. 
We have the embedding 

so(4,C);;: sl(2,C) Ell sl(2,C)CSCsl(n,C), 

with a corresponding embedding of the compact real forms 

su(2) Ell su(2)C UCsu(n), 

where it is convenient to take U = [Snsu(n)] R as the com-
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pact real form of S. Let So = K Ell iP be a real form of S, 
corresponding to the involutive automorphism s of U. It is 
well knownz that sl(2,C) R arises from the involutive auto
morphism S' ofsu(2) E!) su(2) which sends (x,y) to (y,x). By 
Theorem 3.1, sl(2,C) R is a subalgebra of So if and only if sis 
an extension of S' 

s(x,y) = (y,x) [V (x,Y)Esu(2)Ell su(2)]. 

In practice, since Aut(U) is known, we single out those auto
morphisms which are involutive extensions of S' [without 
distinguishing automorphisms conjugate within Aut (U)] . 

Clearly such a real form So exists if and only if 
V= E!)~=I V,[V, = (k,,lr)] is isomorphic as aDz module 
to its conjugate V = E!) ~= I V, [Vr = (ink,) ].Thus therepre
sentations (k,1 ) and (/,k ) occur with equal multiplicity in 1T. II 

What happens to the vector operator al-' in the process 
of going to real forms? First of all, if aO is Hermitian 

(aOt = aOT = aO), then since ai = [aO,IoJ),it follows that 
ait = - ai, forj = 1,2,3. Thus iao, aiEsu(n) and hence iao, ai 
EU. Since U = K E!)Pwe can write (uniquely) 

ai' = kl-' + p'", 

where ik 0, kJEK; ipo, pJEP. Clearly we have 

k J = [p0,I0J], pJ = [k 0,1 OJ], 

and So contains the elements i(aO) -, (a0 -, where 

(al-')- = kl-' + ip'". 

Thus, in general, we cannot expect So to contain al-'. Howev
er, this is of no importance, since in any representation p of 
So, we can recover p(al-') from p [(al-')] -. The situation is 
simpler if iaoEK (iaoEP ), for then aiEP (aiEK) and so ial-'ESo 
(aI-'ESo)' 

If aO is not necessarily Hermitian, then since S R 

~ U E!) iU, we can (uniquely) express al-' in terms of two vec
tor operators /3 1-', 1'" 

al-' = /31-' + i1"', 

where i(3°,/3J, i'l, yiEU. We then apply the above procedure 
to /3 I' and 1'" separately; in any representation p of So we can 
recover p(al-')from p [(~/J)] - and p [(y /J)J - . 

Since S is in general not known, and is hard to calculate, 
we cannot hope to solve this problem completely. However, 
using the above procedure, we can find the real forms explic
itly for the generic cases S = sp(n,C), so(n,C), sl(n,C) de
scribed in Sec. 2, and we do this in Secs. 3 B-3 O. We make 
continual use of the theorem, mentioned by Helgason2 (p. 
339), which asserts that a simple Lie algebra over R is d~ter
mined by jts complexification and the structure of a maxImal 
compact subalgebra. . 

For the exceptional Lie algebras G2 , F4 , and E6 , Ekms 
and Cornwell have explicitly described all the real forms 
containing sl(2,C) R. In Sec. 3 E we shall indicate which cases 
correspond to wave equations by computing the number of 
linearly independent vector operators present. 

B. real forms of sp(n,C) 

(1) We consider first the embedding (2.3) 
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k 

D 2 C E!) sp(Y;)Csp(V) (p = -1), (3.1) 
i= 1 

relative to the antisymmetric bilinear form (2.4), which is 
assumed to be chosen such that the al-' are skew relative to B. 
We take (1T, V) to be of the form (2.2) with nj = nT, Vi,13 so 
that an extension of S' exists. 

The compact real form ofsp(n,C) is usp(n) = [sp(n,C) 
nsu(n») R. It is well known that all the automorphisms s of 
usp(n) are inner, i.e., 

s: usp(n )~usp(n), 

X~MXM-I, 

for some M in the corresponding Lie group USp(n) (i.e., 
MtM = I, MTBM = B). By Schur's lemma, s is involutive 
(S2 = /) if and only if M 2 = cI (CEC). We then have 
(M2)TBM2=MT(MTBM)M =MTBM =B,andsoc2 = 1, 
i.e., C = ± 1. 

Let us write down explicitly all the involutive exten
sions s of S'. Clearly s is an extension of S' if and only if 

MK3M- 1 = L 3 , MK ± M- I = L ± (3.2) 

(K3' K ± ,L3, L ± are the canonical generators 1 of 1T). From 
(3.2) we find that the matrix blocks of Mare of the form 

[ilM U] = fljJM(z)®G;, (3.3) 

where M (I)EGL(nuC), and G; is the d; Xd; matrix 
[d;= dim(k;,I;) = (2k; + 1)(21; + 1)] 

(3.4) 

Gr = Gj> G; = I, G '{ = G;. 

The conditions M 2 = cI, MtM = I, M TBM = B become 

M(i)M(f)=cI } 
MWM(i) =1 , i=I, ... ,k. (3.5) 

M(WLi;M(i) = LiT 

Since k and the d; must be even, we write 
k 

dimV=n=4m= In;d;. 
i= I 

We can now give the main result of this subsection. 
Theorem 3.2: Keep the above notation. Suppose s: 

X~MXM -I is an automorphism ofusp(4m) which is an in
volutive extension of S' Then the corresponding real form of 
sp(4m,C) is: (a) sp(2m,2m) if M2 = I; (b) sp(4m,R) if 
M2= -I. 

Proof First we restrict everything to the subspace 
W = Y E!) fof V, which is invariant under s. We write 

I I I 

(abusing notation) 

(
Lii ®B; 0) 

B= 0 LiT®B;' 

( 
0 M(z)o® G;). 

M= M(f)®G; 

Put dimW; = 4m j = 2n j d;. 

(a) SupposeM 2 = I, so M( i) = M(O-I. 
Let 

1 = (- 12m
, 0 )EUSP(4m j ). 

2m,.2m, 0 12m , 
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Then it is easy to show that 

U-IMU = I 2m ,,2mi' 

where 

1 (I®I M(i)®Gj} 
u= vI -Mm®I I®Gj USp(4md· 

Thus the two automorphisms s: X---.MXM- I and (): 
X---.I2mi.2miXI2mi,2mi [XEusp(4mJ] are conjugate within 
Aut[usp(4mJ), and so they give the same real form of 
sp(4mj>C)' Now the maximal compact subalgebra K, con
sisting of matrices which are fixed by (), is just 

K= {(~I ;)!XI.x2EUSP(2mJ} 

~ usp(2mj) Ell usp(2mJ. 

Thus the real form of sp( 4m j> C) corresponding to () (and to s) 
is sp(2mo2mY. 

The required result for all of Vis obtained by combining 
the above for each i; we obtain sp(2m,2m), 

(b) SupposeM2 = -I, soM(f) = -M(z)-I. 
Then 

U-IMU = iI2rn,,2miEUSp'(4m;), 

where 

and USp' (4m J denotes the group of unitary matrices leaving 
invariant the antisymmetric form 

map 
Let usp' (4m i) denote the Lie algebra ofUSp' (4m j). The 

1/: usp(4mJ---.usp'(4m;), 

X---.U-IXU, 

is an isomorphism, and s induces the automorphism 
Sl = 1/aSo1/-I:X'---.I2mi,2miX'I2mi,2mi ofusp'(4mj)' ThesetK' 
of matrices which are fixed by s I is 

K' = {(Xo; ° )Ix' (2 )} - (Ai ®BJ-IX;T(Ai ®B;) lEU m i . 

Clearly K' ~ u(2mi)' and so, if we revert to usp(4mj)' we see 
that the real form is sp(4m;.R)2, and the result for all of V 
follows: the real form is sp(4m,R). 0 

(2) If all the ni are even, there is the embedding (2.5) 
k 

D 2 C Ell sp(Y;)Csp(V) (p = 1). 
;= 1 

(3.6) 

It is clear that the analysis of 3B(1) is still more or less valid. 
However, we now have the possibility that V contains self
conjugate representations Yi, i.e., Yi ~ Yi,We shall intro
duce some notation, the purpose of which will become clear 
in the next theorem. 

Suppose that V = Ell 7=1 Yo where Y I, ... , Y k , are self
conjugate, and n i = nj (i = k' + 1, ... ,k), so that an exten
sion of s' exists. Put 4m = ~7= k' + I nidi' For i = 1, ... ,k' 
write d i = (2ki + 1)2 = d; + d ;', where d; = k i(2k j + 1) 
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<d;' = (k j + 1)(2kj + I), We also write 

dimYj = njdi = pj(n;) + qj(n;) (n; = O,2,4, ... ,n;). 

where 

qj(n;) = n;d; + (ni - n;)d;'. (3.7) 

Theorem 3.3: With embedding (3.6) we suppose that s: 
X---.MXM- I is an involutive automorphism ofusp(n) which 
is an extension of s'. Then 

(a) if M 2 = I we have the real form 

( k' k') 
sp 2m + j~1 Pi(n;), 2m + j~1 q;(n;) , 

for each possible choice of the n;E{ O,2, ... ,n j l, where 
i= 1, ... ,k'; 

(b) if M2 = - I we obtain the real form sp(n,R). 
Proof First we observe that on the subspaces Y j Ell Yi 

(i = k ' + 1, ... ,k ) of V, the proof of Theorem 3.2 is still valid. 
Consider, therefore, the subspace Y i (i = 1, ... ,k ') and write, 
abusing the notation again, 

B=Ai®Bi, M=M(z)®Gi· 

Let us denote by a prime the standard realizations of the 
symplectic algebra and group [i.e., relative to J = ~-l ~)]. 
We claim that there is an isomorphism 

1/: usp(njdi}---+usp'(nid;), 

X---.O-IXO (OTBO=J). 

[Choose 0 'EGL(n;d"C) such that 0 'TBO' = J. Then there 
is an isomorphism 

1/': sp(nidi,C)---.sp'(nA,c), 

X---.O '-IXO '. 

Clearly, if X t = - X, then 

l1/'(X)]t= -Z1/'(X)Z-I, whereZ=O,tO'. 

Thus 1/' [usp(njd;)] is a set of matrices which are skew-Hermi
tian relative to the positive-definite Hermitian form Z; so it is 
a compact real form ofsp'(nidoC). By corollary 7.3 in Ref. 2, 
there exists an automorphism CT of sp'(njdoC) such that 

CT: 1/' [usp(n;d;)]---.usp'(n;d;), 

Y---.O "-I YO" (0" TJO" = J). 

Clearly we can put 1/ = CTo1/' (i.e., 0 = 0 "0 '»). 
We also denote by 1/ the Lie group homomorphism 

1/: USp(njdj )---.USp'(njdi), 

A---.O -lAO. 

(a) Suppose M 2 = I, so M (IY = I (i = 1 , ... ,k '). Since 

M(i)EUSp(n;) we must havedetM(z) = 1. ThusM(z)hasn; 
eigenvalues equal to -1 and the remaining n i - n; eigen
values equal to +1, say, where n;E{ O,2, ... ,n i J.On the other 
hand, Gihas 2ki + 1 entries +1 on the main diagonal, with 
the remaining 2ki(2ki + 1) entries +1 occurring in mirror 
image positions off the diagonal. Thus Gj has d ;' 
= (2ki +1) + k i(2k j +1) eigenvalues +1 and 

d; = k j(2ki +1) eigenvalues -1. By the standard results 
on maximal tori in compact Lie groups (e.g., Theorem 4.21 in 
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Ref. 14) it is clear that 17(M) is conjugate within USp'(njd;) 
to the matrix 

(
I 0 ) K _ p/2,q/2 

p,/2,q/2 - 0 I ' 
p/2,q/2 

where pj = pj(n;) and qj = qj(n;) are given by (3.7). The in
volutive automorphism (J: X-Kp/2,q/2XKp/2,q/2 of 
usp'(njd;)has as its fixed set usp'(pj) Ell usp'(qj f; the same is 
therefore true for the automorphism s: X-MXM- ' of our 
original realization ofusp(n;dJ. Thus the real form is 
sp(pj(n;),qi(n;)), and the theorem for all of V follows 
immediately. 

(b) SupposeM 2 = - I, soM(i)2 = - I(i = 1, ... ,k '). 
The argument is analogous to (a). This time M (I) has 

eigenvalues ± i which must occur with equal multiplicity 
!n j. Consequently, 17(M) is conjugate within USp'(njd;) to 
iln ,d/2,n,d/2 As is well known, the resulting real form is 
sp(n;d;,IR), and the theorem for all of Vfollows. 0 

C. Real forms of so(n, C) 

The argument is similar to the case of sp(n,C), so we 
shall give a briefer account. 

(1) We start with the generally valid embedding (2.5) 
k 

D2C Ell so(Y;)Cso(V) (p = 1). (3.8) 
i= I 

Put V = Ell ~ ~, Yo with Y, , ... , Yk , self-conjugate, and 
n, = nj (i = k' + 1, ... ,k), so that an extension of S' exists. 

The automorphisms s of the compact form uso(n) 
= [so(n,C)"su(n)] Rare of the form 

s: uso(n)- uso(n), 

X_MXM-', 

for some M in the corresponding Lie group USp(n) (i.e., 
MtM = I, MTBM = B). By Schur's lemma, s is involutive 
(S2 = I) ifand only ifM 2 = cI(CEC). We then have (M2fBM

2 

=MT(MTBM)M =MTBM=B, andsoc2 = 1, i.e., 

C = ± 1. 
The explicit form of s can be derived using the same 

arguments as in 3B( 1); s is an extension of s' if and only if 
(3.2) holds. Clearly M is of the form (3.3), with the M (i) 
satisfying (3.5). However, when i = 1, ... ,k " we must have 
M (1)1fj iM (i) = A j [by (3.5)]. Taking determinants, it is 
clear that M 2 = - I is only possible when nj is even, for 
i = 1, ... ,k '. 

This time we put 2m =}:~ ~ k' +' njdi' For i = 1, ... ,k " 
we again write d i = d; + d;' and dimYi = pj(nn + qi(nn, 
where n; = 0, I ,2, ... ,n j, and pj(n;), qj(n;) are given by (3.7). 

Theorem 3.4: For embedding (3.8), we suppose that s: 

X_MXM-' is an involutive automorphism ofuso(n) which 
is an extension of s'. Then (a) if M2 = I, we obtain the real 
forms 

so( m + it, Pi (n;), m + jt, qj(n;») 

for every fixed choice of the n;E[ 0, 1,2, ... ,n j J, i = 1, ... ,k'; (b) 
if M2 = - I (with the nj necessarily all even for 
i = 1, ... ,k '), we obtain the real form so*(n). 

Proof (a) SupposeM 2 = I. On the subspace Y j Ell fiof V 
with dimension 2m j = 2n;d; (i = k' + 1, ... ,k), we write 
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B- I , 

(
Li.®B 0) 

- 0 Li-;®B j ' 

_ (0 M (i) ® Gj ) M- -
M(i)®G j 0 

Exactly as in the proof of Theorem (3.2), part (a), we 
have 

UMU- I = I m"m,EUO(2m;), 

for the same U [which now belongs to UO(2m;)], and the 
corresponding real form ofso(2m;.C) is so(mi,mJ. 

On Yj (i = 1 , ... ,k '), the argument goes like the proof of 
Theorem 3.3 part (a), except detM (I) can now be ± 1, so n; 
may be chosen from the set [0,1,2, ... ,n j J. The matrix 17(M) is 
conjugate within UO(njdj) to the matrix I p, (nj),qi(n;J' and so 
the corresponding real form is2 so [pj(n;),qj(n;)]. The theo
rem follows immediately. 

(b) If M 2 = - I, the proof is similar to part (b) ofTheo
rem 3.3; the real form is so*(n), with maximal compact sub
algebra u(nI2). 0 

(2) If all the nj are even we have the embedding (2.5) 
k 

D2C Ell sO(Yj)Cso(V) (p = - 1). (3.9) 
i= J 

As in 3B(I), there can be no self-conjugate Y;'s. In fact, the 
argument of Theorem 3.2 carries over to this case, if we re
place usp(4m) by uso(4m), and USp(4m) by UO(4m), where 
we have again written dimV = 4m. 

Theorem 3.5: For embedding (3.9), we suppose that s: 
X-MXM-' is an automorphism ofuso(4m) which is an in
volutive extension ofs'. Then the real form ofso(4m,C) is (a) 
so(2m,2m) if M2 = I; (b) so*(4m) if M2 = - I. 

D. Real forms of SL(n,C) 

As we know, there may not be any bilinear form with 
respect to which the aft are skew. In such a case, we are 
interested in the real forms of sl(n,C) which contain sl(2,C) R. 

[The following results are still valid even if such a form does 
exist, but then S could not be all of sl(n,C)]. 

The compact form su(n) has automorphisms of the 
form 

s: su(n )-su(n), 

X_MXM-', 

for some MEU (n)(i.e., MtM = 1). Clearly S2 =: Iifandonly 
if M2 = cI (CEC); this time C need not be ± 1 (but Icl = 1). 
The explicit form of such an s is given by (3.3) with 

M(i)M(T) = cI, 
(3.10) 

M(l) tM(i) = I. 

However, there are also automorphisms of the form 

s: su(n)_su(n), 

X_NXN" = - NXTN-' 

[NEU{n)). We have S2 = Iifand only if NN = cI{CEC). In this 

case we must have C = ± 1. If s is to be an extension of s', it is 
clear that 

NK3N-' = - L 3, 
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NK ± N- 1 = - L =F' 

From (3.11), it follows that N has matrix blocks 

[iiN III = l)TjN(l) ® C;, 

where N(l)EGL(n;,q, and C;is the d; Xd; matrix 

. ,= (_I)ki+li+mi+nil) ,l) _ " 
(Cj)m;nj;mi"i mj.-nj "j' m, 

CT = C;, C7 = pI, Cj =pC;. 

The conditions Nt N = I and NN = cI give 

N(l) tN(I) = I, 

(3.11 ) 

(3.12) 

(3.13) 

N(I)N(i)=epI, Vi. (3.14) 

First of all, let us suppose that p = -I (half-integral 
spin) 

D 2 Csl(n,q (p = -I), (3.15) 

so that V = EB 7 ~ 1 Y; with no Y; self-conjugate. We take 
n; = nT' Vi, and write dimV = 4m. 

Theorem 3.6: With embedding (3.15), let s be an auto
morphism of su( 4m) which is an involutive extension of S'. 

Then (i) if sis of the form X _MXM -I, the corresponding real 
form of sl( 4m,q is su(2m,2m); (ii) if s is of th~ form 
X_NXN-I, the real form is (a) sl(4m,R) (if NN = I) and (b) 
su*(4m) if(NN = -I). 

Proof (i) We have M2 = cI, with lei = 1. Put 
e = e ili( OER). On the subspace Y; EB Y;, with dimension 4m; , 
we have 

U -1MU = e'li12 = e'1i/2I EU(4m), , (-I®I 0) , ° I®I 2mi.2m, ' 

where 

1 ( I®I e-;IiM(l)®J 
U - -- n 2 - e -,'n/2Io. G" EU(4m;). - y-z - e-;ul M(i)®G; v '0' 

Thus the two automorphisms s: X_MXM- 1 and 0: 
X-I2m,.2m,XI2mi.2mi are conjugate within Aut [su(4m;)]; an 
argument similar to that used in Theorem 3.2 then says that 
the required real form ofsl(4mo q is su(2m;,2m;), and the 
result for all of V follows. 

(ii) (a) If NN = I, then on Y, EB Y; we see that 

U-W(J=I, 

where 

iI®I ) 
-iN(i)®C; EU(4m;). 

So s is conjugate within Aut[su(4m i )] to the automorphism 
0: X-X, which gives the real form sl(4moR), and the result 
follows. 

(b) if NN = - Iwe have 

U-W(J = J = (_ ~ ~EU(4m;), 
where 

1 ( I®I 
U = y-Z - iN ( i) ® C; 

iI®I ) 
iN( i) ® C; E U(4m;). 

Thus s is conjugate within Aut[su(4m;)] to the automor-
phism O:X_JXJ- 1

, which gives su*(4m;). 0 
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If p = 1 (integral spin), we have 

D2Csl(n,q (p = I), (3.16) 

with Y1, ... ,Yk " self-conjugate. We assume that n; = nT 

(i = k' + 1, ... ,k); put 2m = l:7 ~ k' + 1 nidi! and definep;(n;), 
q;(n;) as in (3.7), wheren;E!0,1,2, ... ,n; I. We have the follow
ing theorem, the proof of which is obvious. 

Theorem 3.7: With embedding (3.16), let s be an auto
morphism of su(n) which is an involutive extension of Sf. 

Then (i) if s is of the form X _MXM - 1 the real forms of 
sl(n,q are 

( k' k') 
su m + ;~I p;(n;), m + ;~I q;(n;) , 

for n~~ 0, 1, ... ,n ,I (i = 1, ... ,k '); (ii) if s is of the f:-rm 
X-NXN-I, th~ real form is (a) sl(n,R) (if NN = I) and (b) 
su*(n) (if Nit = -I), the n; (i = 1, ... ,k ') being necessarily 
even in case (b). 

E. Real forms of G21 ~, £6 

In this section we shall consider those embeddings of D2 
in the exceptional Lie algebras l5 S = G2, F4 or E6 , such that 

(i) S contains a vector operator all. 
(ii) There is at least one real form So of S containing 

sl(2,qR. 
Problem (ii) has been considered by Ekins and Corn

well, 12 and they have given a complete list. Jt is easy to pick 
out those possibilities for which (i) is satisfied. We do this by 
finding the branching rules S-D2 for the adjoint representa
tion of S, using the method described by Navon and Patera, 16 
based on Dynkin'sl7 theory (see also Ref. 1). This will give us 
the number oflinearly independent vector operators belong
ing to S in each case. 

We number the simple roots as in HumphreyslS (p. 58). 
Representations are denoted by their highest weights. 1 

(1) S = G2 : There are no real forms l2 of G2 containing 
sl(2,qR. Indeed, the only possible embeddings (specified by 
the reduction of the natural representation of G2) are 

G2 -:JD2 , 

(a) (1,0)-1T = (1,0) EB G,D, 
or 

(b) (1,0)_17'= (O,I)EB(~,D. 

Although in each case there are two linearly independent 
vector operators in End V = Hom( V, V), we find that the 
branching rule for the adjoint representation (0,1) of G2 is 

(a) (0, 1)_p = (1,0) EB (0,1) EB 0, n 
(b) (O,I)-p, 

This result is well known,I9Jt means that G2 does not contain 
a vector operator. Thus, for G2, we conclude that neither (i) 
nor (ii) can be satisfied. 

(2)S = F4 : The embeddings of D2 in F4 satisfying (ii) are 
given by specifying the reduction of the natural representa
tion V(w) = (0001) (dim. 26) 

(a) (0001)_(!,!) EB 4( ! ,0) EB 4(0, ! ) EB 6(0,0), 

(b) (000 I )_4( ! ' ! ) EB (0,1) EB (1,0) EB 4(0,0), 
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TABLE I. The highest four weights of the F.-module V (w) when regarded 
as a D,-moduJe. 

(a) (b) (c) 

11, (j,n (1,0) u,n 
112 (l,O) (j,n q,- n 
11, (l,O) q,j) (I, I) 

114 (l,O) q,j) (1,0) 

(c) (OOOl)~O, DEl)O,DEl)(1,l)El)(O,O). 

In cases (a) and (b), there are embeddings of sl(2,IC)R in both 
noncompact real forms of F4 ; in case (c) sl(2,iC)R can only be 
embedded in one such real form. 12 

The root system tP for F4 can be constructed in R4, with 
I Ej I i = 1, ... ,4 J being the usual orthonormal basis, as 
follows2o 

±E;, 1 <;i<;4, 

± (E; ± Ej ), l<;i <j<;4, 

± ~(EI ± E2 ± E3 ± E4) 

(with all possible choices of sign). The simple roots are 

a 3 = E4 , 

a 4 = !<E, - E2 - E3 - E4)' 

IfJdenotes the embedding of D2 in F4 , then the mapJ*, 
defined in Ref. 1, is specified by2' 

J*(a,) = - /1, - /12 + /13 + 2/14' 

J*(a2 ) = /13 - /14' 

J*(a 3) = /12 - /13' 
J*(a4 ) = /1, - /12' 

where /1" /12' /13' /14 are the highest four weights of V (w) 
regarded as a Drmodule. These weights are given in Table I. 
From these we can calculate the values ofJ*(a;); these are 
shown in Table II. 

lt is now possible to findJ*(a), for each aEtP, in cases 
(a), (b), and (c), giving the required branching rules for the 
adjoint representation 

F4-"D2 

(a) (1000)~(l,0) El) (0, I) El) 50 ' n El) 40,0) 

El) 4(0, ~ ) El) 10(0,0), 

(b) (1000)--+( 1,1) El) 4(1,0) El) 4(0,1) El) 40 ' P 

El) 3(0,0), 

(c) (1000)-,,(2,1) El) (1,2) El) q, PEl) q, n 
El) (1,0) El) (0,1). 

Thus we see that the number of linearly independent 
vector operators in F4 is five in case (a), four in case (b), and 
none in case (c). So (a) and (b) are the only ones satisfying (i), 
although, since (a) is an equation with mixed spins 
(p = ± 1), there is no way that 1T(D2 ) and the al' can gener
ate all of F4 . 
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(3) S = E6: The embed dings of D2 in E6 satisfying (ii) 
are given by specifying the reduction of the natural represen
tation V(w) (dim. 27) 

(a) (100000)--+( t ' ! ) 9 4( ~ ,0) 9 4(0, ! ) 9 7(0,0), 

(b) (1 OOOOO)~( ! ' ! ) 9 (0,1) 9 (1,0) El) 5(0,0), 

(c) (100000)-,,(!, ~) 9 (~,!) 9 (1,1) 9 2(0,0), 

(d) (100000)--+3(1,0) El) 3(0, I) El) (1, I), 

(e) (100000)--+(!,!) 9 (1, !) El) ( !, 1) El) (1,Q) 

9 (0,1) El) ( ! ,0) El) (0, ! ) El) (0,0), 

(f) (100000)-,,(0,2) 9 (2,0) 9 ( ~ , ~ ) 9 (0,0). 

In cases (a), (b), (d), sl(2,iC)R can be embedded in all three 
noncompact real forms of E6 ; in cases (c), (e), (t), sl(2,iC)R 
can only be embedded in two real forms. '2 

The embeddings (a), (b), and (c) arise from 

E6--+F4 

(natural) (100000)--+(0001) 9 (0000), 

(adjoint) (010000)--+(1000) 9 (0001). 

Thus in (a) there are 5 + 1 = 6 vector operators in E6 ; but E6 
can still never be generated by 1T(D2) and the al'. In (b) there 
are 4 +4 = 8 vector operators in E6, and in (c) none. 

We reject (d) and (t) immediately, since there are no 
vector operators at all. Thus we need only find directly the 
branching rule for the adjoint representation of E6 according 
to embedding (e). 

The root system tP for E6 is constructed in R8 as20 

± (E; ± E) I<;i <j<;5 ( v(i) = ° or 

!(Es - E7 - E6 + it, (-I)'~;)E;). + v(i) even] 

The simple roots being 

a, = nEg - E7 - E6 + (E, - E2 - E3 - E4 - E5)], 

We have l7 

!*(a,) = fi, - fiz = (0, i), 

TABLE II. The values ofj*(aJ for the embeddingjof D2 in F •. 

(a) (b) (c) 

j*(a,) q.- n (0, J) (0, I) 

j*(a,) (0,0) (0,0) (0,1) 

j*(a,) (0,0) (0,0) (j, - n 
j*(a.) (0, l ) (j,- n (0,1) 
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j*(a2) = H - J.l1 - J.l2 - J.l3 + 6J.L4 - 4J.l2S + 2J.l26 + 2,u27) 
= (0,1), 

j*(a3) = J.l2 - J.l3 = (0, ! ), 
j*(a4) = J.l3 - J.l4 = q , - n, 
j*(as) = J.l25 - J.l26 = (0, ! ), 
j*(a6) = J.l26 - J.l27 = (0, ! ). 
Thus we can findj*(a), VaEtP, and the branching rule for 
the adjoint representation is 

E6-D 2' 

(010000)-( ~,!) EB (!, ~) EB (1,1) EB 2(1,!) EB 2(! ,1) 

EB 2( 1 ,0) EB 2(0,1) EB 2( ! ' ! ) EB 2( ! ,0) 

EB 2(0, ! ) EB (0,0). 

We conclude that there are two vector operators in E6 ; 

however, 1T(D2) and the aft can never generate all of E6 , since 
(e) corresponds to mixed spins (p = ± 1). 
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This paper continues the study, begun in a previous paper, of the role of real Lie algebras in the 
theory of finite-dimensional Lorentz invariant wave equations of the form (atta + iK)¢'(X) = O. 
The connection with the discrete transformations of space reflection and charg~ conjugation is 
established. The consequences for the formation of infinite-dimensional wave equations are 
briefly discussed. 

PACS numbers: lUO.Qr, 03.65.Fd, 02.20.Sv, 02.30.Jr 

1. INTRODUCTION 

In a previous paper, 1 hereafter referred to as I, we began 
to examine the role played by real Lie algebras in the theory 
of finite-dimensional Lorentz-invariant wave equations of 
the form 

(1.1) 

where the a J.l (J-l = 0,1,2,3) are n X n matrices and K is a real 
nonzero constant. Such a wave equation is specified by a 
representation 1T of the Lorentz Lie algebra sl(2,q R, acting 
in a space V, which admits a vector operator! aJ.l}. We de
fined S to be the Lie algebra over IC generated by 1T(D2) and 
the aJ.l, where D2 denotes the complexification of sl(2,q R. 

In I we considered the problem of finding all possible 
real forms So of S that contain sl(2, qR, and solved it explicit
ly for the generic cases S = sp(n,q, so(n,q, and sl(n,q. 

In the present paper, which is a direct continuation ofl, 
we shall show in Sec. 2 that the existence of the discrete 
transformations of space reflection and charge conjugation 
is closely related to the existence of a real form So of S con
taining sl(2,IC)R. As mentioned in I, we show that for very 
many equations, in variance under these transformations 
leads to distinguished real forms. In Sec. 3 we briefly consid
er the formation of infinite-dimensional equations, and de
scribe how one can predict the nature of the spectra of solu
tions corresponding to timelike or spacelike momenta. 

Any unexplained notation is as in I. Some results of Ref. 
2 will also be used. We write 

(1T,v) = C~ l¢';';~ I Y;) , (1.2) 

where Y; is the direct sum of n; copies of (k;,lJ. 

2. THE RELATION BETWEEN SPACE REFLECTION, 
CHARGE CONJUGATION AND REAL FORMS 

A. Space reflection 

We restate the results of Ref. 2 in a more general form, 
allowing for the presence of repeated representations in 1T. 

If 

¢' P(x') = P¢'(x), (XO' = xO,x' = - x), 

then P satisfies2 

PK3P- 1
, =L3, PK ± p-I =L±. 

We also require 

p 2 = c/, 

(2.1) 

(2.2) 

where c = 1 for integral spin (p = 1) and c = ± 1 for half
integral spin (p = - 1). (When we consider charge conjuga
tion in 2.2, we shall see that we have to take c = - 1 for 
certain equations with half-integral spin.) The parity opera
tor Pexists if and only if the subrepresentations (k,1 ) and (/,k ) 
of 1T always occur with the same multiplicity. 

The wave equation (1.1) is invariant under space reflec
tion if and only if 

(2.3) 

The matrix blocks of P are, in terms of the decomposi
tion (1.2), 

[iipiJl = Dij"(I)®G;. (2.4) 

where" (t)EGL(n; ,q and G; is given by (3.4) in I. We have, 
from (2.2) and (2.3), 

"mil (7) = c/, 'Vi, 

"(i)ATJ"(j)~1 = -A;j, 'Vi,j. 

If i=f,j J, then (2.6) becomes 

"(I)Aij"(j}-1 = -Aij' 

(2.5) 

(2.6) 

(2.7) 

which restricts the form of the matrices" (i) when i-f. For 
example, we have the following results. 

Proposition 2.1: Suppose that 1T contains no repeated 
subrepresentations, and write V = Ell ~~ I Vr, Vr irreducible, 
with (say) VI"'" VI' self-conjugate. Then invariance under 
space reflection is only possible if 

"(r) = - il (s) = ± C
l/2 whenever3 

Vr~V, (1<r,s«'). 

Proof This follows from (2.7) and the fact that 

"W=d 0 
Proposition 2.2: Suppose S is irreducible (and thus semi-

simple2), and that V = Ell 7 ~ I y', where each Y; is the direct 
sum of n; copies of (k;,k;). Then space-reflection in variance 
demands that 

"(i) = ± (- 1);~ II"" 'Vi. 

Proof Let R be the matrix with blocks 

[iiR ij] = Dij( -1);~I"(i)®/d.· 

Clearly [R,1T(X)] = 0, 'VxED2 , and it follows from (2.7) that 
[R,aO] = O. ThusR commutes with all the matrices inS, and 
so by Schur's Lemma R is a multiple of the identity. The 
result follows since V corresponds to integral spin (c = 1).0 

Clearly the map e p : X _PXP ~ I is very closely related to 
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the involutive automorphisms of the form s: X -MXM - 1 

(X EU, the compact real form of S ), which are extensions of S', 

where S' is the automorphism of su(2) <& su(2) that gives rise to 
the Lorentz Lie algebra sl(2,C) R.Such automorphisms were 
discussed in detail in I. In fact P and M must both satisfy 
(2.1); they also have the property thatP 2, M 2 = ± I. Howev
er, we still have to check that (Jp is actually an automorphism 
of U. The situation is clarified by the following. 

Proposition 2.3: Suppose S is irreducible, aO is Hermi
tian, and Pis given (P 2 = cI) such that (1.1) is invariant under 
space reflection. Then PEU(n). If further S~ sp(n,C) [so(n,C)] 
relative to a bilinear formB, then P 'EUSp(n) [UO(n)], where 
P' = Cf I/2P(Cf= ±1). 

Proof We have from (2.1) and the Hermiticity proper
ties of K and L 

(ptp)K(ptPt l = K, (ptp)L(ptpyl = L, 

and from (2.3) and the fact that a O is Hermitian 

(ptP)aO(ptPt l = aO. 

Therefore ptp commutes with everything in S, and so by 
Schur's Lemma P t P = kI (k > 0). Since P 2 = cI, we have 
k 2 = 1, whence ptp = I, so PEU(n). 

IfBXB- 1 = -XT(VXES)andweputQ=pTBP,then 
using (2.1) we obtain 

QKQ-I = pTBPKP-1B-1(PTYI = pTBLB-1(pTyl 

= _ pTLT(pTt l = _ (P-ILP)T = _ KT, 

and similarly 

QLQ-I = _LT. 

We have, using (2.3), 

QaoQ -I = _ (aO) T. 

Thus QXQ - 1 = - X T, V XES, and so we must have4 Q 
= P TBP = CfB, where (fEe. Using P 2 = cI, we find that 

Cf = ± 1, whence P' = CfI! 2PEUSp(n) [UO(n)]. 0 

We are mainly interested in the generic cases 
S = sp(n,q, so(n,q, and sl(n,q, which were described in I, 
for which U = usp(n), uso(n), su(n). The above result then 
says thatP 'EUSp(n), UO(n), U(n),sothat(Jp = (Jp' is indeed 
an automorphism of U; it is an involutive extension of S', and 
so it gives rise to a real form So that contains sl(2,q R. When 
S = sl(n,C), So is of the form su(p,q) (see Theorems 3.6 and 
3.7 ofl). When S = sp(n,C) or so(n,C), the nature of the real 
form So depends on whether p I2 = + I (CfC = 1) or 
p'2 = - I (CfC = - 1) (see Theorems 3.2-3.5 ofl). 

The invariance condition (2.3) tells us that5 

iaoEK= {XEUIPXp-1 =Xj, 
and 

aiEP = {XEU IPXp- 1 = - X J, so ial"ES. 

K is the maximal compact subalgebra of So. 
At this stage we know nothing about Cf. However, as we 

shall see, it is a reasonable conjecture that pcfC = 1. In order 
to investigate this claim, we need to write down the relevant 
formulas in a way that allows them to be compared with each 
other. 

Consider the D2 submodule 1'; of V, with i=l=f. Y; is the 
direct sum of n; copies of (ki>()' if S is irreducible, then 
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clearly in the graph2 of V there exists a symmetric path r 
from i to i: 

i~il~···~ifh~i, 

where 

This is so because, by (2.6), Aij = O¢:>AV = O. Put 

A [; =A7;mAimim , ... A;,i' 

The condition (2.6) for invariance under space reflection 
then gives 

II (z)-IA ;;ll (1) = ( - l)m + IA [, = pA [" (2.8) 

since m is even (odd) when the spin is half integral (integral). 
The condition BaoB -I = - (aO) T leads to 

..1,A ;;..1 7- 1 = (A [,)T, 

where B is written in the form 1 

k 

B = Efl (..1; ®B;). 
j= ] 

(2.9) 

(2.10) 

We also have, from the fact thatpTBP = CfBand (a~t = aO, 

ll(i)T..1 i ll(i) = cf..1 T, Vi, 

r t _ A ! \01 • '."",b -:-(A ;;i) - i;i' vi, Irl. 

(2.11) 

(2.12) 

The conditions (2.5), (2.8), (2.9), (2.11), and (2.12), 
along with the assumed irreducibility of S, are what we need 
in order to see if pcfC = 1. We now consider a range of 
examples. 

Proposition 2.4: With the above assumptions, suppose 
that there is some i (i=l=7) for which nj is odd, and that there is 
a symmetric path r from ito f for which det(A ;;) =1= O. Then 
pcfC = 1. 

Proof Since det(A [7)=1=0, and so det(A ['):10, we have 

det[A;;(A[,t l j=det(..1T..1;-I) [by (2.9)] 

= Cfnidet [ll (z)2] [by (2.11)]. 

But it is also equal to 

pn'det[ll (i)ll (ii-I] [by (2.8)] 

= (pct'det[ll(i)2] [by (2.5)]. 

Thus (pCfCt = 1 and so pcfC = 1 since n; is odd. 0 

Proposition 2.5: Keep the assumptions of Proposition 
2.2. Then pcfC = 1. 

Proof By Proposition 2.2, we find that 
ll(IY..1;ll{l) = ..1;. But by (2.11), 
II (IY..1;ll (I) = Cf..1 7 = cf..1;. Thus cf = 1, and pcfC = 1 be-
cause p = c = 1 in this case. 0 

Proposition 2.6: If 1T" contains no repeated subrepresen-
tations, then pcfC = 1. 

Proof This follows from Propositions 2.4 and 2.5. 0 
A deeper result is the following. 
Proposition 2.7: Let V = 1'; Efl Yj , with Y; the direct sum 

of n; copies of (k;'!J, where k; < I;. ThenpCfc = 1. 
Proof In this casep = - I and the path from ito fis 

trivial (m = 0). First of all we note that the matricesA;T and 
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AT; cannot be singular. For if AiT (and thus A'/i) are singular, 
let r T and r; be the projectors onto the kernels of A;T andATo 
and put 

(
r;®I 

r= o 
Then it is clear that [r,1T(x») = 0, 'VxED2,r

2 = r,r ¥=Oor I, 
and (1 - r)aOr = O. Butthis is exactly the condition6 thatS 
be reducible-which we have ruled out. 

Put 

R (I) = II (I)A [i I, 

R(l)= -II(l)Aii l
, 

and write 

R=(R(I)O®I 0) 
R (7) ®I . 

Then 

R (i)A;T = II (i) = -A;TII(T)A ii 1 [by (2.6)] 

=A;TR (I). 

Similarly, using (2.5) and (2.6), we have 

R (!)AT; = AT;R (I), 

and so [R,aO) = O. Clearly R commutes with all of S, there
fore R = kI (kEC, k ¥= 0), and 

II(I) = kA;T' II(7) = - kAT;' 

From (2.9) we have 

k-1J;II(I)iJ. T- I = - k- I II(7)T, 

i.e., 

II (IYiJ.;II(I) = - ciJ.T [by (2.5)]. 

Comparing this with (2.11), we have 0' = - c, whence 
puc = 1. 0 

In the general case we expect that irreducibility will 
force certain relations between II (I) and A [J. If there are 
many couplings present, with many distinct symmetric 
paths r from i to T, then these relations are difficult to find, 
but hopefully they imply that puc = 1. The factthatpO'c = 1 
for such a large class of equations strongly suggests that it is 
true in general. 

ThatpO'c = 1 has important consequences. We have 
P /2 = O'cI = pl. Thus for a given equation, with p fixed, and 
S = sp(n,q [so(n,q), the real form So of S determined by 
the parity operator P will be unique. The value of c is irrele
vant. The possible real forms are as follows: 

{
p - - 1 sp(4m,R) S = sp(n,q - , 
p = + 1, sp(2p,2q), 

{
p = + 1, so(p,q), 

S = so(n,q p = _ 1, so*(4m), 

where we have used Theorems 3.2-3.5 of I. 
The real forms not listed above arise naturally if we 

consider, instead of P, the operator M (M2 = c'I, c/ = ± 1) 
satisfying (2.1) and 

(2.3/) 

As in Proposition 2.3, we find that M TBM = 0'/ B 
(0'/ = ± 1). The analysis of the properties of M can be de-
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rived from those of P by the formal replacement 
p-p/ = - p, 0'-0'/, c-c/ in (2.5), (2.8), (2.9), (2.11), and 
(2.l2). We conjecture thatp'O"c' = 1, and we have 
M /2 = - P /2 = _ pI, where M / = 0'/1/2 M. The automor
phism 8M , ofusp(n) [uso(n») leads to the following real 
forms: 

sP(n,q{p = - 1, 
p= +1, 

{
p = + 1, 

so(n,q _ 
p- -1, 

sp(2m,2m), 

sp(n,R), 

so*(n), 

so(2m,2m), 

again using Theorems 3.2-3.5 of I. 
In such a case, (2.3/) says that 

iaoEP' = IXEUIMXM- I = -Xl, 

and 

aJEf(/ = IXEUIMXM- I =Xl, so al'ESo' 

K / is the maximal compact subalgebra. 
It should be noted, however, thatM(unlikeP) does not 

arise in a physical way. 

B. Charge conjugation 

Again we restate more generally the results of Ref. 2. 
We have 

tpc(x) = C t/J(x) , 

with2 

CK3C- I = -L3' CK±C-I = -L~, 

CC=I, 

CP=pc. 

(2.13) 

(2.14) 

(2.15) 

A charge conjugation operator exists if and only if the subre
presentations (k,l) and (/,k ) of 1r always occur with the same 
multiplicity. 

The wave equation (1.1) is invariant under charge con-
jugation if and only if 

C aOC- I = -ao. (2.16) 
The matrix blocks of C are, in terms of (1.2), 

[ilC 111 = I5i}C (i) ® Co (2.17) 

where C (i)EGL(n; ,q, and C; is given by (3.13) in I. From 
(2.14) and (2.15) we get 

C(i) c(fi =pI, 'Vi, 

C(i) II(fi = II (i)C (h 'Vi. 

(2.18) 

(2.19) 

Note that if we combine (2.18) and (2.19), we obtain 

II (7)c (I) II (7) C (I) = II (7)II (I)C (7) C (I) 

= cpl. 

If X = II (fic (i), then XX = cpI, and taking determinants 
givesdet(XX) = Idet(XW = (cpt'. This is consistent with the 
assumption P 2 = I for integral spin (p = 1); with P 2 = ± I 
for half-integral spin (p = - 1) ifallthe n; are even; but only 
withp 2 = - Iforhalf-integral spin when then; are all odd. 7 

No mixture of even and odd n; 's is allowed for half-integral 
spin. 
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The condition (2.16) becomes 

C(i~JC(j)-1 =Aij' Vii (2.20) 

Clearly the map 1/c:X--+ - CX TC- I = CXC- I is very 
closely related to the involutive automorphisms of the form 
s:X--+ - NX TN- 1 (XEU,NN = /), which are extensions ofs'. 
An argument similar to that used in Proposition 2.3 shows 
that ctc = I, i.e., CEU(n). Thus if S = sl(n,C), it is clear 
that 1/c is an automorphism ofsu(n); it gives rise to the 
unique real form sl(n,R) by Theorems 3.6 and 3.7 in I. The 
in variance condition (2.16) says that 

ia°El( = [XEsu(n)l- CXTC- I =X J, 

aiEP = [XEsu(n)l- CXTC- I = -X J. 
K ~uso(n) is the maximal compact subalgebra ofsl(n,R). 

3. INFINITE-DIMENSIONAL EQUATIONS 

Suppose we are given a finite-dimensional wave equa
tion, i.e., a representation 1T of D2 (acting in V) with an em
bedding D2 CS, where a f'ES, such that sl(2,qR can be em
bedded in a real form So of S. This situation was discussed in 
I. As in Sec. 3.1 of I, we have the Cartan decomposition 
So = K Ell iP; So contains the elements i(aO) - and (ai)-. On 
the group level we have SL(2,q C Yo, with exp[(iaO)] - and 
exp[(a j

)] -EYo' 

We can generate an infinite-dimensional equation by 
considering an irreducible representation p of Yo' Its prop
erties-most important being the SL(2,q content and the 
possible values of the momenta-are in principle obtainable 
from the representation theory of Yo' 

It is mathematically convenient to assume that p is a 
unitary representation of Yo acting in a Hilbert H ( p). Also, 
it is physically appropriate, since it leads in perturbation the
ory to vertex functions with very well-behaved form 
factors. 8.9 

Since pis K finite, the wavefunction ¢(x) appears ini
tially in a discrete "infinite-component" form, correspond
ing to the decomposition of p into irreducible finite-dimen
sional representations of K. It is straightforward to obtain 
the spin content from the branching rules for K--+so(3,C), 
obtained, for example, by Dynkin's method.2 (We observe 
that in generalp will not be so(3,C) finite, so a particular spin 
could occur infinitely many times.) However, finding the 
branching rules for p: Y o--+SL(2,C) is difficult because we 
typically have a direct integral of unitary irreducible repre
sentations, and the decomposition may not be at all obvious 
from the discrete form of the representation of the Lie alge
bra So. Clearly Dynkin's theory is of no use now, because the 
corresponding S module W will have no weight spaces as a 
D2 module. It may be better to attack the problem on the 
group level: if p is induced from a representation of some 
subgroup % of Yo, then a method due to MackeylO may 
enable us to find the SL(2,C) decomposition by examining 
the double cosets of Yo with respect to % and SL(2,C). 

It is well known II that the infinite-dimensional wave 
equation corresponding to p will in general possess a spec
trum of solutions corresponding to spacelike momenta 
(p2 < 0) as well as the more familiar solutions with timelike 
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momenta (p2 > 0). All these solutions must be considered 
when quantization is carried out. 8 

It is important from both the technical and physical 
points of view to know whether these spectra are discrete or 
continuous. Clearly, if pis so(3,C) finite, then since aO com
mutes with the generators of rotations it is clear that aO will 
have a discrete spectrum, and so there is a discrete spectrum 
of timelike solutions. In more general cases, we can use the 
results of Sec. 2.1. Ifwe are given a finite-dimensional parity
invariant wave equation, then there is a distinguished real 
form So = K Ell iP of S [when S is one of the generic algebras 
sp(n,C), so(n,C), sl(n,C)], such that ia°El(, aiEP. Clearly 
p(aO) andp(ai) have discrete and continuous spectra, respec
tively. Thus there will be a discrete spectrum of timelike 
solutions and a continuous spectrum of spacelike solutions. 
On the other hand, the real form So determined by the opera
tor M discussed in 2.1 gives the reverse situation: iaoEP', ai 
El( " so there is a discrete spectrum of spacelike solutions and 
a continuous spectrum of timelike solutions. 

We now give some examples. 
(i) The most familiar example is the case 

V = q,O) Ell (O,D, where So = sp( 4,R) ~ so(3,2), and p is the 
ladder representation of sp( 4,R), realized in terms of boson 
operators a .,a2,af ,a!. The initial finite equation is Dirac's 
equation, which is parity invariant [so we can take 
ia°El( ~u(2)], and the resulting infinite-dimensional equa
tion consists of the two Majorana equations.8 The Lorentz 
and spin contents arejuse 2 

sp(4,R)--+sl(2,C) R--+so(3) 

p--+[ !,O J--+(D Ell G) Ell (~) Ell ... , 

Ell [O,!J--+(O) Ell (1) Ell (2) Ell •••• 

There is a discrete spectrum of time like solutions and a con
tinuous spectrum of spacelike solutions. 8 

(ii) In general, we can consider the ladder representa
tionp ofsp(n,R) (n even) for anyoftheembeddings 3.1 or 3.6 
in I, where we can take ia°El( ~uqn) ifit is assumed that the 
finite equation is parity invariant. Such equations have been 
considered by many authors, in particular Palev13 and Taka
bayasi, 14,15 who introduces certain local kinematical varia
bles ;i' satisfying characteristic algebraic relations, which 
are interpreted as describing relativistic internal motion. 

(a) Takabayasi 14 considers the so-called "spinor mod
el", where V = 2q,0) Ell 2(0,!); the ladder representationp of 
sp(8,R) "contains" all the representations in the principal 
series of unitary irreducible representations of SL(2,C). 16 

(b) Starting with the (parity invariant) Kursunoglu 
equation,2 with V = (1 ,!) Ell (!, 1), one can consider the ladder 
representation of sp( 12,R). This example turns out to be very 
complicated: The Casimir operators for SL(2,q have a very 
messy form. The jump in complexity from the Majorana case 
(i) to this one is great, and it is certain that p is a direct 
integral ofSL(2,q representations. The method of induced 
representations mentioned earlier may be helpful in this 
case. 

(iii) Consider again the Dirac equation, 
V = (!,O) Ell (O,D, and consider the embedding 
sl(2,C) R Csp(2,2)~so(4, 1), with aiEl( ~usp(2) Ell usp(2). 
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We let p be a member of the principal series of unitary irredu
cible representations ofSp(2,2); then Strom 10 has calculated 
the direct integral decomposition of p into representations of 
the principal series ofSL(2,q. The wave equation based onp 
will have a discrete spectrum of spacelike solutions, but a 
continuous spectrum of timelike solutions. 
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This paper derives sum rules associated with the classical scattering of two particles. These sum 
rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship 
between the number of bound-state wave functions and the energy integral of the time delay of the 
scattering process. The associated classical relation is an identity involving classical time delay 
and an integral over the classical bound-state density. We show that equalities between the N th
order energy moment ofthe classical time delay and the Nth-order energy moment of the classical 
bound-state density hold in both a local and a global form. Local sum rules involve the time delay 
defined on a finite but otherwise arbitrary coordinate space volume.I and the bound-state density 
associated with this same region. Global sum rules are those that obtain when.I is the whole 
coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape 
and for scattering in any space dimension. Finally the set of classical sum rules, together with the 
known quantum mechanical analogs, are shown to provide a unified method of obtaining the 
high-temperature expansion of the classical, respectively the quantum-mechanical, virial 
coefficients. 

PACS numbers: 11.50.Li, 11.20.Dj, 03.80. + r 

I. INTRODUCTION 

This paper derives a class of sum rules associated with 
the classical scattering of two particles. The sum rules inves
tigated here are the classical analogs of a set of similar rules 
that are known to exist in quantum scattering. Most widely 
known of these quantum results is Levinson's theorem for 
the partial wave phase shift 0, (E). For a collision with angular 
momentum I and energy E this theorem states I 

l
O£ do, (E) 

0,(00) - 0,(0) = dE-- = -1Tn,. 
o dE 

(1.1) 

The symbol n, is the integer number of distinct eigenfunc
tions of the radial Schrodinger equation. The integrand in 
Eq. (1.1) is proportional to the time delay of the collision 
characterized by I and E. Thus Eq. (1.1) may be interpreted as 
a relationship between two physical properties of the scatter
ing system, namely the time delay and the number of bound 
states. Stated in this manner the classical analog of Eq. (1.1) 
is suggested at once. One should seek a moment property like 
Eq. (1.1) that relates classical time delay to the classical 
bound-state density. 

Recently the first step in this direction has been taken. 2 

If the potential is central and short ranged, then for scatter
ing in three dimensions the classical sum rule parallel to Eq. 
(1.1) has been obtained. In this paper we will extend these 
results in several different ways. First we will find the form of 
the sum rules for scattering in any space dimension. Second, 
the potential that causes the scattering will be allowed to 

-IWork supported in part by a grant from the Natural Sciences and Engi
neering Research Council Canada and by a NATO Research Grant. 

blBevoegdverklaard Navorser N.F.W.O., Belgium. 

have an arbitrary shape and not just a form that conserves 
angular momentum. The final generalization is the proof 
that the classical sum rules hold for arbitrary neighborhoods 
in coordinate space. This local character of the sum rules is a 
feature peculiar to classical mechanics that is not shared by 
the known quantum sum rules. The quantum rules are glo
bal statements valid only after an integration is carried out 
over the whole coordinate space. 3-6 

The basic analytical technique employed here is one 
adopted from the study 7 of the time evolution of quantum 
systems through arbitrary point sets .I in coordinate space. 
In that way, a basic connection between the time evolution 
and the state density has been found. This result is called the 
spectral property of transit time. This property states that 
the sum of the transit times of all scattering orbits through a 
region.I is equal to the density of all scattering states with 
energy E and support on.I. In the following we prove that the 
spectral property is valid for the classical time evolution pro
vided that the state density is that implied by the classical 
phase space. 

Section II describes the classical scattering theory we 
employ and provides a proof of the spectral property. Sec
tions III and IV state and prove the set of sum rules in their 
local and global form. Finally the last section gives an appli
cation of the sum rules to the problem of understanding the 
high-temperature behavior of the second virial coefficient. It 
is shown that the knowledge of the set of classical sum rules 
implies, exactly as in the quantum case,s the determination 
of the coefficients of this high-temperature expansion. 
Throughout this derivation, we clearly expose the unifying 
features of the classical and the quantum problem. 
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II. CLASSICAL SCATTERING, TRANSIT TIMES, AND 
SPECTRAL PROPERTY 

The objective of this section is to prove the spectral 
property of classical time delay. In order to do this, we first 
recall some key elements of classical scattering theory. Tran
sit time of a scattering orbit through a point set ~ is defined 
in the representation of the orbit provided by the solutions of 
the Hamilton-Jacobi equations. Then by relating the defini
tion of transit time to volume integrals in phase space we are 
able to prove the spectral property. 

The nonrelativistic collision of two particles is equiv
alent to the problem of a point mass moving in a potential 
field, once the center-of-mass motion has been removed. The 
position of the mass point will be given by a vector r in an n
dimensional Euclidean space. The momentum is denoted by 
the vector p. This pair of vectors is represented by Z = (r, pl. 
If Pi is the component of P in direction i, then the classical 
Hamiltonian will be defined as 

1 n 2 
H(Z)= - L Pi + v(r) , 

2/1 i~ I 

where vIr) is the potential and /1 is the particle mass. 

(2.1) 

Phase space is defined as the set r = I Z:H (Z ) < 00 J. A 
central feature of our derivation is that phase space can be 
decomposed into two nonintersecting parts: one for bound 
state motion, the other for scattering. Scattering theory is 
defined if the short range potential satisfies the following: 

(A) vIr) is bounded from below by - v _ > - 00. For 
M < 00, vIr) is continuous with bounded derivatives up to 
order 2 on I r:v(r) < M I· 

(B) IVv(r)1 <constlrl -2-fi, 8>0. 

Condition (B) implies that the force goes to 0 when ever 
r is large. Under these circumstances Newton's equations of 
motion 

t = (f,p) = (J.t-Ip , - Vv) 

have unique solutions for any initial conditions Zo = (ro, Po)' 
The map 

S,:Zo~Z, 

defines a one-parameter group of canonical transformations. 
First we define the bound-state region of phase space, 

r B' Let the norm of Z be 

IZ 12 = i (r7 + p~) . 
i= 1 

Take rn to be 

rn = IZ:IS, Z I,;;;;n for - 00 <l< 00 I· 
Then, the bound-state subset of r is given by 

The set r B is invariant under the action of S, and is Lebesgue 
measurable. The scattering orbits are, up to a set of measure 
zero, the complement of r B' The scattering phase space is 
defined 

rs = IZ:IS, Z I~oo as t~ + 00 and t~ - 00 I· 
Completeness in phase space is then the pair of statements 
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(2.2) 

rSurB ~ r. (2.3) 

The sign ~ in Eq. (2.3) denotes equality of the two sets only 
up to sets of measure zero. For potentials satisfying restric
tions (A) and (B), Hunzikerx has given a rigorous proof of 
completeness. From now on we call H (Z ) a scattering system 
if completeness is valid. 

A second general description of orbits is available from 
the solution of the Hamilton-Jacobi equations. 9 Hamilton's 
characteristic function, W (r, P ), provides a canonical trans
formation to a new set of coordinates Qi' Pi in which all but 
Q\ are constants of motion. For a time-independent Hamil
tonian, W satisfies the partial differential equation 

H(r;. a~ = PI = Eo (2.4) 
ar) 

We call H (Z ) an integrable Hamiltonian if Eq. (2.4) has a 
solution W(r, P) whose Jacobian satisfies 

(2.5) 

The generalized coordinates Qi are obtained from W (r, P) by 

Q = aW(r,P). 
I aP

i 

(2.6) 

If condition (2.5) is valid, then Eq. (2.6) may be inverted to 
find ri as a function of Qi' Pi' Further the Pi are given by 

(2.7) 

Because W is a canonical transformation, it preserves phase 
space volume elements. So, we have 

dZ = dnrdnp = dEdQI da, 

where 

da = IT dQi dPi . 
;=2 

Finally we note that 

QI =t+f3I' 

(2.8) 

(2.9) 

(2.10) 

where f31 is constant. From now on we drop the subscript on 

QI' 
Consider the definition of transit time of a scattering 

orbit through a space region~. Let m denote the Lebesgue 
measureonlRn. Assume~~lRn andm(~) < 00. TakeZtobea 
point in rs having energy H (Z) = E. The values of Z, 
= SI Z, for all t, define a scattering trajectory. This trajec

tory is particularly simple in the representation (E, Q, a). Let 

Z = (E, Q, a)EFs ; 

then 

Z, = (E, Q + t, a)EFs (2.11) 

Thus the parameters (E, a) label a scattering trajectory. Take 
PI(Z) to be a projector onto~, 

=1, if~ 
PI(Z) = PI(r,p) 0 h .' 

= , ot erwlse 

For a trajectory (E, a) the transit time through ~ is given by 
the integral (possibly infinite) 
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(2.12) 

We have divided this integral by Ii, so that TI(E, a) has the 
same normalization as does its quantum equivalent.7 Let PI 
be the (E, Q, a) representation of PI (Z), then we can write 
the transit time as 

1 foo -TI(E, a) = - dt PI(E, Q + t, a) 
Ii -00 

1 foo -=- dQPI(E, Q,a). 
Ii -00 

(2.13) 

The first form of transit time, Eq. (2.12), is valid for any H 
that is a scattering system. The second form, Eq. (2.13), spe
cifically assumes that H is integrable. 

The next step is to define the sum over all orbits with 
energy E. This sum is similar to the on-shell trace in quantum 
mechanics. Thus we denote the sum by the trace symbol tr: 

(2.14) 

At this stage it is advantageous to consider the restrict
ed phase space volumes determined by the conditions 
H (Z )<E and reI. This restricted phase space is the integral 

r(E,~)= _1_ I dZX/(H(Z))PI(Z), (2.15) 
h n Jr 

where XI is the characteristic function for the interval 
1= ( - 00, E). We represent the momentum vector in a 
spherical coordinate system 

dZ = d np d nr = pZ - 1 dpo dpn d nr . 

If H (Z ) = E, then Eq. (2.1) implies that 

Po = (4L)1/2(E - v(rW~2, (2.16) 

where we employ the notation 

(xl"+ =8(x)x\ v> -1, xERl, 

and where 8 (x) is + 1 for x;;>OandOforx <0. Integral (2. 15) 
then assumes the form 

r(E~) = Yn L dnr(E- v(r))~2, (2.17) 

where the constant Yn is 

Yn = [(2JLt/2lnh n] J dPn . 

For now on we denote s = n12. In the following it is conve
nient to isolate positive and negative parts of the potential, 
v ± (r) = 8 ( ± vIr)) vIr). Furthermore, it is useful to divide Rn 

up into three disjoint pieces given by the sets (for E> 0) 

R+(E) = {r:v(r»d2, rERnj, 

R_(E)= {r:v(r) < -d2, rERnj, (2.18) 

Ro(E) = {r: - d2<v(r)<E/2, rERnj. 

We now determine the conditions that ensure r (E, ~ ) is 
finite. 

Lemma 1: Let v _ EL S(~ ) and m(~ ) < 00, then 
r(E,~)< 00 forE< 00. 

Proof Take r (E, ~ ) = Y n I n (E, ~). It is apparent from 
integral (2.17) that I n (E, ~) is a positive increasing function 
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of E. Thus it is sufficient to show I n (E, ~ ) < 00 for positive E. 
In this case 

In(E, ~) = I d nr e(l - E-
1 vIr}}' 

JInRo(2<1 

+ I d nre(1-E- 1 v(r))' 
JInR (2<1 

In the first integrand we have, for al~ allowed r, 
11 - E- 1 v(r)1 <2. In the second integrand 
11 - E- 1 v(r)1 <2E- 1Iv(r)l. These inequalities give us the 
bound 

I n (E, ~ )«2Ej' m(~) + 2s I d nr Iv(r)l' . 
JInR (2<1 

This completes the proof. 
The finiteness of r (E,~ ) leads at once to a proof of the 

spectral propety. To begin with, note that r (E, ~) can be 
further decomposed into bound-state and scattering compo
nents. Completeness statement (2.3) implies 

r(E,~) = rs(E,~) +rB(E,~), 

where 

(2.19) 

rs(E,~)= _1_ I dZXI (H(Z))PI(Z);;>O, (2.20) 
h n Jr, 

The spectral property is then summarized by 
Lemma 2: Let H be integrable and constitute a scatter

ing system. Let v _ EL s(~ ) and m(~ ) < 00. Define the bound 
state density n(E, ~ ) by 

J 
n(E, ~) = -rB(E, ~). (2.22) 

JE 

Then trT I (E) and n(E, ~ ) are positive L 1 functions on every 
energy interval ( - 00, E), E < 00. For almost all E 

!... rs(E, ~) = 8 (E) trTI(E) , (2.23) 
JE 21T 

!... r(E, ~) = 8 (E) trTI(E) + n(E, ~) . 
JE 21T 
Proof Lemma 1 and decomposition (2.19) give 

00 >r(E,~);;>rs(E,~), E< 00. 

Let I = [0, E). Then 

00 > rs (E, ~ ) - r B (0, ~ ) 

= _1_ I dE' dQdaxAE') PI (E', Q, a). 
h n Jrs 

(2.24) 

This last inegral is bounded and has a positive integrand for 
all E', Q, a. By Fubini's theorem we can change the order of 
integration, giving us 

00 >rs(E, ~) - rs(O, ~) 

=-f; f dE' [J dadQPI(E',Q,a)] 

= 1< dE' trTI(E'). 
Jo 21T 

(2.25) 

Thus trT I (E) is an L 1 function with respect to the measure dE 
and relation (2.23) holds a.e. The step function 8 (E) reflects 
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the factthat for ZEF s ,H (Z ) > 0, there are no negative energy 
scattering states. The same derivation of Eq. (2.23) can also 
be applied to rB(E, ~). We have 

00 > rB(E, ~) = _1_ ( dE' XI(E') 
h n Jr" 

x f dadQPI(E',Q,a), (2.26) 

where 1= ( - 00, E). Thus r B (E, ~ ) is absolutely continuous 
and has a positive derivative, which is the bound-state densi
ty n(E, ~ ), for almost all E. This establishes that n(E, ~ ) is L I. 

Using the completeness sum (2.19) allows one to obtain Eq. 
(2.24). 

The final task of this section is to construct time delay 
from the transit times for comparable free and exact systems. 
Transit times for the non interacting system are obtained by 
setting vIr) = ° in the analysis above. Denote by Ho(Z) the 
Hamiltonian that results when vIr) = 0. In this case the scat
tering trajectories are all straight lines. There are no bound 
states. Free phase space is ro = ! Z:Ho(Z) < 00 J. If (E, Q, ao) 
is the solution of the Hamilton-Jacobi equation with H o, 

then S?(E, Q, ao) = (E, Q + t, ao)' With P~ the (E, Q, ao) re
presentation of PI (S ~ Z), the free transit time is defined by 

T~(E, ao) = ~ J~ 00 dt PItS? Z) 

=- dQP~ (E,Q,ao)' 1 foo 
fz -00 

The sum of transit times is, similarly, 

trT~(E) = _1_ f dao T~(E, ao) , 
h n - I 

and the restricted free phase space is 

(2.27) 

(2.28) 

ro(E,~)= _1_ ( dZXI(Ho(Z))PI(Z). (2.29) 
h n Jr. 

The spectral relation (2.23) clearly remains valid with 
rs (E, ~ ) and trT I (E) replaced by rolE, ~ ) and trT~ (E) re
spectively. Since both trTI(E) and trT~(E) are L I functions, 
their difference, which gives the time delay, is defined as 

trq(E, ~) = trTI(E) - trT~(E) . (2.30) 

The shift of restricted phase space volume induced by the 
perturbation vIr) is 

(2.31) 

Summarizing, we have: 
Lemma 3: LetHbe given as in Lemma 2. Let v_EL S(E) 

andm(~) < 00, then the time delay, trq(E, ~ )isanL I function 
of E on every finite interval (0, E). For almost all E. 

J OlE) - £jr (E, ~) = - trq(E, ~) + n(E, ~) . (2.32) 
JE 21T 

This is the spectral property for time delay. One advan
tage it has over the spectral property for transit times is that 
when~~Rn, it is plausible that trq(E, ~) converges to a finite 
limit whereas trTI(E) must diverge. 
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III. LOCAL SUM RULES 

A local sum rule will be a relation involving time delay 
on an arbitrary region ~ that has finite volume, m(~) < 00. 

Because the sum rules have somewhat different behavior in 
even and odd dimensional space, we will treat these two 
cases separately. 

The first objective is to analyze the stability of the phase 
space volume difference r (E, ~) - rolE, ~). The integral 
form of £jr (E, ~) is 

£jr(E,~)=rn L dnr[(E-v(r))'+ -(E)\]. (3.1) 

The formal expansion of (1 - E- I v) S is given by the general
ized binomial expansion, 

(1 - E-1V), = .! U)( - E-1V)j. 
j=O 

(3.2) 

The generalized binomial coefficient in Eq. (3.2) is just 
sIs - l)···(s - } + 1)(j1)-1. These coefficients are zero for}> s 
if s is an integer. When s is an odd multiple of 1/2, then the 
coefficients are nonzero for all}. For s > - 1 the coefficients 
decrease in magnitude as} increases. The series (3.2) con
verges absolutely if I E-1vl < 1 and s > - l.1O 

Consider now the case where the space dimension n is 
odd. Here it is useful to study a regularized version of 
£jr (E, ~) given by 

£jrN(E,~)=rn L dnr[(E-V(r))'+ -B(E) 

N+s-l12 ] 
X /~o U)( - v(r))j E' - j . (3.3) 

In this integral, N may be any nonnegative integer. Essential
ly, increasingN means that£jr N(E, ~) decreases more rapid
ly in EforlargeE. Specifically we have that(J IJE) £jrN(E, ~) 
satisfies the integral identity: 

Lemma 4: Let n be odd (s = nI2). Take 
u = N + s + 1/2, where N is any nonnegative integer. If 
vEL I (~ )nL U(~ ), then 

(3.4) 

The set ~ may be either of finite measure or equal to Rn. 
Proof If one integrates (3.4) by parts, it is seen that the 

two estimates 

(3.5) 

N>l, 

(3.6) 

are sufficient to show Eq. (3.4) is valid. Begin with statement 
(3.5). Decompose the integral (3.3) into a sum of three parts. 
For E> 0, 

(~ d n r = ( d n r + ( d nr 
J~ JInRo(E) JInR,IE) 

+ ( dnr, (3.7) 
JInR IE) 

where the sets Ro(E) and R + (E) are defined in Eq. (2.18). 
Examine the integral with domain ~nRo(E) first. rERo(E) im-
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plies I E- lu(r) 1< 1/2. Since the (j) are bound by a constant as 
j~ 00, the integrand of the Ro(E) integral is bounded by 

u - 1 . 

~+sl(l_ E-lu(r)Y - I (j)( - E-lu(rWI 
)~O 

<const~ + SI E- lu(rW . 

Thus the Ro(E) part of the integral has the bound 

constE- 1/2 ( d n rlu(rW<consU-1/21IuuIII . 
JInRolel 

Here II III denotes the L I norm on ~. 
Now look at the integral with domain ~nR +(4 For 

rER + (E), 12u(r) I >E. First note that every term in the sum over 
j is 0 (E- 1/2). A typical term is 

( d"rc'+N-)lu(rW<col~~t ( dnrlu(rW 
JInR .Ie) E JInR .Ie) 

const II ull < 1/2 U I' 
E 

(3.8) 

The term ~ (E - vir))' remains to be considered. Observe 
that (E - v(r))'«2 -IE)', so 

c' + N ( d n r(1 _ E-Iv(r))'+ <c' + N2 -5 m(~nR +(E)) . 
JInR+le) 

(3.9) 

However, one also has, for any u > 0, 

IlvUll I = ( d" rlv(rW> ( dnr Iv(rW 
JI JInR+(E) 

>12- 1Elu m(~nR+(E)). 

Thus 

m(~nR+(E))«2E-I)UllvUIII ' (3.10) 

and it follows that the ~ (E - vir))' portion of the integral 
with domain ~nR + (E) in (3.7) is 0 (e 1/

2
). Similar arguments 

apply to the~nR _(E) integral of EN Lll" N(E, ~). Thus estimate 
(3.5) is valid. 

To complete the proof of Lemma 4, we have to establish 
that the integral I (E2) is 0 (Ez- liZ). It is not difficult to justify 
interchanging the order of the dE and d n r integrations in 
I (E2). Once this is done, the dE integration, for fixed r, may be 
carried out exactly. The result is 

I(E2) = y" L d n r [A (r,E2 ) - B (r,E2 )] , 

where 

N - I (N - 1) (E2 - v(r))": + 5 - 'v(r)' 
A (r,E2 ) = N I I /' (3.11) 

,~O N+s-

N+S-I12(S) (-1)) . B (r,E2) = N I. . E"f+S-J v(r)). 
j~O J N+s-] 

(3.12) 

Decompose the d n r integration into two parts, one with 
Iv(r)1 > C2 and another with Iv(r)1 <c2' Estimates of the type 
found in Eqs.(3.8)-(3.1O) show that the contribution from the 
r domain with Iv(r)1 > E2 is 0 (Ez- 112). Thus it is sufficient to 
consider Iv(r) I <E2· Then we can write (e2 - vt 
= ~(1 - Ez- Ivt, a = N + s - /, and the binomial expan

sion of (1 - Ez- I vt is justified for a> O. With this expansion 
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the term A (r,E2 ) takes the form 

N- I (N - 1) v(r)1 
A (r,E2 ) = N I~O I N + s _ I 

X f (N + s - ') c'{ + s -1- k ( _ v(r))k . 
k~O k 

Let j = I + k; then the summation becomes 

A (r,E
2

) = f N I (N - 1) (N -: s - ') ( - IJi - 1 
)~O ,~O I ]-1 N+s-I 
Xv(r)) E"f+s-), 

where 1+ = min(N - l,j). The next step is to utilize the fol
lowing binomial identity, valid for j<N + s - 1/2: 

(~) (-w. = I(N-l)(N-:S-') (-W- 1 
• 

J N+s-] 1=0 I ]-1 N+S-I 
(3.13) 

Thus A (r,E2 ) can be written 

N+s--112 (s) ( 1)) 
A (r,E2) = N I . - . E"f+s- J vir)) 

)~O J N+s-] 

00 I (N - 1) (N + s - ') 
Nj~Nt;+II2I=O I j-I 

x(-W-
1 

E"f+'-)v(r)). N+s-l 
(3.14) 

So it is seen that the first group of terms in A (r, E2) exactly 
cancel B (r,E2)' Then second group of terms all have the 
estimate 

I ( d " r E"f + S -) v(rj1 I 
J InR()(2Ez) 

< ( d" rE"f+s-)Ei-Ulv(rW<E~+s-u Ilvull I , 

JInRaj2€z) 

wherej>u. Recalling that u = N + s + 1/2, we see that this 
term is of order 0 (E2- liZ) ifvEL U(~). This estimate is uniform 
in the variable). If s> 1/2, the sum overj of the absolute value 
of the binomial coefficients in (3.14) converges. Thus state
ment (3.6) is valid. Throughout this analysis it is possible to 
take~ to be Rn. 

A final remark concerns the identity (3_13). This is de
rived by making two series expansion of the integral 

F(x,a) = f dy yN-I(y - a)', 

where a > O. One series is obtained by carrying out the bi
nomial expansion of (y - a) s and then integrating term by 
term. The second series is found by changing variables in the 
integrand to 5 = y - a and then expanding (5 + a)N - I in a 
binomial series. Equating the coefficients of the same power 
in x gives one Eq. (3.13). This completes the proof of Lemma 
4. 

Identity (3.4) is a statement about the change in phase 
space associated with region ~ that occurs when a potential 
vir) is added to the free Hamiltonian Bo. For N = 0, identity 
(3.4) says that the volume of phase space associated with 
region ~ is invariant under the perturbation v, i.e. that 
ill" N= o( 00, ~) = O. For N> 1, the identity (3.4) says that EN 
is orthogonal to the regularized density (alaE) ill"N(E, ~). 
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The family oflocal sum rules for odd space dimension is 
obtained by combining the spectral property of time delay, 
Lemma 3, with the integral identity (3.4). The result is 

Theorem 1: Let n be odd (s = nI2). AssumeH is integra
ble and constitutes a scattering system. Set A. = minIs, 1) and 
u = N + s + 112. IfvEL A(.I)nL U(.I )andm(.I) < 00, then, for 
each integer N~O, 

(OC du.N I trq(e,.I) _ 21TYn N + I 112 (~) (s _ j) c' -j - I 
Jo j_1 ] 

X L d n r( - v(rWj 

= - 21T f: 00 de eN n(e, .I ). (3.15) 

In this form, the sum rules relate the energy integral of 
the trace of the classical time delay in region.I to the integral 
over the bound-state density n{€,.I) in the same region. The 
relation holds for every finite region.I. This last property is 
the locality property of the sum rules and is a feature not 
shared by any of the known3

-
6 quantum equivalents to Eq. 

(3.15). Lemma 3 established only that n(e, .I) is L I with re
spect to dE for energy intervals ( - 00, E). Thus for some 
systems it is possible that the integrals on both sides of the 
equality (3.15) are infinite. Sufficient conditions to ensure 
that these integrals are finite will be discussed in the next 
section. 

We now turn to the structure oflocal sum rules in even 
space dimensions. In this case s is a positive integer and 
(E - vIr)) S is a polynomial. This polynomial behavior is the 
reason that the even space dimensional sum rules differ from 
those in odd space dimensions. We now define the regular
ized shift in phase space volume by 

LlF(E,.I)=Yn L dnr[(e-v(r))'+ 

-e(E»f(~){-v(r))jc'-j]. (3.16) 
J=O ] 

This regularized version of LlF (E,.I) differs fromLlF N(E,.I) 
defined by Eq. (3.3) in that there is no N dependence. The 
function LlF (E, .I) satisfies 

Lemma 5: Letn be even. IfvEL I (.I )nL N+ s+ I(.I )andN 
is a nonnegative integer, then 

f
al

..!') a 1 dE ~ -LlF(E,.I) = Yn yIN,s) d n r v(r)N+S. (3.17) 
- 00 aE ..!' 

The constant YIN,s) and a(.I ) are given by 

S (s) (- 1),-W 
v(N,s) = I. .' 

j=O] N+J 
N~I, 

= ( - 1)" N = 0, 

a(.I) = sup v+(r). 
rE..!' 

(3.18) 

(3.19) 

The set.I may be either of finite measure or equal to Rn. 
Proof An integration by parts shows that relation (3.17) 

is implied by a pair of identitites. The first of these gives the 
behavior of ~ LlF (E, .I) at infinity 

~LlF(E,.I) = Yn ~ L d n r( - vIr))' + RN(e) , (3.20) 
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where the remainder RN(E)isO(E-I). Ifa(.I) < 00, thenRN(E) 
= 0 for £ > a(.I). The second identity is 

f' 00 de N EN- I LlF(e,.I) = Yn ef L d n r( - vIr))' 

- Yn yIN,s) L d n rv(r)N+s. 

(3.21) 

First consider Eq. (3.20). Definition (3.16) implies for 
e>O 

I=~ (LlF(E,.I) - Yn L d n r( - vIr))'] 

=Yn~ie)c'-j( dnr(-v(r))i. 
j = 0 ] J..!'nR +12E) 

Since v(r»£ for vER +(2E), one has 

II I.;;; ~ i (~) ( d n r Iv(r)IN+s+ I 

E j=o] J..!'nR,12E) 

.;;; ~ i (~) IIvN+s+ III..!' . (3.22) 
£ j-O ] 

SO II I isO (e-I).Ifa(.I) < 00 andE>a(.I), then.InR+(2E) = 0 
and I = O. This proves Eq. (3.20). Next examine integral 
(3.21). Interchange the dE and the d n r integrations. One 
then finds the result (3.21) from direct calculations for any 
E2 > O. It is clear that throughout this analysis the set.I may 
be equal to Rn. 

The local sum rules are found by introducing the spec
tral property oftime delay into Lemma 5. We have 

Theorem 2: Let n be even (s = nI2). Assume that H is 
integrable and constitute a scattering system. If m(.I) < 00 

and vEL I (.I )nL N + S + 1(.I), then, for all nonnegative integers 
N, 

r(..!') d£ ~ [trq(£,.I) - 21TYn sf (~) (s - j) c' -j- I 

Jo J= I ] 

X L d n r( - v(r))j] 

[

(I) 

= - 21T _ '" d£~ n(E,.I) 

+ 21TYn yIN,s) L dnrv(rt+s. (3.23) 

It is of interest to compare the local sum rules for even 
and odd space dimension. One difference is the appearance 
in even dimensions of the additional potential dependent 
term on the right-hand side ofEq. (3.23). The simplest case to 
discuss this difference is the N = 0 sum rule. If n is odd (e.g., 
s = 112), then estimate (3.5) gives us Llr (oo,.I) = O. This 
means that the shift in phase space volume associated with.I 
is zero when v is added to Ho. By constrast for n even (e.g., 
s = 1) we have from Eq. (3.20). 

Llr(oo,.I) = - Y2 L d 2rv(r). 

Thus there is a finite shift of the restricted phase space vol
ume in this case. The existence of this finite shift comes from 
the fact that (E - vIr))' is a polynomial. 

The second structural difference in the two types of sum 
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rules comes from the fact that when a(.I ) < 00, then it is suffi
cient for n even to integrate ~ trq(E, .I ) in dE from 0 to a(.I ). 
In odd dimensions however one must always integrate from 
o to 00. The most dramatic example of this difference occurs 
for potentials vir) that are everywhere attractive. Then 
a(.l') = 0, and the even dimensional sum rule Eq. (3.17) re
duces to 

[00 dE EN n(E,.l') = Yn v(N,s) L d n r v(rt + S (3.24) 

In this case this sum rule has collapsed to a statement pre
dicting the integral over the energy moments of the bound
state density n(E, .l' ) in terms of an integral over the potential. 

IV. GLOBAL SUM RULES 

Global sum rules are those rules which are valid for the 
entire space region Rn. We know already that the basic inte
gral identities involving the regularized phase space density 
(alaE) Jot (E, .l'), Eqs. (3.4) and (3.17), are valid for.l' = Rn. 
Thus the principal problem that must be studied in order to 
establish the global sum rules is the characterization of the 
convergence properties of Jor (E, .l'), n(E,.l'), and trq(E,.l') as 
the region.l' enlarges to become Rn. Let!.l'; ) denote a collec· 
tion of increasing sets of finite measure in Rn. Then we say.l'; 
converges strongly to .l'(;;Rn if for every fEL I(Rn) 

(4.1) 

In Eq. (4.1), X I, (r) is the characteristic function for the set.l';. 
We examine separately the convergence problem for the 
phase space shift Jor (E, .l';), the bound-state densities 
n(E, .l';) and the time delay trq(E, .l';). 

We define a potential v to be bound-state limited ifthere 
exists an E + < 00 such that there are no bound-state orbits 
with E > E + and r B (E +' Rn) < 00. We know that the function 
r B (E, Rn) is an increasing function of E. Thus, if v is bound
state limited, it follows that r B (0, Rn) < 00. The phase space 
representation of r B (O,Rn) is 

(4.2) 

So a necessary requirement for v to be bound-state limited is 
that v _ EL '(Rn). If v is everywhere attractive, then there are 
no positive energy bound orbits so that the requirement 
v _ EL '(Rn) is also sufficient. The condition that H is not al
lowed to have bound orbits with energy greater than E + is 
satisfied if E + > a(Rn) where a(Rn) = SUPfElII" v+(r) < 00. This 
class of bound-state-limited potentials should include nearly 
all cases of physical interest. 

We will first prove the convergence properties of the 
phase space shift. 

Lemma 6: Let vEL I(Rn)nL s(Rn). Then Jor (E, .l'), given 
by the integral form (3.1), is absolutely convergent for all 
E < 00, s > 0 and.l'(;;Rn. Furthermore, suppose that !.l'; ) is a 
sequence of finite measure sets converging strongly to.I (;; Rn 

in the way indicated by Eq. (4.1), then 

lim Jor (E, .l';) = Jor (E,.I), a.e. 
i-ac 

(4.3) 
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Proof Consider the bounded ness first. Let E';;O; then 
E - v(r).;; - vir) so that we get 

Jor (E, .l') = Yn 1 d n r(€ - v(rW+ 

';;YIl ( dnr(-v(r))'.;;llv'll, 
JInR (- 21<11 

where 

Ilv'll = t, d n r Iv(r)I' . 

Take now E> 0; then 

Jor(E,.l')=ynE' Ldnr[(I-E-IV(r))s+ -1). (4.4) 

Decompose the domain.l' according to (2.18), viz., 

.l'=.l'n !R+(E)uR_(E)uRo(E)). 

I t is then straightforward to obtain the following bound from 
Eq. (4.4): 

IJor(E,.l')I';;E'!C I ( d"r 
J Inl R • «)uR 1<11 

(4.5) 

+ C3 ( d" r IE-I v(r)I') , 
JInR 1<) 

where C I, C2, and C3 are finite constants depending on s. To 
bound the first integral in (4.5), we note 

oo>llvll> ( dnrlv(r)1 J Inl R +1<)uR _1<) I 

> 1€l21 m(.l'n!R+(E)uR_(E)J). 

So we get the final result 

IJor (E,.l')1 ';;c; E' - I II vii + c; E' - I Ilvll + c; IIvslI < 00 • (4.6) 

Now we consider the convergence problem (4.3). The 
symmetric difference of two sets.l'; and.l' is denoted by 
.l';Jo.I = (.l'j \.l' )u(.I \.l'j). Take E < 0; then E - v(r).;; - vir) 
so that 

IJor (E, .l';) - Jor (E, .I ) I 
= ( d n r(E - v(rW+ .;; ( ( - v(rlY+ 

JI~I JI~I 
Since Iv(r)lsEL I(Rn), the definition of strong convergence of 
!.Ij J-+.l', Eq. (4.1), implies 

IJor (E, .l';) - Jor (E, .l' ) 1-+0 as i-+ 00 • (4.7) 

For E> 0, estimates similar to (4.6) show that (4.7) remains 
valid. Note that the set.l' may be Rn. 

Next, we prove the convergence properties of the 
bound-state density. We have 

Lemma 7: Ifv is bound-state limited, then n(E, Rn) is an 
L I function of E on the interval ( - 00, E +). For .l'j converg
ing strongly to Rn then 

lim n(E,.Ij ) = n(E, Rn), a.e. (4.8) 
;_00 

If, in addition, v _ EL N + s(Rn), then 
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(4.9) 

Proof: First observe that for fixed E the sets r B (E, .Ii) are 
nondecreasing for i increasing, and rB(E, R);;;.rB(E, .Ii) for 
all i. One has by definition of the bound-state density 

J<- [n(E', R") - n(E', .Ii)] dE' = rll(E, lin - rll(E, .Ii);;;.O. 

(4.10) 

This implies n(E', R");;;'n(E', .Ii);;;.O for almost all (a.a.) 
E'E( - 00, E +). Since rll(E +, Rn) < 00, it follows that n(E', Rn) 
isL Ion the interval ( - 00, E +). Furthermore, sincerll (E,Rn) 
;;;.0 for all E, one has that n(E,R");;;,O for a.a. E. The family of 
functions n(E',.Ii ) are positive and uniformly bounded a.e. 
by a positive L I function n(E', R"). So, far a.a. values of E', 
n(E', .I,) must have a limit as i_ 00. The Lebesgue dominated 
convergence theorem then applies to the i-+oo limit ofEq. 
(4.10): 

, • oc 

= f oc [n(E', Rn) - !i~ n(E',.Ii )] dE'. (4.11) 

Consider again the left-hand side ofEq. (4.11) and write it, by 
using Eq. (2.21), as 

= lim ~ ( dZ;t'I(H(Z)) [I -P.r,(Z)] , (4.12) 
I --'oc h J r

ll 

where I = ( - 00, e). Since v is bound-state limited, 
X/ (H (Z )) is an L 1 function of Z on r B' Thus the integrand 
Xl (H (Z )) [1 - P.r

i 
(Z )] is bounded by the L 1 function 

X AH (Z )) and has a limit 0 as i- 00 for each Z. Again we may 
apply the dominated convergence theorem to bring the limit 
i- 00 inside the integral (4.12) and get ° for the whole expres
sion. This result, together with Eq. (4.11) implies (4.8). 

Finally we must demonstrate the bound (4.9). First cal
culate the phase integral of IH(Z )I N X/(H(Z)) for 
1= (- 00,0): 

[00 dE I EIN n(E,Rn) 

=Yn S r dnr[ dEIEIN(E-v(r))'-I. (4.13) 
JR I1 vIr) 

For E values satisfying, v(r)<e<O one has the inequalities 
I EI N« - v(r))N. Thus standard estimates, like the ones used 
in Lemmas 4 and 5, lead to 

This bound (4.14) controls the behavior of the Nth moment 
of the negative energy boundstate density. It remains to 
consder the positive energy moments of n(e, Rn). We have, 
for I = [0, E) and ° < E < E + , 
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La dZH(Zt X/(H(Z)) 

= f dE'(E,)N n(e', Rn) 

<~ f de' n(E', Rn) 

= ~ [ra(E, W) - rll(o, Rn)]. (4.15) 

If v is bound-state limited, then r a (E, R") < 00; if v _ E.L S(R"), 
then rll(O, Rn) < 00. Thus Eqs. (4.15) and (4.14) establish 
bound (4.9). 

The convergence properties of the time delay function 
are summarized by 

Lemma 8: Suppose H is integrable and forms a scatter
ing system. Assume that v is bound-state limited and satisfies 
vEL I(Rn)nL'(Rn). If [.Ii l is a sequence of finite measure sets 
in Rn that converge strongly to R", then the functions 
trq(E, .Ii) have a limit as i-+ 00 for almost all E, 

trq(e, Rn) = lim trq(E,.Ii ) • (4.16) 
i- · ... 00 

The function trq(E,Rn) is an L 1 function of E on the interval 
( - 00, E) and satisfies 

~.Jr (E, Rn) = () (E) trq(E, Rn) + n(E, Rn) . (4.17) 
aE 21T 

Proof: For m(.Ii ) < 00 Lemma 3 gives us 

~.Jr (E, .Ii) - n(E, .Ii) = () (E) trq(E,.Ii ) . 
aE 21T 

So trq(E, .Ii) has a limiting value as i-oo, ifboth 
(alaE) .Jr (E, .Ii) and n(E, .Ii) possess a limit. Lemma 7 
shows that if v is bound-state limited, then n(E, .Ii) has a limit 
and this limit is L 1 in E on the interval ( - 00, E). It suffices 
therefore to show that (alae).Jr (E,.Ii ) has a limit and that 
this limit is Lion ( - 00, E) to prove the lemma. 

Take s;;;.l first. Divide the space Rn into two disjoint 
sets: 

(4.18) 
S_ = [r: rERn

, vIr) <Ol . 

Clearly S+uS_ = R" andS+rIS_ = 0. The phase space shift 
.Jr (E,.I) can be divided according1y,.Jr =.Jr + +.Jr -. 
Recalling Eq. (3.1), we have 

.Jr±(E,.I)= J~oo dE' l-n.E dnrYn 
+ 

(4.19) 

where.I~ Rn. The integrand of the energy integral in Eq. 
(4.19) will be called nS± (E',.I ).It is straightforward to check 
that the n'+ (E', .Ii), respectively nS

_ (E', .Ii), are positive in
creasing, respectively negative decreasing, functions of .Ii 
for increasing.Ii and fixed E'. From Lemma 6, we know fur
thermore that .Jr(E',.Ij ) and.Jr ± (E',.Ii l< 00 for .Ii ~Rn 
ifvEL I(Rn)nL S(R") and E' < 00. So the sequences [n'+ (E, .I j Jl 
must have a limit as i-+oo. Then the monotone convergence 
theorem gives 
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!i~ f = dE' n'± (E', .Ij ) = I~ = dE !~~ n S

± (E', .Ij ). 

(4.20) 

Using result (4.3) of Lemma 6, the left-hand side ofEq. (4.20) 

can be written as 

!i~ t1r ± (E,.I,) = t1r ± (E, lin = I: cc dE' nS
± (E', JRn) . 

(4.21) 

Comparing Eqs. (4.20) and (4.21), we get the results 

lim n'± (E', .Ii) = n'± (E', JR") 
i -"oc 

for almost all E, and, of course, n'± (E', JR") are L I functions of 
E' on the interval ( - 00, E). Thus summing up the n'+and 
n' gives us immediately 

lim i!.. t1r(E, .Ij ) = i!..t1r (E, JR") a.a.E, (4.22) 
j-x aE aE 

and (a laE) t1r(E, JR") is L I on ( - 00, E). 
The case s = ! can be handled in the same way by divid

ing JR as follows 

S+(E) = !r:rEJR, E>v(r»Oj, 

S_(E) = R\ S+(E). 

The first set leads to a positive nS+ (E,.I), the second one to a 
negative n'_ (E, .I). The rest of the proof goes through 
unchanged. 

Global sum rules result immediately by combining Eq. 
(4.17) of Lemma 8 with the two integral identities (3.4) and 
(3.17). The result is 

Theorem 3: Assume that H is integrable and constitutes 
a scattering system, and that v is bound-state limited. Take 
u = N + s + 1 for n even or u = N + s + 1/2 for n odd and 
set A = minis,}). If vEL A (JRn)nL U(JRn

), then the sum rules 
(3.15) and (3.23) are valid for.I = Rn. Furthermore, the inte
grals over the bound-state density n(E, .I ) that appear in the 
sum rules are finite. 

V. HIGH·TEMPERATURE EXPANSION OF THE VIRIAL 
COEFFICIENT 

This section discusses one application that results from 
the set of sum rules found in Sec. IV. It is shown that these 
sum rules determine completely the high-temperature ex
pansion of the classical second virial coefficient, exactly as 
the quantum sum rules do for the quantum virial coeffi
cient.5 Throughout the derivation, this unifying fe~ture of 
the classical and the quantum problem is clearly exposed. 
We restrict our attention to the case of particles moving in 
three dimensions. As is well known, the quantum virial coef
ficient a2( /3) has a closed form representation in terms of the 
derivative of the phase shift. 11 This Beth-Uhlenbeck form of 
a2( /3 ) is really a time delay representation because the phase 
shift derivative is proportional to the quantum time delay. 
So, in general, the quantum vi rial coefficient may then be 
written 12 

a2(/3) = - 21/2 A 3 {j~1 d j e-
flE, 

+ (11217") L'" dEe-fl£trq(E)}. (5.1) 
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Here/3 = (kT)-1 and A = (fz2 217"/3 Im)I/2. The variable A is 
the thermal wavelength of a particle with mass m in a gas of 
temperature T. The discrete boundstate spectrum is I Ej I and 
d j denotes the degeneracy of the ith energy level. For a 
spherically symmetric potential the time delay sum trq(E) is 

= d 
trq(E) = 2 I (21 + 1) - O/(E) , 

1=0 dE 

where O/(E) is the I th partial wave phase shift. 
It is of interest to obtain the classical counterpart ofEq. 

(5.1) wherein the classical time delay of Sec. II is employed. 
The classical second virial coefficient a~ (/3) is the phase 
space integral 13 

a~ (/3) = - 21/2 A 3 h -3 I d 3r d 3 P e - /3 p'12/, (e - (Julr) - 1) , 

wheref.1 is the reduced mass m/2. Changing the variablep to 
the energy basis, one finds 

a~(/3) = - 21/2 A 3(417"2 1/2 f.13/2 h -3) 

xI du -/3E I d 3r [(E - v(r))1:2 - (E)I:Z], 

However, the integrand in this expression is just the density 
of states on the classical phase space, discussed in Sec. II, and 
is thus proportional to (alaE) t1r (E,JR3

). Using the spectral 
property (4.17) gives us 

a~ (/3 ) = - 2112 A 3 {f' dE e - /3, n(E,JR3
) 

+ (11217") f" dE e - /3E trq(E,JR3
)} • (5.2) 

The energies E + and E _ represent the largest and smallest 
values of the energy variable for which the bound-state den
sity, n(E, JR3) is nonzero. That the classical virial must have a 
form like Eq. (5.2) was first realized by Bar-Gadda. 14 He 
justified Eq. (5.2) on the basis that it is a semiclassical ap
proximation to the quantum solution (5.1). However, as we 
have just demonstrated, result (5.2) for the classical virial 
coefficient is an exact result. Another exact expression for 

a; ( /3 ) in terms of the classical S matrix has been given by 
Bassetto, et al. 15 Their result is consistent with our time de
lay solution (5.2). 

By comparing Eqs. (5.1) and (S.2) it is seen that when 
one evaluates the virial coefficients in terms of time delay, 
the form of the solution is the same in both the classical and 
quantum cases. So both equations may be summarized by 

a,( /3) 

= _21/2 A 3 {f' dU-/3E ny (E) + i= dU-/3E tr~~E)} 

(5.3) 

In Eg. (5.3) we have decomposed a y ( /3) into its bound state 
and scattering parts and taken out the common factor 
- 2112 A 3. The index v is either c or q , which indicates the 

classical or q uan tum case, respecti vel y. In the quan tum case, 
the bound-state density nv(E) is the series of 0 functions 

D. Bolie and T. A. Osborn 891 



                                                                                                                                    

while classically 

nc(E) = n(E,JR3) . 

The classical and quantum time delays trqy(E) both satisfy a 
set of sum rules. Theorem 3 states the set in the classical case. 
The quantum analogue of this family has been obtained by 
Buslaev '6 and Bolle.s In both the quantum and classical case 
the sum rules assume a common form. The rule of order N is 

(5.4) 

The subtraction coefficients ry(J) are closely related in the 
two cases. One has for the first few terms 

rq(J)=rc(J), j= 1,2, 

rq(3) = re(3) + (1/128~) (2plfl)1/2 f d 3r [V v(rW· 

In fact the difference in value between r q (J) and rc (J) may be 
obtained from a simple recursion relationS found by Perelo
mov 17 in his study of the connection between the spectrum of 
the Schrodinger equation and Korteweg-de Vries type in
variants. All formula for the difference rq Uj - re Uj,j> 3, 
involve gradients of the potential and arise from the fact that 
v does not commute with the quantum kinetic energy 
operator. 

Our principal observation is that the set of sum rules 
(5.4) determines the small/3 (high T) expansion of the general 
virial av ( (3). To see how this comes about we use the method 
of Ref. 5. Note that a:( (3) may be written 

a:(/3) = -ry(1)1I1T{3-1/2+ i"" dE 

X e - PE[ trqv(E)/21T + rv( 1) E- 1/2 ] . 

The integral in this last equality can be expressed as 

dE e- iJE - dEl [trqy(E I )/21T + rv(1) EI-
I12

] 1"" d f"" 
o dE E 

= - f+ dEnv(E}-{3 i"" dEe-PEdE fX> dEl 

X [trqy(EI)l21T + rv(1) EI- 112] . 
The right-hand side is obtained by an integration by parts. 
The N = 0 rule (5.4) has been used to evaluate the E = 0 
portion of the surface term. This process may be repeated. 
For example, the last integral above is also 

/3 dE e -PE - dE2 dEl i"" d f'" f"" 
o dE E E, 

X [trqv(E I )l21T + rv(1) EI-
1I2

] • 

By adding rv(2) E I- 3/2 to the square bracket term this inte
gral can be computed with the help of an integration by parts 
and the use of the N = 1 rule to determine the nonvanishing 
part of the surface term. The entire series is 

as(/3)= ~ 2
J
-

1
(-1)j'\l'1Tr(')/3J-3/2 

v .£.. (2' _ 3)" y J 
J= I '.j .• 

- J~O f+ dE ny(E) ( -J~E)j , 
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with the convention ( - 1)1l = 1. The second sum here is just 
the negative of a:( (3); thus av ( /3) has the expansion 

a
v
(/3)= _2112 ,.1,3 f. 2j-l(.-1)Jylffrv(J)/3J-3/2. (5.5) 

J=l (2}-3)1l 

This last form gives us the high-temperature expansion of 
the virial coefficient. The only unknown constants entering 
this expansion are the ry(J), the constants that appear in the 
sum rule family (5.4). Thus it is seen that the sum rule family 
completely determines the high-temperature expansion of 
ay ( /3}, and this conclusion is valid in both the quantum and 
classical cases. Furthermore, in both cases we see an explicit 
cancellation between the bound state contributions and scat
tering contributions in this high-temperature expansion. 

The sum rules for single channel scattering theory, dis
cussed here, rely predominantly on the spectral property of 
time delay. This property is known to be valid in both classi
cal and quantum scattering. It is reasonable to expect that 
similar sum rules are realized in multichannel few-particle 
collisions and that they will again provide a method for ob
taining unified (classical and quantum) high-temperature ex
pansions of the few particle virial coefficients. 
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A method is proposed to obtain approximations converging from below to a finite number of the 

nonrelativistic binding energies of atomic systems. The method requires that the Hamiltonian be 
decomposable as a sum of an unperturbed part and a non-negative perturbation. The eigenvalues 
and the eigenvectors of the unperturbed part are assumed to be known. For computational 
purposes one needs the matrix elements of the square of the Hamiltonian, in addition to those of 
the Hamiltonian itself. These elements are used to construct a matrix valued function whose 
eigenvalues have the bounds as their fixed points. The elements of the matrix are obtained by 
solving a system of linear equations typical of variational methods. An iterative procedure is shown 
to yield converging lower bounds to the fixed points and thus to the binding energies. 

PACS numbers: 31.15. + g, 03.65.Ge, 02.60. + y 

1. INTRODUCTION 

The interest in devising methods to compute the lower 
bounds to the atomic binding energies stems from the fact 
that while it is feasible to compute converging upper bounds, 
e.g., using the Rayleigh-Ritz method, their accuracy re
mains undetermined. Thus lower bounds would enable one 
to determine the binding energies with a known degree of 
accuracy. As a result several lower bound formulas have 
been derived. 1-3 However, most of these formulas lack the 
desired convergence property, 1,2 some of them are valid only 
for the ground state energy, 3 and some require an unrealistic 
input, e.g" the exact binding energy.2 Computationally, 
most of the methods are much more difficult to use than the 
methods for the upper bounds and yield poorer results. 

In the present note we develop a method which enables 
one to compute converging lower bounds with realistic in
put. Because of the convergence property, the accuracy of 
the bounds can be improved to an arbitrary degree. A major 
requirement of the method is that the Hamiltonian be de
composable as a sum of an unperturbed part and a non-nega
tive perturbation. The discrete spectrum of the unperturbed 
part, as well as that of the total Hamiltonian, is assumed to be 
contained in the negative real line. Also the eigenvalues and 
the eigenprojections of the unperturbed part are explicitly 
used and therefore are assumed to be known. In Sec. 2, we 
show that the binding energies are the unique fixed points of 
the eigenvalues of a matrix valued function. A function was 
obtained with the same property in Ref. 3 but only for the 
ground state energy. However the present result reduces to a 
different one even in this case. In Sec. 3, we show that a 
matrix can be constructed by solving a set of algebraic equa
tions which approximates the previous matrix, and that the 
fixed points of its eigenvalues converge from below to the 
binding energies. Here we need the matrix elements of the 
square of the atomic Hamiltonian, in addition to those bfthe 
Hamiltonian itself. Most of the methods known require this 
input. 1,2 In Sec. 4, we show that an iterative procedure can be 

a'Supported in part by the NSERC grant No. A3604. 

used to approximate the lower bounds of Sec. 3 from below, 
thus yielding sequences oflower bounds that converge to the 
binding energies themselves. It is indicated in Sec. 5, that the 
present method also yields an approximate eigenvector. 

2. SOME PRELIMINARY RESULTS 

Let H = Ho + V, V;;;. 0 be the Hamiltonian represent
ing a nonrelativistic atomic system with the center of mass 
part removed, and K, the underlying Hilbert space 
equipped with the scalar product ( ,). We assume that the 
eigenvalues E b of Ho and the corresponding normalized ei
genvectors ",~,j = 0,1,2, ... ; are known and that - 00 <Eb 
< 0 for eachj. This can be achieved by choosing, for exam
ple, Ho to be the hydrogenlike part of H. Let {E ~ J be or
dered in a nondecreasing manner counting multiplicities and 
{ I/Jo J according to the order induced by {E b J • If some of the 
eigenvalues are degenerate, some members of {Eb J will be 
identical. In such a case the following analysis remains 
valid if the corresponding eigenvectors are taken to be any 
orthonormal set spanning the underlying subspace. There
fore we shall not distinguish this case from the one when all 
the eigenvalUes have multiplicity equal to one. 

Let the eigenvalues and the corresponding eigenvectors 
of Hbe denoted by {EjJ and {ifJj, respectively. We shall 
obtain lower bounds to Ej forj = 0,1, ... , J; such that 
Eg<.Ej <Eu <E~o+ 1 with Jo and Eu being arbitrary except 
for the stated inequality. Since Eu can be chosen arbitrarily 
close to E ~o + I, the procedure enables one to obtain lower 
bounds to all E j < E ~o + 1 and since Jo is arbitrary, to any 
finite number of E j < O. Further, let p~ be the projection 
"'~(t/J~, ). It is clear that H b = Ho(1- ~f~oPo);;;'E~o+ 1 and 
A =Hb + V-Eu;;;'E~o+I_Eu >0. 

Consider the (Jo + 1) X (Jo + 1) Hermitian matrix val
ued continuously differentiable function .JQ1(x) of 
XE( - oo,Eu) given by .JQ1(x) = d'(x) - (E - EJ), where lis 
the identity matrix, E is the matrix with elements 
Eij = - Eb~ij' and d'(x) = EI/2 ~(X)EI/2 with ~(x) being 
the matrix with elements 
~(x)ij = (At/J~,[(Eu -x)A +A 2]-IAt/J6)' LetA.j(x), 
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j = 0,1, ... , Jo; be the eigenvalues of ..w'(x) which are all real. 
Lemma 1: AnxoE( - oo,Eu)isaneigenvalueofHifand 

only ifit is a fixed point of ,U(x) for somej. 
Remark: By definition a fixed point Xo of A J(x) is a solu

tion of A J(xo) = Xo' 
Proof If Xo is an eigenvalue of H, there is a vector if; such 

that 
J. 

(Eu -xo+A)if;= - IE~~if;6, (1 ) 
J~O 

where~if;6 = p6if;. Sincexo <Eu andA > 0, wehavethat(Eu 

- Xo + A) > 0. Therefore (Eu - Xo + A )-1 exists as a 
bounded operator and hence 

J 

if;= - IE~~(Eu -XO +A)-1if;6· (2) 
J~ 0 

The identity (Eu - xo)(Eu - Xo + A )-1 
= 1 - A (Eu - Xo + A )-1 and some algebraic manipula

tion yields 

(3) 

where a is the column vector with components a. 
J' 

j = 0,1, ... , Jo; and the other symbols are as defined above. 
Setting a = € 1/2awe have that 

(4) 

i.e.,..w'(xo) has Xo as its eigenvalue. Since ..w'(x) is continuous, 
A J(x) for eachj, is continuous for XE( - 00, Eu ). Hence there 
must be A i(x) for some j with Xo as its fixed point. 

Now, if there is a AJ(X) which has Xo as its fixed point 
there must be an a such that (4) is satisfied and hence an a 
satisfying (3). Define if; by (2) with ~ so obtained. Clearly if; 
satisfies (1) and the proof will be complete if~ = (if;6,if;) for 
then (1) is equivalent to the original eigenvalue equation. 
This can be seen from the following. 

Let.Bbe the vector with elements (if;6,if;). It is easy to 
check that 

(Eu - xo).B = (€ - d(xo)€)a. 

From (3) the r~ht member is equal to (Eu - xo)a and 
since Eu - xo#O, (J = ex. 

From Lemma I it is clear that the study of E J, 

j = 0,1, ... , J, reduces to studying the fixed points of A J(x) , 
j = 0,1 , ... ,J ~ <,Jo. In the following we establish a one to one 
correspondence between E i and A J(x) for each j = 0,1, ... ,J. It 
is convenient, here, to introduce another continuously dif
ferentiable (Jo + I) X (Jo + I) matrix valued function !?lJ (x) of 
XE( - oo,Eu): !?lJ(x) = €1/2.%' (X)€1/2, where 
.%'(x)ij = (if;~,(Eu - x + A )-It/Io). Since !?lJ(x) is Hermitian 
its eigenvalues/1J(x),j = 0, 1, ... ,Jo; are real. Furthermore, it is 
straightforward to check that ..w'(x)a(x) = A J(x)a(x) if and 
only if !?lJ (x)a(x) = (Ji(x)a(x) 
= ([ Eu - A J(x) ]/(Eu - x)}a(x). It is clear that the fixed 

points of AJ(X) in ( - oo,Eu) i.e., forj = O,I, ... ,J~; are given 
bY.Bi(x) = l,j=O,I, ... J~. 

Lemma 2: For eachj,A J(x) has at most one fixed point in 

(-oo,Eu)· 
Proof For eachj, it follows from the Hellmann-Feyn

man theorem that 
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d(Ji(X) = (a, d!?lJ(x) a), (a,a) = 1, 
dx dx 

where ( , ) denotes the scalar product in C J" + I, the space of 
(Jo + 1 )-column vectors, and a is an eigenvector of !?lJ (x) cor
responding to the eigenvalue.B J(x). Substituting for !?lJ (x) one 
obtains that 

d~~X) = (u,[Eu -x+A ]-2U ):>0, 

J 

where u = I ai(x)€1(2if;~. But the equality implies that 
i=O 

(Eu - x + A )-IU = 0, i.e., u = 0, which in tum implies that 
a = 0. Therefore d.B i(x)/ dx > 0 and, hence, .B J(x) is a strictly 
increasing function ofxE( - oo,Eu). Therefore(Jj(x) = 1 can 
have at most one solution which implies the result. 

It is obvious from Lemmas 1 and 2 that forj = 0,1, ... ,1; 

E J is the fixed point of one and only one A j(x) and thus 
J ~ = J. For some values ofj,A i(x) may not have any fixed 
point in ( - 00 ,Eu)' This will happen if and only if Jo is strict
ly greater than J, i.e., if and only if some of the perturbed 
eigenvalues have crossed the next unperturbed levels. 

3. THE LOWER BOUNDS TO EJ 

The first step in obtaining the lower bounds to E j is to 
approximate A J(x) from below. For this, consider the follow
ing set of linear equations 

i aik(<PI,[(Eu -x)A +A 2]<Pk) = (<P1,Aif;6), (5) 
k~1 

/ = 1,2, ... ,n, 
where I <P k J ~ iiJ (A ) with iiJ ( .) denoting the domain. Define 
anew scalar product ( ,)+ oniiJ(A )by(u,v)+ = (Au,Av), u, v, 
EiiJ(A) and complete iiJ(A) with respect to (, )+ to obtain 
ll5(A ) = JIt' + ~JIt'. Terms like (u, A 2V) are to be interpreted 
as (Au,Av). The set of equations given by (5) takes the follow
ing form 

i ~(X)(<PI' [1 + (Eu - x)B ]<P/)+ = (<PI,Bif;6)+, (6) 
k~1 

/ = 1,2, ... ,n, 

where B is the closure in JIt' + of B' defined by (u, Av) 
= (u,B 'v)+, U E JIt', v E iiJ(A ). So defined, B is a self-adjoint 
non-negative bounded operator from JIt' + to JIt' +. Let f <P k J 
be an orthonormal basis in JIt' +. Then (6) takes the following 
form: 

[I + (Eu - x}Bn ]f~(x) = PnBif;6, (7) 

wheref~(x) = i aik(X)<Pk,Bn = PnBPn andPn is the ortho-
k~1 

projection on the subspace of JIt' + spanned by <Pk' 
k = 1,2, ... ,n.4 

Lemma 3: Let the symbols be as above. Then 

(i)Pn (x) --+ (Eu - x + A ) -'if;6 in JIt' + as well as in JIt', 

(ii)letfn (x) be the solution of (7) with if;6 replaced by an 
arbitrary <p.EK +. Then (A<P'!n (x))t(A<p.!(x)), where 
fix) = (Eu -x +A )-'<p. 

Proof The proofs of the stated results are standard. For 
example (i) is a special case of Theorem 1 of Ref. (4); the 
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convergence in (ii) follows from (i) with obvious replacement 
and the bound property follows from the easily derivable 
equality 

(f - fn,A¢) = (f - fn.B¢)+ 
= (f - fn,[l + (Eu - x)B](f - fn))+>O. 

Now, let .sfn(x) = iin(x) - (€ -EJ), where iin(x) = 
€1/2d n (x)€lI2 with ;t n(x) being the matrix with elements 
(A¢r~,fin(x)), i,j = O,I, ... ,Jo' Denote by A~(X),j = O,I, ... ,Jo; 
the eigenvalues of .sf n (x). In Theorem 1 we obtain lower 
approximations to A i(x) and thus to Ei. 

Theorem 1: With notation as above, 
(i)A~(x)tAi(x), j=O,l, ... ,Jo; XE(- oo,Eu/, 
(ii) Foreachjsuch thatA~(Eul <Eu,A~(x) has a unique 

fixed point E~E( - oo,Eu) and E~ tEi or E~ tEu' 
Proof (i) For any a E C J o + I with components ai we 

have that 

(a,(.sf(x) - .sfn(x))a) = (€ 1/2a,(d(x) - d n(x))€ 1/2a) 

= (A¢,f(x) - fn (x)HO 
[Lemma 3 (ii)], 

where ¢ = ~f,,= Oai€:(2¢r~ andf(x),fn (x) are as defined in 
Lemma 3 (ii). The convergence of .sf n (x) to .sf(x) from below 
in conjunction with the Hellmann-Feynman theorem im
plies that A ~ (X)tAi(X),j = O,l, ... ,Jo; XE( - 00 ,Eu). 

(ii)Let,B~(x)= [Eu -Ain(X)]/(Eu -x). As in the case 
of ,Bi(x), it follows from direct substituti~n that,B~ (x), for 
eachj, is an eigenvalue of f!IJ nIx) = €1/2f!IJ n(x)€1/2, where 
fiJ n (x) is a matrix with elements 
(B¢r~,B ~/2[l + (Eu - x)Bn ]-IB ~/2B¢r6)+. SinceB>O, 
B :;;.0 and B 1/2 is well defined. Also the eigenvector an of n? n 

f!IJ n (x) corresponding to the eigenvalue,B~ (x) is the same as 
that of .sf n (x) corresponding to the eigenvalue A ~ (x). The 
facts that ,Bi(X)>0 and d,Bi(x)!dx > 0 (Lemma 2) imply that 
,Bi(x) > 0. Since A ~ (x) <A i(x) we have that,B~ (x»,Bi(x) > 0. 

Now 

d,B~(x) = (an df!IJ nIx) an), (an,an) = 1 
dx dx 

= (Bun.Bn [1 + (Eu -x)Bn ]-2BnBun)+>0, 

where Un = ~f~o(an(X))i€:(2¢r~. Ifd,B~(x)ldx = 0, then 
[1 +(Eu -x)Bn]-IBnBun =Oandhence 

.B ~ (x) = (Bun,B ~/2 [1 + (Eu - x)Bn ] -IB ~/2Bun) = O. 
This contradicts the result that,B~ (x) > O. Hence 
d,Bin (x)ldx > O. 

It follows that ,Bin (X) is an increasing function of 
XE( - 00 ,Eu)· Also, since f!IJ n ( - CXJ) = O,[J~ ( - 00) = 0 and 
since A ~ (Eu) < Eu ,lim'~E".B~ (x) = 00. 

Hence,Bin(x) = I has a unique solution x = Ein <Eu.1t is 
clear that E~ is the fixed point of A~(X). 

Now, since A~ (X)tAi(x)..B~ (x)t,Bi(x). This together with 
the continuity of ,Bi(x) implies that5 Ein converges from be
low to the solution of ,Bi(X) = 1. If this solution is restricted 
to ( - 00 ,Eu), then it is also the solution of A i(x) = x i.e., it is 
E i implying that if E ~ does not converge to E u then E in t E i. 

Remark: (i) Since,B~ (x)t,BJ(x) for eachj the set [E~ J 
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cannot be smaller than the set lEi}. If an upper bound to E j 
is known then any Ein greater than the bound is irrelevant. 
However if J = Jo, this cannot happen. 

(ii) A ~ (Eu) cannot be greater than Eu for this will mean 
that,B~(x) <0 for some x <Eu which contradicts the non
negativity of f!IJ n (x). The case A ~ (Eu) = E" is irrelevant for 
that will imply that A i(x) has a fixed point equal to (or greater 
than)Eu ' 

4. LOWER BOUNDS TO E~ 

From Theorem 1 the problem of obtaining the lower 
bounds reduces to evaluating the fixed points of [A ~ (x) J in 
( - oo,E u - 8 ) with some {j > O. A value for 8 can be deter
mined by an upper bound Eiu to Ei, e.g., (Eu - {j) may be 
taken to be E~. If J = Jo' the fixed points of alI of the Aln (x) 
are of interest. However, the exact evaluation of Eln is not 
likely to be possible in most cases of interest. In the following 
we show that the usual iterative method can be used to ob
tain a sequence [E jnm } for eachj and n such that E inm i Ein· 
Th us [E inm I will provide con verging lower bounds to E 1 

which can be computed numerically. 
Lemma 4: For X <Ein we have that 

O<dA in (X)ldX <,Bin (x)< 1. 
Proof As in the case of ,Bin (X), it is easy to check that 

dA in (x)1 dx is non-negative. 
Now we have that 

d,Bin(x)ldx=(dldx)[Eu -A~(x)]/(Eu -x»O[Theorem 
1 (ii)] which reduces to (d IdxIA ~ (x) <,B~ (x). Further, for x 
E( - CXJ,E ~ ),,B~ (x) < 1 otherwise ,Bin (X) being an increasing 
continuous function will assume the value unity for some x 
E( - CXJ,E ~). This implies the result. 

After the fact that dA ~ (x)! dx < 1 has been established, a 
proof of the convergence of the iterative method is a stan
dard procedure. However, we give a proof here in order to 
show, in addition, the bound property of the resulting 
sequence. 

Theorem 2: Let xo<E ~ ,xm + I = A ~ (xm)' 
m = 0,1,2 .... Then 

xm = Einm tEin· 

Proof Using the fact that A in (E ~ ) = E in we obtain 

. lE~' dA~(X) 
El -x +1 = ---. 

n m x", dx 

Since O<dAin (x)ldx < l,xm <Ein implies that 
O<Ein - Xm + I <Ein - x m, i.e., xm <xm + I <Ein. From this 
and the induction principle, it follows that [xm I is a nonde
creasing sequence bounded by E ~ and hence must converge 
from below to alimitx ~E~. But 
x = limm~oc Xm + J = limm~oo A ~ (xm) = A ~ (X), i.e., x is a 
fixed point of A ~ (x) and since A ~ has E ~ as the unique fixed 
point, x = Ein • 

5. CONCLUDING REMARKS 

In order to compute the lower bounds E ~m by using the 
present method, one needs a starting lower bound. This is 
not a serious limitation for crude lower bounds can easily be 
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estimated, e.g., E~ will serve as one for Ein or Eg may be 
used as a starting bound for each E ~ if so desired. If in Theo
rem 2 the starting value xo>E ~, the proof can be easily 
modified to show that the resulting Xm iEin • This result, al
though not very interesting, may nevertheless be used to 
check the accuracy of E inm . Further, it is necessary in the 
present method to solve the set of equations given by (5) for 
each Xm starting with X o' The value Xm + I = A ~ (xm) is then 
obtained by constructing the matrix .nf n (x m ) from the sol u
tion and then diagonalizing it. This procedure has to be re
peated for eachj. 

Sincexm -+ xandf~(x) -+ (Eu _X+A)-I¢'Jo 

(Lemma 3) the proof of Lemma 3(i) can easily be extended to 

concludethatf~(xm) -+ (Eu -x +A )-1¢'6. Thus an ap-
",m __ co 

proximation to ¢'i is given by ¢'~m = ~1'~ 0 dnmi€):2f~ (xm), 
where d..mi is the ith component of the eigenvector d..m of 
.nf n (xm) corresponding to the eigenvalue A in (xm)· The con
vergence of ¢'~m to ¢'i requires, further, the fact that 

a~m -+ d where a i is the eigenvector of .nf(X), corre-
n,m_co 
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sponding to the eigenvalue Ai(x). Thus the present method 
enables one to approximate also the eigenvector ¢'i when Ei 
is nondegenerate. In the case when E i is degenerate it is easy 
to modify the computing procedure slightly to obtain an ap
proximation to the corresponding eigenprojection. 

IfEg is nondegenerate andEo°.;;;E ° <Eolsomesimplifi
cations occur. In that case if one chooses Eu < Eo I ,.nf(x) is a 
single function rather than a matrix with functions as en
tries. As a consequence the problem of obtaining the eigen
values and eigenvectors of .nf n (x) is nonexistent. 
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Using the analytical results obtained in a forthcoming paper, we discuss here the thermal 
blooming of collimated and focused laser beams in some simple steady state and transient cases 
where an approximation of hydrodynamic equations is available. We stilI obtain tractable 
expressions which make it possible to plot the isointensity curves. 

PACS numbers: 42.65.Jx, 42.68.Rp 

1. INTRODUCTION 

In a forthcoming paper! we give the solutions to first 
order for collimated and focused beams of both equations: 

aJS(r)a.s(r)=n2(r) + _1_ In(r) aJa. II(r) (1) 
J K~ 'J I(r) J'J n(r) 

and 

aJs (r)a. [ I (r) ] + I (r) aJaJs (r) = 0, 
J n(r) n(r) 

(1 ') 

where S (r) is the eikonal, I (r) the intensity of the light beam, 
n(r) the refractive number, Ko the wave number when n(r) is 

n(r) = 1 + E,u(r) + O(E2), (2) 

and when the second term on the right-hand side of (1) is 
approximated by [1111 10(r)]aJa/V lo(r), lo(r) being the solu
tion of Eqs. (1) and (1 ') for Ko-- 00 and E = 0. 

In Eqs. (1) and (1 ') we use the summation convention 
and the indexjtakes the values 1,2,3. 

Leaving aside S (r), we found for I (r) in the case of a 
Gaussian beam propagating along the oz axis with Z as 
parameter 

if [x(z),y(z),z] 

= _1_ I [X*(Z) y*(z) 0] 
Li ~E(Z) Li!E(Z) , Li!E(Z) , 

Xexp { - Efdt lSaJBj/.t[X(p),y(P),p] dp 

(3) 

The hat symbol means that diffraction is taken into account 
to order (E + (1IK~a2)), a is a transverse characteristic of the 
beam. Notations are as follows: 

X~ (z) = Xa (z) - EVa (Z), 

Va(Z) = fdt faall(x(p),y(p),p)dP a = 1,2; (4) 

A iE(Z) =D~(z) + 2E P -ZIJ)V3(Z), 
J 

V3(Z) = fdS fa~(x(p),y(P),p) dp; (5) 

Li ~E(Z) = D~(z) + 2Ej.(1 -j.) 
X [Il ( x(z) , y(z) ,0) + v3(z) ] , (5') 

I-zIJ l-zlJ z 

with 

D~(z) = (1 - Z/J)2 + z2/K~a4. (6) 

In the following sections we use the expression (3) to 
discuss thermal blooming in the atmosphere, first in the easy 
case of a collimated beam, and then for a converging focused 
beam either in the near field or in the far field, combining Eq. 
(3) with linearized hydrodynamics. 

For recent surveys on thermal blooming, one can con
sult Refs. 2 and 3. In particular, Smith3 and Gebhardt and 
SmithS have previously obtained some of the following 
results. 

2. THERMAL BLOOMING FOR A COLLIMATED BEAM 

For a collimated beam, Eqs. (5) and (5') reduce toLi iE(Z) 
= Li ~. (z) = 1 + (Z2 I K ~ a4

), where Z2 I K ~ a4 is the correction 
term due to diffraction, whose effects begin to appear beyond 
the Rayleigh distance K oa2

, that is about 6 km for a CO2 laser 
with transverse radius a = 10 cm. Here we assume z<Koa2 

so that one can neglect diffraction. Then it is shown in Ref. 1 
that Eq. (3) becomes 

Ip(x,y,z) = I(X,y,O)exp[ _ E tds (S (if3/(X,y,O) 
Jo Jo I (x,y,O) 

Xapll(x,y,p) + aJajll(X,y,p)) dp + O(E2
)], (7) 

where the index (J takes the values 1,2. When absorption is 
taken into account, one has instead of (1 ') 

aJs (r)aj [I (r) ] + I (r) ajaJS (r) = al (r), (8) 
n(r) n(r) 

where a is a constant linear absorption coefficient, and now 
one has 

Ip(x,y,z) = I (x,y,O)e -azexp{ _ Elz ds (5 [ if3I(x,y,O) 
o Jo I (x,y,O) 

X apll(x,y,p) + a Jajll(x,y,p) ]dP + O(E2)}. (9) 

Some authors (see, for instance Refs. 3 and 5) have ob-
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tained in a heuristic manner the following expression 

I ; (x,y,z) = I (x,y,O)e ~ azexp{ _ E I'd$" (S [ J131 (x,y,p) 
Jo Jo I (x,y,p) 

X a{3f-l(x,y,p) + J13a{3f-l(x,y,p) ]dp + 0(E2)}. (9') 

Although the two formulas (9), (9') do not agree, they give for 
thermal blooming the same practical results, due to the 
smallness of the absorption coefficient a (for another heuris
tic expression see Ref. 6). 

A. Steady state case 

Let us first consider propagation with forced convec
tion. The thermal distortion oflaser beams arises because the 
absorbed laser power in the medium changes the index of 
refraction and therefore changes the beam intensity itself. 
Indeed, one has as a function of temperature T 3

•
5 

dn 
n(r) = 1 + dT l1T(r) l1T(r) = T(r) - T(O), (10) 

where dn/ dT is the rate of change of the refractive index of 
the gas with respect to, temperature at constant pressure. 

For a continuous beam propagating along oz with a uni
form wind of velocity v in the x direction, the hydrodynamic 
energy equation is 

pcpvaT(r)/ax = a/(r), lim T(r) = To, (11) 

where the quantities p,cp are, respectively, the density and 
specific heat of the medium. Comparison of (11) and (10) 
gives 

dn 2 
Ef-l(r) = dT 11 T (r) + olE ), 

and after integration of ( 11) 

dn 1 IX Ef-l(r) = a --- I (x',y,z) dx' + 0(E2). 
dT pCp V ~ 00 

That is, taking (9) into account, 

Ef-l(r) = a ___ e~az I (x',y,O) dx' + 0(E2). (12) dn 1 IX 
dTpcpv ~'" 

We now assume for the unperturbed intensity the collimated 
Gaussian profile 

( 
X2 + y2) ~az lo(x,y,z) = loexp - a2 e , (13) 

where a is the e~ 1 beam radius. Then 

dn I '/ 'Ix " 2 Ef-l(X,y,z) = a - _0- e ~ (az + y a I e ~ x/a dx + 0(10 ) 
dT pCp V ~ 00 

_ [ dn 1 I ] ~ ~(az+y'/a'i - a---a 0 e 
dT pCp V 2 

X [1 + erf(x/a)] + 0(E2), 

which gives 
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f-l(x,y,z) = ~ exp( - az - y2/a 2
) 

2 
X [1 + erf(x/a)] + 0(10), 

(14) 

so that one has I Ef-l (x ,y,z) I «V 1T)aldn/dT I (l/pcp v)alo. One 
can easily prove that E is a very small parameter; for a seale
vel propagation of 10,6 f-lm CO2 laser radiation in atmo
sphere, typical conditions are5 

a= 1.6x1O~6cm~1, ~ = _1O~6°C~1 
dT ' 

(14') 
p= 1.2X10~3gcm~3, C

p 
= 1.0Jg~IOK~\ 

for a wind velocity v = 40 cm s~ 1 and a laser beam power 
P = 80 kW (/0 = P /a 21T), one has Itl = 1/41TX 1O~6, which 
justifies a first order theory. 

In practical situations, a and a are respectively about 10 
cm and 1O~6cm ~ 1 so that one has 

aa(l, (15) 

which will be used to simplify some expressions. 

First, using (13) and (14) an easy calculation gives 

h ( ) a ja ( ) J13/(x,y,O) a ( ) X,y,z = jf-l x,y,z + (3f-l x,y,z 
I (x,y,O) 

= - :2 [ct>o(X,y) - a
2;2 f-ll (x ,y l)e ~ az + O(E), ( 16) 

where one has 

f-ll(X,y) = !~1Te~Y'/a'[1 +erf(x/a)], 

ct>o(x,y) = ~e~(X'+Y')la' + (1 - 4y2/a2)f-ll(X,y). (16') 
a 

But from (15) it follows that !a2a21f-ll(x,y)less<lct>o(x,y)l, 
where ess( means that this inequality is valid except forx,y 
inside the two small ellipsesx2 + 1T[(y ± a)/2f<!a2~1Ta4a4. 
Thus one may write 

h (x,y,z) = - 2a ~ 2ct>0(x,y)e ~ az + 0(10), 

and one has 

(17) 

I' dz' (Z'e~az" dz" = !...- (1 _ 1 - e~az) = !Z2g1 (az), (18) 
Jo Jo a az 

with 

2 ( 1 _ e~az) 
gl(az) = - 1 - = 1 + o(az), 

az az 
( 18') 

Substituting (13) and (17) into (9) and taking (18) into account 
one obtains 

Ip(x,y,z) =/oe~aZexp[ _(x2+y2)/a2] 

X exp(Ecz2a ~ 2ct>0(X,y)g 1 (az) + 0(E2)) 

= loe~aZexp[ _ (x2 + y2)1a2] 

Xexp[ - Ncct>o(x,y)gdaz) + 0(102)], (19) 

where Nc = - Ez2/a2 is a positive distortion parameter pre
viously introduced in Ref. 5. One easily checks that in this 
case heuristic formula (9') leads to the same expression. 
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FIG. I. Equal intensity contours collimated beam N = 0.1, a = JO cm. 

This result shows that the parameter to consider in the 
treatment of thermal blooming is Nc rather than Ec' so that 
one has to determine the values of Nc ' consistent with the 
relation (2) for ,u(x,y,z) defined by (14); but when one substi
tutes (19) into (12) one obtains, instead of ,u(x,y,z), 

,u 1 (x,y,z;Nc) 

= ..!...e-(uz+ y2Ia21 

a 

X f:' 00 exp [ -

and Eq. (2) becomes 

n(x,y,z) = 1 + Ec,ul(X,y,z;Nc ) + o(~) 

( 
,ul(x,y,z;Nc) - ,u(X,y,Z)) 

= 1 + Ec,u(X,y,z) 1 + .;,....,;,.~--.:...;,...~...;.....---...:... 
,u(x,y,z) 

+o(~). 

The consistency condition can be written (for a convenient 
norm) 

II ,ul(x,y,z;Nc) - ,u(x,y,z) II < 1. 
,u(x,y,z) 

Assuming z small enough so that g 1 (az) ~ 1, ( ,u 1 -,u)/,u does 
not depend on z; besides, since the distortion is maximum for 
y = 0, we use as criterion 

I 
,ul(x,O,z;Nc) - ,u(x,O,z) I 

Sup < 1 
x ,u(x,O,z) 

(19') 

A numerical check of (19') shows that this condition is al
ways fulfilled, but with a left-hand side very near unity as 
soon as Nc > 1.5, so it is advisable to keep Nc';;; 1.5, which 
corresponds, for a beam of transverse dimension a = 10 cm 
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FIG. 2. Equal intensity contours collimated beam N = 0.5, a = 10 cm. 

propagating in a medium with E = (1!41T) X lO-b, to a dis
tance about 400 m. 

20 

We made a numerical application ofEq. (19), and Figs. 
1-4 give the normalized isointensity curves Ip(x,y,z)/ 
maxxlp(x,O,z)forNc =O.I,Nc =0.5,Nc = l,andNc = 1.5, 
while in Fig. 5 one has Ip(x,O,z)lmaxip (x,O,z) for the same 
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FIG. 3. Equal intensity contours collimated beam N = I, a = 10 cm. 
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FIG. 4. Equal intensity contours collimated beam N = 1.5, a = 10 em. 

values of Nc • These curves were also obtained by other 
authors2.3,5 

For thermal-conduction-dominated propagation and 
for a Gaussian beam with circular symmetry (from now on ,.z 
means x 2 + y2), the hydrodynamic energy equation is, in ab
sence of convection, 

!!.-~ (r aT (r ,z)) = _ a1 (r ,z), (20) 
r ar ar 

where k is the thermal conductivity, with I (r, z) 
= 10e( - "I"»e - az, and one has for the solution, without any 

singularity at r = 0, 

aT (r ,z) = aa210 (e - ,.'10' _ l)e - az. 
ar 2kr 

Now according to (10), one has 
an(r,z)lJr = (dn/dT)(JT(r,z)/ar) so that 

a/-l(r,z) dn aa210 1 ( - (,.'10') _ 1) - az + OlE) 
€D--- = ---- e e , 

Jr dT 2k r 
that is, 

dn a2a 
€D = --10' 

dT 2k 

/-l(r,z) = (' ~ (e - (,."ta» - l)e - aZdr' + OlE). Jo r 
As previous1y,let h (r,z) be 

h (r,z) = aiai/-l(r,z) + iJ31 (r ,z) ap/-l(r,z) 
I (r,z) 

900 

a2 la a2 

a 
2 /-l(r,z) + - -a /-l(r,z) + -2 /-l(r,z) 

r r r az 
2r a 
2" a-/-l(r,z). 
a r 
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(21) 

(22) 

With (21) this results in 

" 

~ 

~ 

., 

~ 

-

~ 

h (r,z) = - 22 e - aZ(2e - (">10') - 1) + a 2/-l(r,z) + OlE). 
a 

According to (15), the last term on the right-hand side can be 
neglected 

h(r,z) = _2a-2e- az(2e-(">la')_1)+O(E) (22') 

Let ND = - ED (z2/a2) be the distortion factor; then substi
tuting (22') into (9) and using (18), one has 

1p(r,z) = 10e- aze-,.>la' 

xexp[ - NDgtlaz)(2e - (">10') - 1) + o(~)], (23) 

which is a particularly simple expression. Of course, to keep 
the theory consistent with (2), N D (like N c ) must not be too 
large. 

B. Transient case 

In this section we consider a pulsed laser source and a 
Gaussian beam in two extreme situations, 

1. Short time tran$ient blooming 

The laser pulse is assumed to be short compared to hy
drodynamic time so that the density perturbation equation2 

o· 

-,. -\.2 I.' ,. ,., ... 
FIG. 5. Normalized intensity profiles for various values of N. 
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(24) 

where c. is the acoustic velocity in the medium and r the 
ratio of specific heat, reduces to 

ifp(r,z,t )lat 3 = (r - 1 jaa jajl(r,z,t ), 

which gives for a square pulse in time 

p(r ,z,t) - Po = Mr - 1 )aajajl (r ,z)t 3. (25) 

To obtain E,u(r,z) one uses the Dale-Gladstone law 

E,u(r,z) = T!!!!:.. .::1p(r ,z), .::1p(r,z) = Po - p(r ,z), (26) 
dT p 

together with the relation 

(r - 1 )/C; = lICp T, (26') 

where Cp is the specific heat at constant pressure. With Eqs. 
(25), (26), and (26') one obtains for a Gaussian beam 

() 
1 dn 2 I 3; 2 Esc t = 6 - c.a ot pCp a , 

dT 
,u(r,z) = - a2a jaj(e - aze - r'la') 

= 4(1 - ra- 2 - !a2a2)e- aze-r'la' (27) 

and still neglecting the a2a 2 term, 
,u(r,z) = 4( 1 - r /a2)e - aZe - r'la', which gives for the expres
sion (22) of h (r,z) (leaving aside the a2a 2 term) 

h (r,z) = - 8a- 2 (4 - 12ra-2 + 4r4a-4 ) e -rla'e -az 

+ 0(E). (28) 

substituting (28) into Eq. (9) and using (18), one obtains, with 

Nsc(t) = Esc(t )(z2/a2), 

Ip(r,z,t) = foe - aZe - r'la'exp[ - 4Nsc (t )gl(az) 

X (4_12ra- 2+4r4a-4 )e-r'la' +0(E2)]. (29) 

2. Long time transient blooming 

We now assume that the laser pulse is long compared to 
the a/cs time so that Eq. (24) becomes 

r- 1 
p(t)-po= - -2-a1(r,z)t, t>a/Cs' (30) 

Cs 

which gives, with (26) and (26'), 

E/c(t) = 1¥;~;' ,u(r,z)=e-az-1r'la'l, (30') 

and, still with the a2a 2 term neglected, one has for h (r,z) 

h (r,z) = - 40- 2(1 - 2ra-2)e -(?Ia'ie -az + OlE), 

so that Eq. (9) becomes, with (18) and N'c(t) 
= - E/c(t )(z2/a2), 

Ip(r,z) = 10e- aze-r'la'exp[ - 2N/c (t) 

X(1 - (2rla2))e-r'la'gl(az) + 0(E2)]. (31) 

It is easy to show that in this case the condition (19') becomes 
I e4e-3/lN/c -11 < 1, which implies N/c < 0.8. The analytical 

expressions of thermal blooming for collimated beams are 
very simple and easy to calculate. Eq. (31) can also be found 
in Refs. 3 and 5. 
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3. THERMAL BLOOMING FOR A FOCUSED BEAM IN 
THE NEAR FIELD 

In this section, we asume Izlfl < 1, so that diffraction 
may be neglected. As proved in the Appendix of the forth
coming paper, but with absorption taken into account, Eq. 
(3) reduces to: 

I (x(z),y(z),z) = I [x'(z)J"(z),O] e - az 

f (1 - (z/fW + EP(Z) 
xexp{ - E¢(X(Z),y(z),z)) + ole), (32) 

withX~(z) = (1 - (zlfll-IX" (z), a = 1,2, and 

P(z) = 2zlf(1 - (zlf))[,u(x'(z)J"(z),O) + (v3(z)lz)] 

+ f-IV (ZIY (z) aaf(x'(z)J"(z),O) (33) 
3 ~a I (x'(z)J"(z),O) , 

.1.1 () () ) 1 aa I (x'(z),y'(z)O) 'f"x z ,y z,z = --- ---''--'--'"=-~...!..... 
1 - z/f I (x'(z),y'(z),O) 

X fdt faa,u(x(p),Y(P),p)dP 

+ fdt !:ajaj,u(x(p),y(p),p)dP. (33') 

Now, for a Gaussian beam, one has 

I (x'(z),y'(z),O) 

=foexp[ _xa(zJxa(z)la2(1- (zlf)f], (34) 

so that the unperturbed intensity is 

1 e- az 
If o (x(z),y(z),z) = (1 ~ (zlf))2 

X exp[ -x"(zJxa(z)la2(1- (Z/J))2]. (34') 

We shall now use these equations to discuss thermal bloom
ing of focused beams in the near field and this requires the 
following relation 

! X~(z) = ! [Xa(z)l{1- (zlf))] = ° +O(E), 

a = 1,2 (35) 

arising from the fact that X ~ (z) is the boundary condition 
Xa (0) for the unperturbed beam. 

A. Steady state case 

SUbstituting (34') into Eq. (12) gives 

E,u(X(Z)J'(z),z) = a!!.!!..- _1_ loe - az 

dT pCpv (1 - (z/JW 

Xe - (Y"lzl/a'II: 00 e - u'la'll -lzlf))' du 

( 
dn I )~ e- az 

= a dT pcp v a10 2 (I - (zlf)) 

xe-Y"lzl/a'[1 + erf(x'(z)la)], (36) 

which leads to: 

dn 1 
E =a---fo'l 

C dT pCp V ' 

,u(x(z),y(z),z) = ~.J-;-[e - aZ/(1 - (zlf))]e - y"Wa' 

X [I + erf(x'(z)/a)J + O(Ec). 
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We now have to compute {3 (z) and tP(x(z),y(z),z) with, form 
(34), 

if> J (x'(z),y'(z),O)1 J (x'(z),y'(z),O) 

= - 2xa(z)la2(1 - zl/f, 

Let us write Ii(X(Z),y(z)z) in the form 

e- az 

Ii(x(z),y(z),z) = (1 _ zl/t'(x'(z),y'(z)), 

Ii,(x'(z),y'(z)) = .J 27T e -lv"lz)!a'l[ 1 + erf(x'(z)la)] 

+ o(€c), 

with, according to (35), 

J 
-Ii ,(x'(z),y'(z)) = ° + of€}. 
Jz 

(37) 

(37') 

From now on, to simplify, one writes X", ,x ~ for Xa (z),x ~ (z), 
a = 1,2, and one introduces the following functions: 

1 1Z e - az' 
gOn (az,J) = - dz', 

z 0 (1 - (z'I/W 

2 i' 1" e - az" g'n(az,J) = 2" dz' dz" 
zoo (1 - (zl/W 

(38) 

such that 

limgon (az,J) = _1_ (1 - e - az) = 1 + o(az), ,-= az 
(38') 

2 [ l_e-
aZ

] 
limg'n(azJ) = - 1- ---'-00 az az 

= g,(az) = 1 + o(az), 

Then, according to (33) and (15) and taking into account (37) 
and (37'), one has for {3 (z) 

{3(z) = 2z (1 - (zl/))Ii,(X',y') 
/ 

{
I ( x'ax~ 1 X 1 + - 1 - ---.:..--
Z a2(l - (zl/)) 

X f[ 1 ~~;~/) - 1 ]dZ'} 

=1i,(X',y')!3,(z). (39) 

2z f x'ax'a 
{3,(z) = / (1 - (zlf))l a2(1 _ (zl/)) 

+ [1 _ x'a
x

' a ]gO\ (az,J)} . (39') 
a2(l - (zl/)) 

Let us now consider the first term on the right-hand side of 
(33'); using (34), (37), and (37'), one has 

1 if>f(~"-;"O) r'dt [5 Jali(x,y,p) dp 
1 - zl/ f(x ,y,O) Jo )0 

= _ 2 r ~e-llx"+Y"I/a'l _ y'2a -21i ,(X',y')) 
a 2(l - (zl/W l a 

f'd ,rz
' e - az" dz" 

X Jo z Jo (1 - (z"I/W 

= _ z2g dazJ) (~e-'lx"+Y")!a'I-y'2a-2,u,(x',y')1· 
a2

(1 - (Z/f)2 a (40) 
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For the second term a simple computation gives 

. ) 2 { e - az [x' _ (x" + y")!a' JJJjli(X,y,z = - - - e 
a2 (1 - (zl/W a 

1 2'2 -2 " ] a
2
a

2
e - crz + ( - y a )Ii,(x ,y) + 2(1 _ (zl/) 

X [ 1 - a/(l ~ (zl/» + a 2/ 2(l -=- (zl/W ] 

X Ii,(x',y')} . 

As in the collimated case, the a2a 2 term of this last ex
pression may be essentially neglected (that is except inside 
two very small ellipse with center at (0,aI2), (0, - aI2), so it 
becomes 

f dt f JjJjli(X,y,p)dp 

__ Z2 ( /)[ ~ -Ix"+y")!a' 
- 2 g\3 az, 2 e 

a a 

+ (1 - 2y 'Za- 2)lil(X',y')] . (40') 

Substituting (40) and (40') into (33') gives, for 
Fe (x,y,z) = exp[ - €etP(x,y,z)), with Ne = - €ez2Ia2, 

Fc(x,y,z) = exp{ -Nc[g(az,/) :' e-Ix"+Y"J/a' 

+ {gI3(az,J) - 2:~2 g(az,J)}1i I (x',y') ] }, (41) 

with 

g(az,J) = gdaz,J) + gl3(az,J). 
(1 - (ZI/))2 

(41') 

Finally, the expression (32) of f,(x,y,z) becomes, with (39) and 

(41), 

Ie - o'Ze - lx" + y")!a' 
J(xyz)- __ ~o~ __________ __ 
, " - (1 - (zl/W + €,u\(x',y')/3\(z) 

X exp { - Ncg(az,J) ~ e - (x" + y")/a' - Nc 

X [gl3(az,J) - 2y,2a -2g(az,J)] 

XIi,(x',y') + O(€2)}. (42) 

One can compare this result to (19) and it is easy to show 
that lim,_oo f,(x,y,z) = fp (x,y,z). The most important pertur
bative factor in (42) is given by (41), and we made some nu
merical computations of the quantity J (x,y,z) = e - lx" + y")!a' 
Fe (x,y,z) when az is small enough to approximate g daz, /) 
and g'3(az,J) by the following expressions: 

2/2 
gdaz,J) = - -2 [log(l - (zl/)) + (zl/)); 

z 

gufaz,J) = (1 - (zl/))-' 

But one first has to check the condition (19'), noticing that 
here the function ,u(x(z),y(z),z) depends on both parameters, 
Nc and zlf We made a numerical check off 19') in both cases: 
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Nc = 1 Oz:l 112
, which corresponds approximately to the con

ditions used for the collimated beam in the previous section, 
and Nc = z2112 (such a value can be obtained for a beam with 
a power ten times less than in the previous case). As limiting 
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values for Nc, we found, respectively, Nc = 0.1 (zl 1= 0.1) 
and N = 0.15 (zll= 0.4). These conditions are more severe 

c 2 2 
than for a collimated beam, but fori = 1 km and Nc = z II 
the value Nc = 0.15 corresponds to 400 m, as in the collimat
ed case. So, one gives in Figs. 6-9 the equal value contours 
for the normalized factor J (x,y,z)/maxxJ (x,O,z) for Nc 
= z21f2 and Nc = 0.06, Nc = 0.12, Nc = 0.18, and Nc 
= 0.21. One must notice that in Figs. 6-9 the coordinates 

xla(l - (zlf)), yla(l - (zll)) (with a = 10 cm,f = 1 km); 
then the comparison between these curves and those of Figs . 
1-4 makes it possible to estimate the importance of thermal 
blooming for focused beams. Let us now consider the case of 
thermal conduction dominated propagation. Substituting 
(34') into Eq. (20) leads to 

!5...!...(rJI(r,z)) = _ alo e-aze-r'la'(I-(ZlfH', 

r Jr Jr (1 - (zlIW 
which gives after integration, 

JI(r,z) _ aa
2
l o -az( -r'la'(1-{zlfW 1) --- - --e e - , 

Jz 2kr 

and according to (10) 

J 
ED -p(r,z) 

Jr 

= !!!!.... aa
2
l o e - aZ(e - r'la'(1 - (zJf))' _ 1) + O(E

D
), 

dT 2kr 

that is, with r' = rl(l - (zll)) 

dn aa2l o E ----. 
D - dT 2k ' 
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p(r,z) = e - az (" J... (e - r"la' - 1) dr' + O(ED). (43) 
Jo r' 

Since the most important perturbative term isFD(x,y,z) 
= exp [ - ED t/'(x,y,z)], we only compute this expression. 

One has 

e - az J... (e - r"la' _ 1), 
(1 - (z/f» r' 

so that one deduces from (33'), (34), and (43) (leaving aside 
the essentially negligible a 2a2 term) 

./,() - 2 ( "'/a' 1) 
<r x,y,z = a2(1 _ (z/f)f - e -

X (Zdz' (Z' e - az' dz" _ ~ e - r"la' 
Jo )0 (1-(zll/f)) a2 

X (' dz' (Z' e - az' dz" 
)0 )0 (1 - (Zll /f))2 

Z2 [[ (f) gl1(az,J)] 
= - a2 gl2 az, + (1 - (z/fW 

Xe-"'Ia' _ g,,(az,f) ]. 
(1 - (Z/f))2 

[ {[ 
gl1(az,J) ] 

FD(x,y,z) = exp - ND gdaz,J) + (1 _ (z/fW 

e-"'Ia' _ gl1(az,f) }], (44) 
X (1 _ (Z/f))2 

while in the collimated case, one has 
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exp[ -ND g I (az)[2e- r'la' - 1]]. 

Of course, Eq. (44) is only valid for the values of N D such that 
the condition 119') is satisfied. 
B. Transient case 

For the short time transient blooming, using (25), and 
(26') together (34'), one obtains 

dn c;alot 3 

Esc (t ) = ! dT 2' 
pcp a 

p(r,z) = - a
2
J

J
JJ [ (1 ~ ~z7f)f 

X e - ">/a'(1 - (Zlf))'] + O(Ese!. (45) 

Taking (35) into account, Eq. (45) gives 

As previously, the last term on the right-hand side is essen
tially negligible, so one has 

1 r - "'la' 4e -az ( '2) 
p(r,z) = (1 _ (Z/f))4 - a2 e . (45') 

Here also we only compute Fse(x,y,z,t) 
= exp [ - Ese(t )t/'(x,y,z)), and leaving aside the a 2a2 term, 

one deduces from Eqs. (33') and (45') (after some 
calculations) 

t/'(x,y,z) = - :~ [ - a2(1 ~';Z/f))2 [2 - :: ]e-"'Ia' 

X (' dz' (" e - az' dz" 
Jo )0 (1 - (Zll /f))5 

[2 
4r'2 r,4] - "'la' + --+- e 
a2 a4 

X ('dz' (" e - az' dZ"] 
Jo )0 (1 - (Zll /f))6 

Z2 "'Ia'[( 4r'2 r'4, = - 8 - e - 2 - - + - 16(az,J) 
a2 a2 a4 

_ g 15(az,J) r,2 (2 _ r'2) ] 
(1 - (z/fW a2 a2 ' 

which gives, with Nse(t) = - (Z2/a2)Ese (t), 

Fse (x,y,z,t ) = exp [ - 8Nse (t )e - "'Ia'g 16(az,J) 

[ 
4 ,2 ,4 ] 

X 2 - ;2 + :4 + 8Nse (t)e - r"la' 

gI5(az,J) [2r'2 r'4] ] (46) 
X (l _ (z/fW ----;; - a4 . 

For the long time transient blooming, one deduces from (30), 
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(26), and (26"), together with (34'), 

Ele(t) = d n aIot , 
dT pCp 

J-t(r,z) = e - az e - "la'(1 - (z/f))' 
(1- (zl/W ' 

which gives for t/'(x,y,z) (still neglecting the term 
(a 21 az2)J-t(r,z)) 

t/'(x,y,z) = - :2 e-r"/a'[(1 - ,'2/a2)fdZ' 

1z' e - az' dz" ,'2 
X - ---------

o (1 - (Z" 1/))4 a2(1 - (ZI/))2 

x rd ' r' e- az
' dz" ] 

Jo z Jo (1 - (Z" 1/))3 

2z2 _ r"/a'[ ( ,'2) = - -;}2e 1 - a2 gI4(az,f) 

,'2 ] 
- a2(1 _ (zl/)f gI3(az,f) , 

so that the perturbative factor Fie (x,y,z,t ) 
= exp[ - EIc(t)t/'(x,y,z)j becomes 

(47) 

Fdx,y,z,t) = exp [ - 2N,e (t)e - r"/a' (1 - ::)gI4(az,f) 

,'2 ] 
- a2(1 _ (zl/W g13(az,f) , 

N'e (t ) = - Ele (t )(Z2 I a2). (48) 

This last result completes the discussion of thermal bloom
ing for focused beams in the near field. 
4. THERMAL BLOOMING IN THE FAR FIELD 

To be brief, we only consider the steady state case with 
forced convection. 

A. Collimated beam 
We now assume that z is beyond the Rayleigh distance 

and, as proved in the forthcoming paper,1 Eq. (13) becomes 
for a Gaussian beam (taking absorption into account) 

A I (xaXa ) I (x y,z) - ___ 0 - e - azexp - ----
p' - d 2(Z) a2d 2(Z) 

[ 
E iPI(x',y',O) (Zd 

Xexp - d(z) I (X',Y',O) Jo S 

X f apJ-t(x,y,p) dp - E fdS f aja jJ-t(x,y,p) dP] 

+ O[(E + (I1K6a2)f], 
(49) 

with 

2 x (z) 
d 2(Z) = 1 + __ z __ , x' = _a_, a = 1,2, 

K6a4 a d(z) 
(49') 

while similarly to (35), one has 

~X'(z)= ~(Xa(Z))=o+o(_I_), a= 1,2. 
az a az d(z) K6 a2 

(50) 

According to (49) the unperturbed intensity is 

ipo (x,y,z) = d ~(Z) e - azexp ( - a~;~(z) (51) 

and substituting (51) into Eq. (12) gives 
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E=a~~a, 
dT pCp V 

J-t(x J',z) = ~ exp [ - az - ~] 
, 2d (z) a2d 2(Z) 

X [1 + erf(_X )] + OlE). 
ad(z) 

To simplify, we use the following notations 

e- az 
bd(z) = -, 

d(z) 

(52) 

J-tIAx',y') = v' 1T exp( _ Y'2/a2)[ 1 + erf(x'la)], (53) 
2 

and we introduce the functions 

A (az) = 2. r dz' r' b (z") dz" 
gld r Jo Jo d(z") , 

A () 2 iZd ' iZ

' b (z") d " g2d az = 2 z -2 -,,- Z . 
Zoo d (z ) 

Let us first compute ajaj/-l(x,J',z); using (50) one has 

, 2bd (z) 
aJajJ-t(x,y,z) = - 2 2 

ad (z) 

(53') 

X [ ~'jl2d(X"Y') + (1 - ~' yJ-t Id (x',y') ] 

(
A, A') a2

bAz) 
+J-tld x,y ~. 

For the same reasons as in the previous sections, the last 
term on the right-hand side is essentially negligible, so that 
with (53') [(and still (50)] 

fdZ' f'ajajJ-t(x,y,z") dz" 

= _ :: [ : J-t2d(X',y') + (1 - 2:~2 )J-tld(X',y')l~2d(az). 
(54) 

In the same way, an easy computation gives 

1 iPI(x',y',O) rd.E' (ta ( )d 
d(z) I (x',y',O) Jo !>Jo pJ-tx,y,p :p 

_ Z2 [ x' A' A, 2y'2 A, A, ] A 
- - a2d 2(z) -;;J-t2d (x ,y) - --;j2J-tld(X ,y) gld(az). 

(54') 

Substituting (54) and (54') into (49), we finally obtain for the 
diffracted intensity of a collimated beam 

A 1 ·'a' / ' I (xJ'z) = __ o_e-aze- x X'a a 
p " d 2(z) 

Xexp [ - Ne (g2d (az) + _1-- gld (az)) 
d 2(z) . 

X( ~'jl2d(X',y') - 2:~2 J-tld(X',y')) 

- Neg2d (az)J-tld (x',y') + O((E + K~a2Y)]' (55) 

One easily sees that limKo_ oo ip (x,y,z) = Ip (x,y,z). 
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B. Focused beam 

In the Appendix of the forthcoming paper, lone proves 
that for a focused Gaussian beam, Eq. (3) can be written 

~ 1 e- az [xa(z)x (z) ] 
If [x(z),y(z),z] = 2 0 A exp _ a 

Do(z) + €/3(z) a2D~(z) 

xexp[ - €~(X(Z),Y(Z),z) + 0 ((€ + K~a2 r)] , 
with 

and 

P(z) = ~( 1-5) [p[ I ~~;/!) , 1 ~~;/!) ,0] 

+ V3(Z)] + ~ v (z) eJ"I (x'(z),y'(z),O) X (z) 
Z ! 3 I (x'(z),y'(z),O) a , 

A 1 eJ"I (x'(z),Y'(z),O) 
¢(x(z),y(z),z) = Do(z) I (x'(z),Y'(z),O) 

XfdS f'aaP(X(P),y(P),p) dp 

+ fdS is ajajl'-(X(p),y(p),p) dp, 

where one has x~ (z) = xa (z)/ Do(z), satisfying 

~x'a(z) = ~ (Xa(Z») = 0 + 0 (€ + _1_). 
az az Do(z) K ~a2 

Since for the unperturbed beam the relation (56) gives 

(56') 

(57) 

(57') 

(58) 

(59) 

the comparison of both sets of relations, on one hand (49), 
(49'), (50), and (51) and on the other hand (56), (56'), (57'), (58), 
and (59) shows that the computations of the collimated case 
are still valid provided that one uses D ~ (z) instead of d 2(Z). 
SO, one has for the diffracted intensity of a focused beam 

~ foe - az [x'a(z)X'a (z) ] 
ff(x(z),y(z),z) = ~ exp - 2 

D~(z)+€/3(z) a 

XFe(x(z),y(z),z) + 0 ((€ + K~a2 y) (60) 

with 

Fc(x(z),y(z),z) = exp ( - Nc [g2D. (az) + D ;(Z) glD. (az)] 

X [ X~Z) 1'-2D. (x'(z),Y'(z» 

_ 2y'2(Z) (~'( ) ~'( »] 
2 I'-ID. X Z ,y z 

a 

- N eg2D, (az)l'-lD. (x'(Z),Y'(Z») , (60') 

where I'-ID.' 1'-2D.' glD.' and g2D. are defined as in (53) and 
(53'). Of course this result is valid only for the values of Nc 
such that the condition (19') is fulfilled. 
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FIG. 10. Equal intensity contours in the local plane N = I, a = 10 cm, 
j= IOkm. 

One gives in Fig. 10 the equal value contours corre
sponding to the normalized quantity exp( - x'a(z),X' a (z)/ a2

) 

XFc(x(z),y(z),z), calculated in the geometrical focal plane 
z = ! and using the coordinates 

20 

but in order to have a clear picture of the diffractive effects in 
the focal plane one must restrict oneself to the case of weak 
thermal blooming and we considered a laser Gaussian beam 
with a = 10 cm,f = 10 km, and with a power small enough 
and propagating in such a medium that the distortion factor 
has the value N = I for z =/; then, since Ko = 6X 1<P m-', 
one has Koa = 6x 104

, and! /a = 104
, hence Do(f) = 5/3. 

We checked that for this value of N condition (19') is 
satisfied. 

Remark: One easily sees that the other cases of thermal 
blooming can be deduced from the near-field results of the 
previous section only by changing x'(z) and (I - (z/f) into 
x'(z) and Do(z). 

5. CONCLUSIONS 

These results show that in spite of its complexity the 
problem of the passage of a laser beam through an absorbing 
gas is amenable to an analytical solution, at least to first 
order approximation and when one may approximate hy
drodynamic equations. But for continuous high energy 
beams, where thermal blooming is strong, (leaving aside the 
kinetic cooling phenomenon) the analytical solution breaks 
down when condition (19') is not fulfilled, so that one no 
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longer consider Eq. (2) as valid. And this generally happens 
for a distance less than the Rayleigh distance, where diffrac
tion becomes important, except in some cases where E is a 
decreasing function of z for-instance for a slewing beam 
with the transverse velocity v = Vo + EZ. It seems that this 
point was overlooked by those people comparing the geo
metrical solution to the computer results. On the contrary, 
for short pulsed high energy beams and for continuous mod
erate energy beams where Eq. (2) is valid, the analytical solu
tion with approximation of diffraction gives excellent results 
and makes possible an easy and thorough discussion of the 
different parameters of a laser beam. Although we only con
sidered thermal discussion for a Gaussian profile, the pre
sent method could also be applied to other smooth profiles, 
but the formulas are a bit more intricate. 

APPENDIX 

In this Appendix, one gives the equal intensity con
tours, at z fixed, of the normalized expression 

J (x,y) = Io(x,y)F (x,y,z)/max [Io(x,O)F (x,O,z)] 
x 

for a Gaussian beam of lie radius, a ;= 10 cm, either colli
mated or focused, and in the latter case, first in the near field 
and second in the geometrical focal plane. Io(x,y) is the inten
sity at z = 0, while F(x,y,z) is the perturbative exponential 
factor due to thermal blooming. We only consider a continu
ous beam in the case of forced conduction, assuming az 
small enough to approximate e ~ az by 1. The characteristics 
of the medium are those of a CO2 laser beam propagating in 
normal air 

a = 1.5X 1O~6cm~l, !!.!!.... = - 1O~6°C~I, 
dT 

P = 1.2X 1O~3g cm~3, C
p 

= 1.0 J g~1 °K~I, 

V = 40cm S~I, 

which gives lEI = 1O~7 for a laser beam power P = 80 kW. 
For a collimated beam, one has according to (19), since e-az 
=1, 

Io(x,y)F (z,y,z) 

= e ~ lx' + Y'I/a'exp [ _ N(z) [2xa~ Ie - lx' + y'l/a' 

+!~--;;e-Y'/a'(1-(4y2Ia2))(1 +erf(xla))]] , (AI) 

with N(z) = Ez21a2 = 1O~7 z21a2 (a = 10 cm). Figures 1 to 4 
correspond respectively to the following values of N : 0.1, 
0.5, 1.0, and 1.5, with the isovalue curves 1.0,0.9,0.7,0.4, 
0.2, and 0.1. The intensity profile J (x,O) is given in Fig. 5 for 
the previous values of N. 

For a focused beam U = 1 km) in the near field, one has 
according to (42) 

IoCx,y)F(x,y,z) 

= e - (x" +Y"l/a'exp( _ N (Z){ g(azJ)x'a-le ~ (x" +y")/a' 

+ [g 13 (az,f) - 2y,2a-2g(az,f) ] 

x!V--;;e-(Y"l/a,( 1 + erf:') } ) , (A2) 
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with 

( f) g daz,f) (f) gaz, = +gl3az, . 
(1-(zlfW 

(A2') 

Since e~az=1 the expressions (38) reduce to: 

gdazJ) = - 2f2z~2[ln(1 - (zlf)) + (zlf)]; 
(A3) 

gl3(az,f) = 11(1 - (zlf))· 

For the collimated case one has P = 8 kW (so that 
N = (z2If2)) and the equal value contours are given in Figs. 
6--9 for N = 0.06, 0.12, 0.18, and 0.21 in the coordinate sys
temx'ia =xla(1- (zlf)),y'la =yla(l- (zlf)).Atthegeo
metrical focal plane z = f, the expressions (60) and (60') 
become 

I (x,y)F(x,y) 

with 

e~x,ax'a/a'exp( -N(Z)[gD.taf) ~' 

X e ~ (x" + y")/a' + [g2Do (af) - 2y,2a-2gD, (af)] 

X~V--;;e~(X',+.Y")/a' (1 + erf~')]), 

gAD, (a 1') = glD, (af) + A (a I), D 2 (f) = f2 
'.I D~(f) g2Do '.I 0 K6 a4 

Here we assume P = 80 kW,f = 10 km so that one has 
N = 1, Koa = 6X 104,f la = 105

, Do(f) = 5/3, with e - az 
-1, then the integrals (53') are 

2 {f ( d" 
glD,(af) = f2 J/z'Jo (1- (Z"lfW: D~(f)(Z"2If2) 

1TDo(f) - 2InDo(f) 

1 +D~(f) 

g2D,(af) 

= ~ (dz' ( _____ ---=-:.d=-z'_' ___ -:----::-:-
f2 Jo Jo [(1- (z"lfW +D~(f)(Z"2If2)P/2 

2 

= DoU)' 

The equal value curves at the focal plane for these numerical 
data are given in Fig. 10 in the coordinate system 

x' x 
- = ---, 
a aDoU) 

y' 
a 

y 
=---

aDoU) 
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Analysis of a nonlinear integral equation arising in the study of the magnetic 
field in the critical state model of superconductivity 
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In the critical state theory of superconductors the magnetic field can be given as the solution of a 
nonlinear integral equation ofUryson type. It is shown that for sufficiently small values of 
physical and geometric parameters the equation always has a unique solution. A sufficient 
condition for the nonvanishing of the B-field is derived and application is made to several models, 
two of which result from experiments with NbTi and Nb3Sn. The investigation seems to cast 
doubt on the validity of some aspects of the critical state theory. 

PACS numbers: 74.20. - z, 74.60.Jg 

1. INTRODUCTION 

The magnetic field associated with a type II supercon
ductor carrying a transport current in zero applied field is 
given as the solution ofa nonlinear integral equation ofUry
son type if the critical state theory is used. When the super
conductor is infinitely long and has a constant cross section, 
this equation is, in general, two-dimensional. We show in the 
case of a quite general cross section a unique solution always 
exists provided a certain parameter, dependent on both geo
metric and physical features, is sufficiently small. In addi
tion, a criterion is found for the nonvanishing of the magnet
ic field within the core of the superconductor. 

One theoretical model of a superconductor with a 
square cross section is discussed in detail, as are two actual 
experiments in which the cross section was rectangular. It is 
demonstrated that in all cases the existence and uniqueness 
theorem applies. In two of these cases it is shown, under very 
reasonable assumptions, that the magnetic field cannot van
ish except in a relatively small part of the superconductor. 
(In the remaining model, no conclusion is reached.) 

The existence and uniqueness of the B-field imply that 
the arbitrary imposition of the boundary condition of a 
shielded current free core on a superconductor carrying less 
than its critical current is, in general, invalid. The nonvan
ishing of the field found in certain of our investigations tends 
to cast some doubt on the validity of the critical state model. 

In case the cross section of the superconductor is a cir
cle or an annulus, the integral equation can be reduced to a 
nonlinear Volterra equation in one variable. It is shown that 
a unique solution then always exists and the field is zero 
inside the inner circle of the annulus, as is expected 
physically. 

2. STATEMENT OF THE PROBLEM 

We will present the problem in terms of classical vector 
analysis rather than using the more modern differential 
forms. I The level of rigor used in deriving the basic integral 
equation will be that of Stratton. 2 In particular, we assume 

"'Work done while on leave from Southern Methodist University, Dallas, 
Texas. 

that all electromagnetic quantities involved have appropri
ate differentiability properties and that all integrals exists in 
some reasonable sense. 

We consider a material which is homogeneous and iso
tropic. We also assume only the steady state case. The three 
equations of Maxwell 

curlH = J, 

divB = 0, 

B = fLH, fL const 

lead to the law of Biot and Savart (Ref. 2, pp. 225-32): 

B(r) = J:!:....f J(r")x(r - r") dV'. (2.1) 
41T Ir-r"13 

Here rand r" are vectors in three dimensional space, d 3r " 
denotes a volume element, and the integral is taken over all 
space. We shall use the Giorgi m.k.s. system of units 
throughout. 

Now assume that the current J is zero outside a cylin
drical surface whose generators are parallel to the Z axis, 
that the cross section of the cylinder is a closed bounded 
region G, that the current J is parallel everywhere to the Z 
axis, and that J is independent of Z (see Fig. I). Then 

z 

------
G 

FIG. I. The geometry for the cylindrical case of Eq. (2.1). 
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B(r) = J!:...-J J(r") X [(r - r') + (r' - r")]d3r" 
417" Ir - r"1 3 

= J!:...-J J(r")x(r - r')d 3r", 
41T Ir - r'T 

since J is parallel to (r' - r"). Also J(r") = J(r') so that 

B(r) = J!:...- ( J(r') X (r _ r')d 2r'f oo 
dZ 

417" JG - 00 Ir - r'T 

Now 

dz foo dz 
Ir-r"13 = -00 l(r-r')+(r'-r"W 

= J: 00 -!-lr-_-r,-:~:-z+-z2::-j-::-3/-:-::-2 
2 

Thus 

B(r) = J!:...- ( J(r') X (r - r') d 2r ,. 
417" JG Ir - r'1 2 (2.2) 

In Ref. 3, Kim et al. assume that in a type II supercon
ductor the magnitude of J at a point is related to the magni
tude of B at that point by 

IJ(r)1 = F(IB(r)1) = F(lBI), (2.3) 
where F is a nonnegative, monotone decreasing function 
with a derivative for IBI > ° which is bounded in magnitude. 
This is called the critical state model. The possiblity of F 
vanishing identically for IBI sufficiently large is allowed (see 
Fig. 2). Kim et al. suggest a possible form of F: 

F(IBI)-al(Bo+ IBI), a>O,Bo>O, 

but we shall make no use of this explicit form. 
Henceforth we shall be working entirely in the two

dimensional vector plane. Since this is equivalent to the com
plex plane it will be convenient to replace all vector quanti
ties by complex numbers. Thus we shall replace B(r) by b (z), 
etc. At all times z will denote a complex number and should 
not be confused with the coordinate Z. Equation (2.2) can 
now be rewritten as 

b(z)= ~(F(lb(z')I)(z;-z')d2Z'. 
217" JG Iz - z'l 

(2.4) 

Here d 2Z' denotes two-dimensional measure in the plane. 
Also b (z) inherits the differentiability properties of B(r). 

F(IB\l 

IBl ma• IBI 

FIG. 2. The function F(IBI(rli) = IJ(rll. 

909 J. Math. Phys., Vol. 22, No.4, April 1981 

3. THE CASE OF G AN ANNULUS OR CIRCLE 

Suppose 

G= !z=reiIlIO<a<r<cj. 

From symmetry it is clear that Ib (z)1 depends only upon the 
magnitude ofz and we write I b (z) I = {3 (r). Equation (2.4) then 
becomes 

{3(r)= l~r{21T F({3(r') )(r~,r'eill')r'dr'do'I' (3,1) 
217" Ja Jo Ir - r'e,1I 12 

Now set 

I = r - redO' = i21T ( , ill') i21T dO' 

o 1 r - r' eill ' 12 0 r - r' e - ill ' 

= ~ {21T ireill'dO' 

ir Jo reill ' - r' 

=~{~, 
IrJc z - r 

where C is the circle of radius r about zero in the z' plane. By 
Cauchy's theorem, 

1= {a, 
217"lr, r' < r. 

(3.2) 
Thus Eq, (3.1) yields 

0, 0< r<,a, 

{3(r) = 
(.ulr) fF(f3 (r')r'dr', (3.3) 

(.ulr)fF(f3 (r'))r', c<,r. 

In view of the conditions imposed upon F we readily obtain 

~[r{3(r)] =IlF(f3(r))r, 
dr 

{3(a) = 0. 

Setting y(r) = r{3 (r), we find 

dy =IlF(~)r, y(a) =0, 
dr r 

For convenience extend F as an even function, 

(3.4) 

(3.5) 

F (x) = F ( - x), x> 0, SinceF' is assumed bounded the func
tionwF(ylr) = /(y,r) satisfies a uniform Lipschitz condition 
in any rectangle 0< d < r < e < 00, - 00 <p <y < q < + 00. 

The existence and uniqueness of the solution to (3.5) then 
follow from a classical result (see Ref. 4, Chap. 1, Theorem 
2.3). This resolves the problem for the annulus. 

For the case of G a circle, a = 0, we note that 

limwF(ylr) = lim/(y,r) = 0. 
r--D r~ 

By simply defining/(y,O) = ° the above reasoning may again 
be applied, 

Theorem 1: Under the assumptions made on the func
tion F, Eq. (2.4) possesses a unique solution b (z) provided G is 
a circle or an annulus. 

4. THE CASE OF A GENERAL G 

The device employed in the previous section fails com
pletely for a general bounded closed region G We turn to the 
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Banach contraction mapping principle (see Ref. 5, pp. 141-
42). 

Let C be the Banach space of continuous complex-val
ued functions tfJ on the region G with the operations of addi
tion and multiplication defined in the natural manner. De
fine the norm 

IitfJ II = maxltfJ (z)l· 
ZEG 

Consider the operator 

T(tfJ) = A r F(ltfJ (z')II(~; z') d 2Z'. 
JG Iz - z / 

Clearly T maps C into itself. Now 

IIT(tfJ) - T(¢)l1 

= max I A r F (ItfJ (z') / I - :z( I ¢(z') I I (z _ z')d zz' I 
ZEG JG /z - z / 

</A Imax r 1F(/tfJ (z')11 - F(I¢(z')/11 dZz'. 
ZEG JG Iz - z'l 

Since the derivative of F is bounded, F satisfies a Lipschitz 
condition: 

IF(I¢(z')11 - F(I¢(z')111 <M I ItfJ(z')I-I¢(z')1 I 

<M I tfJ (z') - ¢(z') I <M IltfJ - ¢II, 

where 

M = maxlF'(is 1)1· (4.1) 
s 

Thus, 

IIT(¢) - T(¢)II<IJe IMlltfJ - ¢llmax r d 2z'/lz -z'l· 
ZEG JG 

Let us define 

aG = max r d 2z'/lz -z'l 
ZEG JG 

The mapping T is therefore a contraction provided 

IA IMaG < 1. 

We can now assert the following: 

(4.2) 

(4.3) 

Theorem 2: Under the assumptions made on F, the inte
gral equation (2.4) has a unique continuous solution b (z) pro
vided IA IMaG < 1 ,where A =f-l/21T. 

We pause at this point to note that all quantities in the 
contraction condition are physical parameters of the prob
lem with the exception of aGo It is clear that aG contains 
information about the geometry, but its exact significance is 
not obvious. We seek a better understanding. 

We introduce in the complex plane a polar coordinate 
system with its origin at the point Z. Thus Iz - z'l = rand 

if d dO i2"i,,01 aG = max ~=max drdO 
Z G r zoo 
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i
2" 

= max r(O )dO. 
Z 0 

The inequality of Schwarz yields 

(f"r(O )dO r <21T f" r(O )dO = 41TA G, 

where AG is the area of G. Since the right-hand side of this 
inequality is clearly independent of z, we conclude 

(4.4) 

One can envision situations in which the area of G may 
be difficult to measure. If, however, the diameter d G of G can 
be obtained, use may be made of the fact that of all plane sets 
of given diameter the circle has the largest area (see Ref. 6, p. 
239). Thus 

AG < (l1T)d ~, 

and 

aG<1TdG· 

We can now reformulate Theorem 2: 
Theorem 2': Under the assumptions made on F, the in

tegral equation (2.4) has a unique continuous solution pro
vided any of the following conditions holds: 

(i) f-lMaG/21T< 1, (4.S) 

(ii) (PM /1Tl)AG l < 1, (4.6) 

(iii) ipMdG < 1. (4.7) 

5. CONDITION FOR NONZERO B 

In this section we select an admissible function F and 
give a condition which must be satisfied at a point zoEG if the 
magnetic field is to vanish at ZOo 

Theorem 3: Suppose F has the form 

F(lb I) = {E(bo - Ib I), 
0, 

(5.1) 

where E and bo are positive constants, and let the contraction 
condition (4.5) hold. Then for zoEG, b (zo) = 0 implies 

I 
r (ZO-~')2d2Z'I<2f-lEAG' (S.2) 

JG Izo - z I 

Proof We note that F satisfies all the conditions im
posed in Sec. 2. Indeed, M = maxg 1F'(Is-I)1 = E. Equation 
(2.4) becomes 

b(z)= ~r dbo-lb(Z')lllz-~'12d2z', (S.3) 
21T JG' Z - z 

whereG + C Gis that subregion on whichF> O. Thecontrac
tion condition (4.S) becomes 

f-laGd21T<l. (S.4) 

From (4.2), (S.3), and (5.4) 

f-lEb i d 2Z' f-lEbo b Ib(z)l< __ 0 , < --aG < o· 
21T G Iz - z I 21T 

(5.S) 

We can thus replace G + with Gin (S.3) since 

bo-lb(z')I>O 

for all z' in G. 
Now suppose b (zo) = O. Then (5.3) yields 
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~bo I Zo - z' d 2Z' = ifLE I Ib (z')I_z-"O_-_z~' dz'. 
2rr Jelz-z'1 2 2rrJe Iz-z'1 2 (5.6) 

But, from (5.5), 

I I Ib(Z')I(Zo-:;z')d2z'l<maxlb(z)lO'e<fLEbo~. (5.7) 
Je Iz-z'l- ZEe 2rr 

Thus, (5.6) and (4.4) give 

I I Zo - ~'2d 2z'I < fLE ~ <2fLEAe, 
Je Iz - z 1 2rr 

which is (5.2). 
It follows from (5.7) that if b (zo) = 0, 

IRe l zo-~',d2z'I<2fLEAe. 
Je Izo - z 1-

(5.8) 

An analogous inequality for the imaginary part of the inte
gral also holds. 

It is interesting to note that if G is an annulus, the left 
side of (5.2) vanishes for Z(l inside the inner circle. [This fol
lows from (3.2).] Thus, no contradiction is encountered. 

6. THE RECTANGULAR CROSS SECTION 

In this section we discuss the case of a rectangular cross 
section. We again suppose Fhas the form (5.1). Define 

and 

1 Z(l-Z' 2, 
R (xo,Yo) = Re 2d z 

e Izo -z'l 
= I Xo-x' dx'd I (6.1) 

Je (xo - X')2 + (yo _ y')2 Y 

I (xo,Yo) = 1m I Zo - z' ,d 2Z
1 

Je Izo - z'l-
= I Yo - y'. dx'dy'. (6.2) 

Je (xo - X')2 + (yo _ y')2 

Suppose G is the rectangle Yl with sides oflength 2a and 2b: 

Yl = [(x,y)l-a<x<a, -b<y<b J. (6.3) 

Thus 

R (xo,Yo) = Jb dylJu (~~ - x') I 2dx', (6.4a) 
- b - a (xo - x) + (yo - y ) 

I (xo,Yo) = Jb dy'J
Q 

~~ - y') 12dx'. (6.4b) 
- b - Q (xo - x) + (yo - y ) 

Theorem 4: Let Fbe of the form (5.1) and assume that 
O<xo<a, O<.vo<b. Then 

R (xo,Yo) <R (xo'Y), Yo>y, (6.5) 

R (xo,Yo) < R (x,Yo), Xo < x, 

I (xo,Yo) > I (xo'Y), Yo> y, 

I (xo,Yo) > I (x,Yo), Xo < x. 

Proof In (6.4a), make the change of variables: 

Xu - x' = u, Yo - y' = v. 

Then (6.4a) becomes 

i
Y" + b IX" + Q udu 

R (xo,Yo) = Yo _ b dv J" _ Q u2 + v2 • 

Note that R (xo,Yo»O. Also 
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(6.6) 

(6.7) 

(6.8) 

(6.9) 

aR (xo,Yo) = r+Qu [ _ 1 ]dU 
ayo L _ Q u2 + (y + b )2 u2 + (yo - b )2 

<0, 

since 0< Iyo - b 1 <Yo + b. 

Also, recalling that Xo + a> O,xo - a < ° we have 

aR (xo,Yo) iY
" + b [ Xo + a Xo - a ] 

axo = y" _ b (xo + af + v2 - (xo _ a)2 + v2 dv 

>0, 

which verifies (6.6). 

If we augment our notation slightly and write 

R (xo,Yo) = R (xo,yo,a,b), 

I (xo,Yo) = I (xo,yo,a,b ), 

then it is easy to see from (6.4a) and (6.4b) that 

R (Yo,xo,b,a) = I (xo,yo,a,b ), 

and the remainder of the theorem follows. 
We finally note that similar results may be obtained for 

(xo,Yo) in other quadrants of the rectangle Yl. However, it is 
clear from the overall symmetry that (5.8) and its analog 
need only be studied for (xo,Yo) as in Theorem 4. 

Theorem 4 is of importance since we wish to find values 
ofxo(andyo) for which (5.8) is violated. Inequaltities (6.5) and 
(6.6) allow us to state that if such a violation occurs at (xo,b), 
then it also occurs for (xt,Yt) provided X t>xo, IYtl <b. Ine
qualitites (6.7) and (6.8) provide analogous results for the 
imaginary part of the integral in (5.2). Of course, even better 
information can be obtained by examining the entire left side 
of (5.2), but much more calculation is required. 

The integration in (6.4a) yields 

2R (xo,Yo) = _ (b _ Yo)log (a - x< + (b - Yo): 
~a + xoJ- + Jb - Yo) 

_ (b + Yo)log (a - xo) + (b' r Yo) 
(a + xof + (b + YO)2 

_ 2(a _ xo)(arctan b - Yo + arctan b + Yo ) 
a -xo a -Xo 

+ 2(a + xo)(arctan b - Yo + arctan b + Yo). (6.10) 
a +xo a + Xo 

[Note that R (0,0) = 0.] 

7. APPLICATION 1: A MODEL SUPERCONDUCTOR 

In this section we discuss an application of the above 
theory to a square cross section by giving an example show
ing that the B field is nonzero in over 85% of the cross 
section. 

We make the following assumptions about the 
superconductor: 

(a) The square-cross section has half side length: 

a = 10-3 m, 
(b) Fhas the form (5.1) with 

E = 108 A/Wb. 

(This is a typical value for type II superconductors.) The 
constant fL = 4rrX 10- 7 H/m will be used throughout our 
applications. 
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The value of the left side of (4.6) is readily found to be 
0.14. Therefore Theorem 2' applies. 

The right-hand side of (5.2) is 

2f.1,EAG = 1.0053 X 10- 3 m. (7.1) 

From (6.10) withy(} = a, Xo = 0.00046 we compute 

R (0.00046,0.0001) = 1.0236 X 10- 3 m. (7.2) 

Since (7.2) exceeds (7.1), it follows from Theorems 3 and 4 
that when (xo,Yo) is in the given square, but outside the square 

Ixi < 0.00046, lyl < 0.00046, 

the field must be nonzero. This square occupies about 21 % 
of this total cross section. Hence the B field cannot vanish in 
about 79% of this cross section. 

Detailed numerical evaluation of the left side of (5.2) 
indicates that actually the inequality (5.2) is violated in more 
than 85% of the given square, so that the field is nonzero in 
that fraction of the region. 

8. APPLICATION 2: EXISTENCE AND UNIQUENESS 
RESULTS FOR TWO EXPERIMENTS 

We consider two superconducting systems which have 
been investigated experimentally: an NbTi system 7 and an 
Nb3Sn system.8 NbTi generally loses superconductivity at 
14 Wb/m2 and Nb3Sn at 24 Wb/m2

.
9 These values are the 

abscissas Bmax in Fig. 2 at which Fbecomes zero. The peak 
current densities F (0) measured in large samples at zero ap
plied field are on the order of 3 X 108 A/m2 for NbTi 7 and 
4X 1010 A/m2 for Nb3Sn.8 

One estimate forM = maxIF'(IBI)1 is simply F(O)lBmax 
This is entirely consistent with the linear form of F used in 
Theorem 3, and we continue to assume that form. Thus 

MNbTi =2.lX107 A/Wb (8.1) 

and 

MNb,Sn = 1.7x 107 A/Wb. (8.2) 

The cross sections of the superconductors are rectangles. 
Using, as in Ref. 7, 2a = 0.0196 m, 2b = 0.00091 m we get 
ANbTi = 1.78X 10- 5 m2

, and, from Ref. 8, 2a = 0.0127 m 
and2b= 1.2XlO-5 msothatANb,sn = 1.5x 10-7 m2

. The 
left side of(4.6) is 0.06 for NbTi and 0.47 for Nb3Sn and both 
values are less than 1. Theorem 2 therefore implies the exis
tence of a unique solution to (2.4) for those experiments. 

9. APPLICATION 3:B-FIELDS INSIDE THE CORE FOR 
THE TWO EXPERIMENTS 

For the rectangular cross sections for NbTi and Nb3Sn 
discussed in Sec. 8, and for the material values used there, we 
have calculated the consequences of the criterion (5.2) for 
nonzero B given in Theorem 3. 

The values of the right-hand side of (5.2) are 
respectively 

2f.1,ENbTiANbTi = 9.395 X 10-4 m 

and 

2f.1,ENb,SnANb,Sn = 6.409 X 10-4 m. 

In the case NbTi, where 
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(9.1) 

(9.2) 

a = 0.0098, b = 0.00045, 

one finds 

R (0.005, 0.000455) = 0.001 m 

and 

1(0.0098, 0.00026) = 0.00096 m. 

(9.3) 

(9.4) 

Since (9.3) and (9.4) exceed (9.1), the area of the cross section 
for A NbTi where the B-field must be nonzero is greater than 
74% of the whole area. Numerical evaluation of the left side 
of (5.2) indicates that actually the inequality (5.2) is violated 
in more than 80% of the area of the rectangle. 

Inequality (5.2) yielded no information in the case of 
Nb3Sn. However, it must be emphasized that this does not 
imply the vanishing of the magnetic field. The criterion sim
ply is not satisfied. 

10. SUMMARY 

In summary, we have shown that for certain real super
conducting systems investigated experimentally, the critical 
state model described by Eq. (2.4) has a unique solution for 
the field B, and therefore it is inappropriate to apply bound
ary conditions on the interior which prescribe that the field is 
zero where the current is zero. 

In Ref. 10 the same conclusion is reached. However, the 
discussion there must be considered somewhat heuristic, 
since the limiting processes used are not justified. This is not 
merely a mathematical nicety, for such processes frequently 
break down, especially in nonlinear problems. Our develop
ment leaves open completely any case in which the contrac
tion condition (Theorem 2) does not apply, and the possibil
ity of no solution or many solutions to (2.4) must be 
contemplated. 

A physical argument is also given in Ref. 10 concerning 
the vanishing of the magnetic field as a solution to the inte
gral equation inside the core, and it is correctly stated that 
such vanishing occurs in the case of the annulus. Whether 
this is the only geometry for which this is true, as conjectured 
in Ref. 10, remains to be seen. However, our studies certainly 
lend credence to this conjecture, and suggest that portions of 
the critical state theory must be questioned. 

APPENDIX: POSSIBLE APPLICATION OF A THEOREM 
OF GOLOMB 

It is clear that one wishes the contraction constant in 
Theorem 2 to be as small as possible. The analysis in Sec. 4 
suggests that better estimates involving the geometry of the 
system may accomplish this. We mention one possible 
approach. 

In Ref. 11 Golomb establishes the following result: 
Theorem (Golomb): Consider the nonlinear integral 

equation 

¢(s) = LK (s,t )/(t,¢(t ))dt, (AI) 

where G is a measurable bounded set in n-dimensional Eu
clidean space, Kis continuous for sand t in G, and/satisfies 
the Lipschitz condition 
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If(t,ud - f(t,u 2)I<k lUI - u2 1· 

Suppose k l < 1..1 1 where A is the eigenvalue of the smallest 
modulus of the iterated kernel 

K (2)(s,t) = LK (s,r)K (t,r)dr. 

Then (A 1) has exactly one solution t/J which is continuous in 
C. 

In our problem the identification 

f = F(lb (z')I)(z - z,)!lz - z'l, K = l/Iz - z'l, 

seems appropriate but by not means unique. However, all 
efforts thus far made to get an estimate on A to obtain stron
ger results than those appearing in Theorem 2' have been 
unsuccessful. The problem remains open. 
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On the spontaneous magnetic order in the Hubbard model 
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A rigorous proof is given of the absence of spontaneous magnetization in the Hubbard model in 
one and two dimensions. 

PACS numbers: 75.1O.Jm 

In more than two dimensions rigorous proofs are given 
of the existence of magnetic transition for the Heisenberg 
models I as well as for other models.2 

In one and two dimensions there is the well-known 
Mermin and Wagner3 result about the absence of spontane
ous magnetization for the Heisenberg model. In this paper 
we complete the scheme by proving the same result for the 
Hubbard model.4 

Although the result is expected on general physical 
grounds, no rigorous proof seems to be available in the litera
ture. Attempts for a rigorous proof by exploiting a believed 
similarity of the model with the Heisenberg model have not 
been successful. We give a direct proof, exactly along the 
same lines as in Ref. 3. 

Consider the v-dimensional cubic lattice Z v and the 
local Hamiltonians H A defined for all finite subsets A C Z v 

by 

" t(x-y)(C+C . +C+C) £- x, a y,u Y,U x,a 
x.yEA 

d~ ± I 

U 
+-

2 

where, for all xEA, t (x)ER, t (x) = t ( - x), and 7 

(1 ) 

= ~xEz,.x2It (x)1 < 00, UER, (1 = ± 1 stand for the spin indi
ces, C and C + are Fermion creation and annihilation opera
tors, nx,a = C x:aCx,a, and hER is the magnetic field. 

Let w; be any lattice translation invariant.B-KMS or 
equilibrium state for (1), which satisfies the Bogoliubov 
inequality 

Iw;[A,B*] 12 

,,;; lim f!....w~(A *A +AA *)wHB*, [HAoB]] (2) 
A~z"2 

for any pair A, B oflocal observables. 
Now we prove that if v";; 2 

lim lim _1_ Iw~(nx,a - nx.~a) = 0, 
h-.OA~Z' N(A ) XEA 

where N (A ) is the number of points in A. 
The main thing for the proof is to choose the appropri

ate observables A and B in (2). Our choice is the following. 
For A CZ v any centered cube, take 

a'On leave of absence from University ofWroclaw, Poland, 

AA,a(k) = IeikxCx:aCx.~a' 
xEA 

BA(k) = IAA,a(k), 
a 

where k is any element of the dual lattice A of A. Then 
compute 

W~([BA(k ),A;I,a(K)*]) = N(A )ma(h) (3) 

where 

ma(h)= lim -1-Iw~(nx,a-nx,_a) 
A .Z' N(A ) XE,j 

is the magnetization, Further 

Iw~(A,j,a(k )*AA.a(k) + AIl.a(k )A1l,a(k )*),,;;N(A fp, (4) 
kE A 

where 

and 

l~~zw~ ([BA (k )*, [HA" BA (k)]]) 

= 2 I t (z - x )exp Uk (z - x) - 1] w~ (C x:d Cz,a 
XEZ "zEA. 

a'~ ± 1 

+ C z:a'Cx.a) + 4hN(A )ma(h). 

It is important that this result is independent of the 
potential term. 

(5) 

From (2) it follows that (5) is positive. Hence we get an 
upper bound for (5) by adding the term with k replaced by 
( - k). Using Schwartz inequality and 1 - cosu,,;;u2/2, one 
gets 

lim wH B A (k )*, [H A ' , B A (k )]] 
A'-Z" 

";;4pk 2N(A)7 + 8hN(A )ma(h), 

Substitution of(3), (4), and (6) in (2) yields 

1 math )2 .B 
N(A )k; 4P7k 2 + 8hma(h) ";;2P' 

In the limit A_Z v this becomes 

(
1 )VfTr dVk math )2 ,,;;!!...-p. 

2Tr ~ Tr 4p7k 2 + 8hma(h ) 2 

(6) 

(7) 

If v,,;; 2, limh~ma(h )#0 is in contradiction with (7). This 
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proves the absence of spontaneous magnetization, and hence 
the absence of magnetic long range order,1 for nonzero 
temperatures. 

We remark that the proof does not work for more gen
eral Fermi lattice models with potentials of the type 

x.)'81 

U= ± 1 

For these models the expression (5) does depend on the po
tential v and the argument breaks down. But it holds still if 
we replace our Hamiltonian (1) by the grand-canonical one. 

Further, if we replace A.-\.a (k ) by AA.,,(r + K), and keep 
B A (k ) unchange, where the vector K has the property that 
for each xEA eiKx = ± 1, the argument rules out the possi
bility of antiferromagnetic ordering in the one and two-di
mensional Hubbard model. This conclusion is interesting in 

915 J. Math. Phys .• Vol: 22, NO.4, April 1981 

connection with microscopic theories of metal-insulator 
transitions based on theHubbard model. These theories con
sider the effect of correlations between electrons closely re
lated to the existence of antiferromagnetic order in the 
system.s 

'F. J. Dyson, E. H. Lieb, and B. Simon, J. Stat. Phys. 18, 335 (1978). 
2J. Frolich, R. Israel, E. H. Lieb, and B. Simon, Commun. Math. Phys. 62, 
I (1978); Part II to appear J. Stat. Phys. 

'N. D. Mermin and H. Wagner, Phys. Rev. Lett., 17, 1133 (1966); see also 
P. C. Hohenberg, Phys. Rev. 158,383 (1967). 

4J. Hubbard, Proc. Soc. London, Ser. A 276, 238 (1963). 
'N. F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 
1974). 

J. Jedrzejewski and A. Verbeure 915 



                                                                                                                                    

Erratum: A new method of matrix transformations. II. General theory of matrix 
diagonalizations via reduced characteristic equations and its application to 
angular momentum coupling [J. Math. Phys. 20, 2159 (1979)] 

Shoon K. Kim 
DepartmentojChemistry, Temple University, Philadelphia, Pennsylvania 19122 

(Received 17 December 1980; accepted for publication 16 January 1981) 

PACS numbers: 02.1O.Sp, 99.10. + g 

(1) The ninth line from the bottom on the right half of p. 2160 
should read 

r- I r- 1 
P = X - f "A r - 1 - k 11. (k I = X-I "A (k 111. r - f - k 

v v~ v v£..t v 
k=O k=O 

(2.10') 
k 

l1.(kl = "c. 1 k-i 
v L IAv • 

i=O 

(2) In the first line of Theorem 2 on p. 2161, AEM(n Xn, 
p(rl(x)) should read 

A EM (n X n, plrJ(x)). 

(3) In Eq. (3.6) on p. 2161, ~.= Xv [Pv L. 
(4) In the LHS ofEq. (4.1) on p. 2162, [rhij should read 

[TT]ij. 

(5) In Eq. (5.7) on p. 2163, t U -1 J ij = NiSij should read 

tU-flij = Ni'Sy. 

(61In the LHS ofEq. (5.14) on p. 2164, [THT] ij should read 
[THT]ij. 
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